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ABSTRACT

This paper proposes an adaptive unscented Kalman filter for parameter estimation of non-stationary signals, like 
amplitude and frequency, in the presence of significant noise and harmonics. This paper proposes an iterative update 
equation for model and measurement error covariances Q and R to improve tracking of the filter in the presence of 
high noise. The initial choice of the model and measurement error covariances Q and R, along with the UKF param-
eters, are crucial in noise rejection. This paper utilizes a modified particle swarm optimization (MPSO) algorithm for 
the initial choice of the error covariances and UKF parameters. Various simulation results for time varying signals re-
veal significant improvement in noise rejection and accuracy in obtaining the frequency and amplitude of the signal. 
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1. INTRODUCTION 

Various estimation techniques have been extensively 
studied, taking into account the signal model. Classical 
methods of frequency estimation include both parametric 
and nonparametric methods. Many of these methods had 
their origin in Prony’s work and include weighted least 
squares methods. Fast algorithms based on singular value 
decomposition (SVD) and reduced rank approximations 
have been developed by Kumarson and Tufts [1]. Pisaren-
ko’s method [2], and the MUSIC [3] algorithm exploit the 
orthogonal property of the signal and noise subspaces but 
result in large computational overhead. Other methods like 
ESPIRIT [4], higher order statistics, and wavelet transform 
etc. are used to estimate signal frequency varying with time 
accurately with high signal to noise ratio (SNR), but with 
low SNR, the performance degrades considerably. This is 
also true for most of the parametric methods. 

Amongst the several other methods for frequency, 
 amplitude and phase estimation of non-stationary signals, 
ANN-based methods offer an efficient and robust estima-
tion while they suffer from inaccuracies in the presence of 
low SNR. Newton-type methods, adaptive notch filters, 
Adalines, and leas squares techniques are some of the 
signal processing methods that have been suggested for 
signal with time varying frequency. However, the clas-
sical nonlinear filter is extended Kalman filter (EKF) [5]; 
its filter equation is the same as linear Kalman filter 
equation by linearizing the nonlinear equation based on 
1-order Taylor expansion at the predicted points. So the 

filter maybe diverge when observability of the system is 
low, instable due to linearization,  erroneous parameters 
or costly for calculation of derivatives and when the 
biased nature of estimates and sometimes Jacobian matrix 
does not exist; in this case, the EKF cannot be used to 
address the deficiencies of EKF, Julier [6] proposed a new 
unscented transform, which can be efficient and unbi-
ased for the mean and variance, based on this transform 
- unscented Kalman filter. It is shown that this filter has 
2-order approximate convergence for Taylor expansion. 

The unscented transformation used in UKF uses 
 nonlinear transfer function, instead of linearization, to 
compute the state and error covariance matrices. This 
results in a more accurate estimation of the parameters of 
a non-stationary signal. However, its accuracy decreases 
significantly if SNR is low and the noise co variances and 
some of the parameters used in unscented transformation 
are not chosen correctly. Thus for best signal tracking 
performance, this paper proposes a modified particle 
swarm optimization technique (MPSO), for the optimal 
choice of UKF parameters and error covariances Q and R. 

The particle swarm optimization technique is a  population 
based, self-adaptive optimization technique developed 
by Eberhert and Kennedy which stimulates the social 
behavior of birds or fish. In this paper, particle swarm 
optimization (PSO) technique [7-9] is used to optimize 
noise covariance matrices to achieve the best UKF per-
formance. The PSO technique can generate very high 
quality, shorter calculation time and stable convergence 
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characteristics when compared to other population 
based methods like genetic algorithm and evolutionary 
 programming.  Generally, PSO has global searching ability 
at the  beginning of the run and a local search near the end 
of the run. Therefore, while solving problems with more 
local optima, there are more possibilities for the PSO to 
explore local optima at the end of the run. Although PSO 
is easy to implement and has few parameters to adjust, it 
suffers from premature convergence, velocity explosion, 
and immediate good solutions. We use the MPSO tech-
nique. The paper uses adaptive unscented Kalman filter 
to track signal parameters under high noise condition 
based on an optimal choice of Q and R. The simulation 
results of tracking sinusoids corrupted in noise with low 
SNR and harmonics reveal significant accuracy and noise 
rejection property. 

2. SIGNAL MODEL 

Consider a signal consisting of I sinusoids, the discrete 
time equation is given by 

z A k T k Lk ik ik s ik ki

I= + + =
=∑ cos( ) , , ,...ω φ ς 1 2

1
 (1)

Where zk is the measured signal, Aik, vik and wik are ampli-
tude, frequency and phase of the ith sinusoid respectively, 
where Ts is the sampling period. The measurement noise 
is represented as zk, which is a zero mean Gaussian white 
noise. For easy analysis only the fundamental component 
of the signal is considered, as described below

zk 5  A cos(kvTs 1 w) 1 zk , (2) 

where zk ∼ N(0,Rk), and the measurement error covari-
ance is given by R k k k

TE= [ ]   (3)

The discrete time signal can be modeled in state space 
form as 

xk 1 1 5 Fkxk 1 wk (4)

where wk ∼ N(0,Qk),and the model error covariance is 
given by Q E qk k k

T= =[ ]w w I  (5)

The state variables are expressed as 
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And the state-transition matrix in this case becomes
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The measurement model for the signal represented by 
equation (2) is obtained as 

zk 5  h(xk) 1 zk  (8) 

here h(xk) 5 [1 00] xk, and the measurement transition 
matrix H is given by 

H 5 [1 0 0], and xk 5 [x1k x2k x3k ]T (9)

3. ADAPTIVE UNSCENTED KALMAN FILTER

EKF is the most widely used filter but suffers from 
instability due to first order linearization of nonlinear 
models, costly calculation of Jacobean matrices and the 
biased nature of its estimates. The unscented Kalman 
filter known as UKF is considered in this paper is an 
improvement to EKF. The main advantage of UKF is that 
it does not use linearization to calculate the state predic-
tions and covariance matrices and provides accurate Kal-
man gain estimates. It utilizes a deterministic sampling 
approach in choosing 2 3 N 1 1, sigma points (N is the 
state dimension) based on a square-root decomposition 
of the prior covariance. These sigma points are propa-
gated through the nonlinearity, without approximation, 
and a weighted mean and covariance is found. The UKF 
thus involves the recursive application of the sampling 
approach to the state space equations of the signal. The 
UKF algorithm is summarized in the following steps: For 
the N –dimensional random variable x, initialize with 
mean x0  and covariance P0 as 

x E x P E x x x x T
0 0 0 0 0 0 0= = − −[ ], [( )( ) ],  (10)

Given a state vector at time step k21, sigma points are 
computed and stored in the columns of N 3 (2 N 1 1) 
sigma point matrix xk 2 1. For the present problem of 
estimating fundamental component, N 5 3 so xk 2 1 is a 
3 3 7 matrix. The sigma points are computed as,

χ λ

λ

i k k k k i

k k i

N

N i

, [ , ( ) ,

( ) ], , , ,

− − − −

− −

= + +( )
− +( ) =

1 1 1 1

1 1 0 1 2

x x P

x P ....,N  (11)

where ( )N k i
+( )− P 1 is the ith column of the matrix 

square root of (N 1 l)Pk21).

The parameter l is used to control the covariance matrix, 
and is given by l 5 a2(N 1 k)2N (12)

Both l and k are scaling parameters. The constant a 
determines the spread of the sigma points and its value is 
between 0.0001 ≤ a ≤ 1. After computing the sigma points 
the time update of state estimates are given by 
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x xi k k k i k, / ,( )− − −=1 1 1F  (13)
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Where the weights Wi
m are defined by 
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The a priori error covariance is given by
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Where the weights Wi
c are defined by
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The estimated output is 

z Hi k k i k k, | , |( )− −=1 1x  (18)
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The a posterior state estimate is computed as

x x Kk k k k k k kz z= + −− −/ /( )1 1
 (20)

Where Kk is the Kalman gain given by 

K P Pxk z z zk k k k
= −1  (21)

P x zxk kz i
c

i k k k k
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2
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Rk is measurement error covariance matrix. The a 
p osterior estimate of the error covariance matrix is 
given by 

P P K P Kk k k k z z k
T

k k
= −−

−[ ]/ 1
1  (24)

Proper selection of UKF parameters like Qk, Rk, a,b,k are 
crucial. In most of the case it is to be chosen by trial and 
error. The measurement and model error covariances 
Rk and Qk are chosen to be constant and determined a 
priori. This paper presents a self-tuning procedure for 
covariance setting is presented to improve the perfor-
mance of the filter. The innovation covariance at instant 
k is given as 

k k k kz z= − −( ),/ 1  (25)

The innovation covariance is used to update the measure-
ment and the model error covariances as 

R R ek k
k k= +−

− −η ρ ρ
1

1( )  (26)

and q q ek k
k k= +−

− −η ρ ρ
1

1( ) , where Qk 5 qkI (27)

where h is forgetting factor and 0 # h # 1 

Model and measurement error covariances are updated in 
every iteration in this way. This new value of covariances 
Qk and Rk are used to improve the estimate of the state 
through the iterative procedure. The AUKF algorithm 
provides better performance over UKF, with a proper 
choice of the parameters a , l , b and the initial values of 
the covariances Qk and Rk. Thus to improve the perfor-
mance of UKF, a stochastic optimization technique like 
the PSO and its variants are used to obtain the parameters 
a, l , b , Qk, and Rk instead of trial and error approach. The 
fitness function chosen is to minimize the mean square 
of the innovation vk, and is given for the ith particle by 

J
M z z z z

i

k k k k k k
k

M=
+ − −− −

=
∑

1

1 1 1 1
1

( / ) ( )( )/ /  (28)

where M is the number of samples chosen for determin-
ing the mean. 

4. PARTICLE SWARM OPTIMIZATION OF AUKF 
ALGORITHM 

The particle swarm optimization technique, as discussed 
in the introduction, is an optimized solution to obtain a 
better performance with low SNR. The basic PSO algo-
rithm is started by scattering a number of particles called 
swarms in the function search space. Each particle moves 
in the search space looking for the global minimum or 
maximum. During its flight each particle adjusts its tra-
jectory by dynamically altering its velocity according to 
its own flying experience and the flying experience of 
other particles in the search space. For particles moving 
in a multidimensional search space, let Si and Vi denote 
the position and velocity of ith particle in a d-dimensional 
search space and can be represented as 

Si 5  (si1, si2, si3......sid), and Vi 5 (vi1, vi2, vi3.vid). The velocity 
and position of each particle is updated as 

vid(k 1 1) 5 K.(wvid(k) 1 c1.rand().(pbestid2sid(k)) 1 c2. 
rand().(gbestid2sid(k))) (29)

sid(k1 1) 5 sid(k) 1 vid(k 1 1) (30)

Dash PK, et al.: HPSO for Signal Parameter Estimation
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where K is the constriction factor and given by 

K c c=
− − −

= + >
2

2 4
4

2 1 2
  

 , ;where

 (31)

and w is the inertia weight factor, c1 and c2 are  acceleration 
constant, rand ( ) is a random number in the range [0,1], 
pbestid is the local best of each particle, and gbestid is the 
global best position. 

A suitable selection of inertial weight w and  acceleration 
coefficients c1 and c2 is crucial in providing a balance 
between the global and local search in the flying space. 
The particle velocity at any instant limited to a chosen 
Vmax, which if too high will result in allowing the particles 
to fly past good solutions. On the other hand, if Vmax is too 
small, particles end up in local solutions only. Although 
the conventional PSO can produce optimal solutions 
of AUKF parameters, it still suffers from premature 
convergence and gets stuck in local minima. Besides, it 
suffers from an ineffective exploration strategy around 
local minima and therefore a change in particle motion 
methodology may speed up the search by improving 
exploration. This paper uses inertia weight updated 
iteratively by the fitness function of the algorithm. 

4.1 Modified Particle Swarm Optimization  Algorithm 

The inertia weight w is updated by finding the variance 
of the population fitness as 

 2
2

1
=

−



=

∑
J J
J

i avg

i

I
 (32)

where Javg is the average fitness of the population of 
 particles in a given generation. Ji is the fitness of the ith 
particle in the population. I is the total number of particles. 

J 5 {max(|Ji-Javg|)}, i 5 1,2,3.....I (33)

In the equation given above J is normalizing factor which 
is used to limit s. If s is large, the population will be in 
a random searching mode, while for small s or s 5 0, 
the solution tends towards a premature convergence 
and will give the local best position of the particles. To 
circumvent this phenomenon and obtain the best solu-
tion, the inertia weight factor is updated 

w(k) 5 mw(k 2 1) 1 (1 2 m)s2 (34) 

The forgetting factor m is chosen as 0.9 for faster conver-
gence. Another alternative form will be 

w(k) 5  m1w(k 2  1) 1 rand ( ) /2 (35) 

where rand ( ) is a random number in the range [0,1]. The 

influence of the past velocity of a particle on the current 
velocity is chosen, to be random, and the inertia weight 
is adapted randomly depending on the variance of the 
fitness value of a population. This result is an optimal 
coordination of local and global searching abilities of the 
particle. The complete flow chart for modified particle 
swarm optimization is given in Figure 1. 

5. NUMERICAL RESULTS AND DISCUSSION 

The performance of the proposed method is evaluated 
through test signals embedded in high noise condi-
tion. The test signal considered for the estimation of 
signal parameters is given as 

zk 5 A cos(kv (k)Ts 1 f) 1 zk ,  (36) 

where A and w are the amplitude and phase of the  signal, 
v is angular frequency, k 5 sampling instant. UKF param-
eters are chosen as: Qk , Rk, a, b and k need to be initialized, 
Here b and k are chosen as b 5 2, and k 5 0, and a, Qk, Rk 
are initially chosen as a 5 0.5, Qk 5 qI3 3 3, and Rk 5 0.05, 
where I is a 3rd order unit matrix. Since the signal is mod-
eled for three parameters, the value of N is set equal to 3, 
and thus the number of sigma points for this estimation 
is 2N 1 1, i.e. 7. For optimizing the UKF performance, the 
PSO parameters are initialized with a population of 100 

Figure 1: Flow chart for modified particle swarm  optimization  
implementation.

Dash PK, et al.: HPSO for Signal Parameter Estimation
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Figure 3: Comparison of extended Kalman filter and AEKF 
for linear frequency variation with 10 dB noise.

particles. The parameters of UKF to be optimized are a 
q and Rk. For the conventional PSO algorithm, the initial 
values of parameters c1, c2, wmax, wmin are chosen as c1 5 2.1, 
c2 5 2.1, wmax 5 0.9, wmin 5 0.4, lower and upper band of 
a, q and Rk are chosen as alower 5 0.001, qlower 5 0.0001, 
Rlower 5 0.001, aupper 5 0.7, qupper 5 0.8, Rupper 5 0.5. The cho-
sen fitness function is given in equation (28). The following 
case studies on frequency, amplitude and phase of the 
non-stationary signals in noise are presented to highlight 
the adaptive EKF, adaptive UKF and MPSO performance. 

5.1 Case 1: Linear Frequency Variation 

The frequency of the test signal in (36) is varied as- for 
first 300 samples f(k) 5 f0 5 50Hz, it increases linearly 
for next 400 samples at a rate of Df(k) 5 0.012(k 2 300) 
and then remains constant. The sampling frequency is 
chosen as 1 kHz, time varying frequency, amplitude, and 
phase of the signal are obtained for different SNR vary-
ing from 60 dB to 10 dB. Figures 2 and 3 show estimated 
frequencies and comparison of parameter estimation 
errors for noise levels of 30 dB and 10 dB respectively. 
From Figure 2 it is observed that the adaptive EKF shows 
better tracking of all the parameters compared to stan-
dard EKF with constant Q and R at 30 dB SNR. As the 
SNR is decreased to 10 dB, the performance of the EKF 
tracker is found to deteriorate as shown in Figure 3. The 
same signal is analyzed using UKF, AUKF and AUKF 
with MPSO. Figure 4 shows the improvement of AUKF 
which uses tuning of measurement and model error 

covariances. Then the parameters of AUKF are chosen 
through modified PSO (MPSO) and further improve-
ment is found in presence of 30dB SNR. As the SNR is 

Figure 2: Comparison of extended Kalman filter and AEKF 
for linear frequency variation with 30dB noise.

Figure 4: Comparison of UKF, AUKF and AUKFPSO for linear 
 frequency variation with 30 dB noise.

Dash PK, et al.: HPSO for Signal Parameter Estimation
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Table 1: Mean of MSE over 100 independent runs
Algorithm 60 dB 30 dB 20 dB 10 dB

EKF 0.0051 0.0062 0.3105 0.497
AEKF 0.0047 0.0057 0.3019 0.479
UKF 0.0041 0.0054 0.2897 0.437
AUKF 0.0028 0.0032 0.0205 0.0574
AUKFPSO 0.0020 0.0029 0.0107 0.037

Figure 6: Comparison of extended Kalman filter and AEKF 
for  time-varying frequency with 30 dB noise.

decreased to10 dB, the performance of the UKF tracker 
deteriorates compared to AUKF and MPSO algorithms 
as shown in Figure 5, but comparatively better than 
EKF and AEKF. To have a meaningful comparison of 
the performance of various filters like EKF, AEKF, UKF, 
AUKF and AUKF optimized by the MPSO, the mean 
values of MSE over 100 iterations are given in Table 1 
at different noise levels. 

5.2 Case 2: Time-varying Frequency 

In this test, frequency of the sinusoid is modulated by 
two small sinusoidal components and the resultant fre-
quency is tracked with various filters as mentioned in 
case 1. The test signal used in this case is as in equation 
(36) and the time varying frequency is given by, 

v(k) 5 2p[50 1 sin(2p.1.kTs) 1 0.5 sin(2p.6.kTs)] (37)

Figure 6 shows the results of tracking of frequency, 
 frequency error and amplitude error of the signal with 
30 db noise. At 30 dB noise both EKF and AEKF performs 
well in tracking accurately the frequency and amplitude 

of the time varying signal. However, when the SNR is 
lowered to 10 dB, the frequency tracking performance of 
the Kalman filters deteriorate and significant errors creep 

Figure 7: Comparison of extended Kalman filter and AEKF 
for time-varying frequency with 10 dB noise. 

Figure 5: Comparison of UKF, AUKF and AUKFPSO for linear 
frequency variation with 10 dB noise.

Dash PK, et al.: HPSO for Signal Parameter Estimation
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Table 2: Mean of MSE over 100 independent runs
Algorithm 60 dB 30 dB 20 dB 10 dB

EKF 0.0049 0.0794 0.237 0.243
AEKF 0.0045 0.0721 0.201 0.219
UKF 0.0037 0.0692 0.197 0.207
AUKF 0.0021 0.0375 0.057 0.1551
AUKFPSO 0.0017 0.0223 0.039 0.0214

Figure 9: Comparison of UKF, AUKF and AUKFPSO for time-
varying frequency with 10 dB noise.

Figure 8: Comparison of UKF, AUKF and AUKF - PSO for 
 time-varying frequency with 30 dB.

in as shown in Figure 7. As in case 1, the above signal 
is analyzed using UKF, AUKF and AUKF with MPSO. 
Figure 8 shows the improvement of AUKF and MPSO 

over UKF at 30 dB SNR. As the SNR is decreased to10 
dB, the performance of the UKF tracker deteriorates but 
comparatively better than EKF and AEKF as shown in 
Figure 9. The performance of various filters and mean 
values of MSE over a100 iterations are given in Table 2 
for different noise levels. 

5.3 Case 3: Step Frequency Variation 

In this case the test signal taken is as in equation (36) 
with a frequency jump of f0 5 50 Hz to f1 5 52 Hz. 
Fig ure 10 shows the signal parameter tracking results 
of EKF and AEKF at SNR 5 30 dB and Figure 11 shows 
the tracking performance of UKF, AUKF and MPSO at 
30dB SNR. From Figures 11 and 12 it is clear that the 
performances of AUKF and MPSO are better than UKF, 
EKF and AEKF. Similar to case.1, the above signal is 

Figure 10: Comparison of extended Kalman filter and AEKF 
for step frequency variation with 30 dB noise.

Dash PK, et al.: HPSO for Signal Parameter Estimation
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Figure 12: Comparison of UKF and its variants with  harmonic 
and 30 dB noise.

Table 3: Mean of MSE over 100 independent runs
Algorithm 60 dB 30 dB 20 dB 10 dB

EKF 0.1021 0.0623 0.189 0.421
AEKF 0.0953 0.0501 0.190 0.401
UKF 0.0917 0.0327 0.178 0.398
AUKF 0.0501 0.016 0.123 0.288
AUKFPSO 0.0102 0.0091 0.096 0.126

Figure 11: Comparison of UKF, AUKF and AUKFPSO for step 
frequency variation with 30 dB noise.

analyzed for different noise levels and the mean values 
of MSE over 100 iterations are presented in Table 3. 
Figure 12 shows the effect of harmonics present in 
the signal as noise. Here the signal is corrupted with 
30 dB noise, third and fifth harmonic components. 
Figure 12 illustrates the negligible effect of third and 
fifth harmonic components on parameter estimation of 
the fundamental component. Thus, UKF and its vari-
ants are able to track non-stationary signal frequency 
and amplitude efficiently in presence of noise and 
harmonics. 

6. CONCLUSION 

In this paper, we have proposed an adaptive unscented 
Kalman filter technique with optimized error covariances, 
and a modified PSO optimization technique to estimate 
the amplitude and frequency of the signal with frequency 
varied either linearly, time-varying or in a step-wise 

manner. Both large and small frequency variations along 
with different noise level are considered for performance 
evaluation of the proposed algorithm in comparison with 
other algorithms. It is observed that the error in frequency 
estimation decreases significantly in UKF with iterative 
Q and R and UKF parameters optimization using MPSO. 
The paper also presents the effects of an adaptive measure-
ment error covariance R and model error covariance Q on 
the overall performance of the UKF in tracking accurately 
the signal parameters along with frequency. 
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