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A B S T R A C T   

Retinal vessel segmentation is an essential step for non-invasive diagnosis and analysis of ocular pathologies such 
as diabetic retinopathy, glaucoma, etc. Although several deep learning networks have been implemented for 
segmenting vascular maps, still further modification can be carried out on the existing deep learning networks for 
precise segmentation of vascular maps. This paper presents a novel cascaded AReN-UNet (Attention Residual U 
Network), driven by the integration of attention and residual modules. The proposed network is implemented by 
cascading two deep learning networks of depth 4. In the second network, each encoder receives the feature maps 
from the previous convolutional block. In addition to this, the feature maps of a respective convolutional block of 
the preceding network are also fed as input to the convolutional block of the second network. Furthermore, 
aggregated residual and attention modules in the cascaded AReN-UNet are used to improve convergence and 
stability of the network which eventually reduces the vessel breakdowns in the vascular map. The proposed 
model is trained and evaluated on different datasets such as DRIVE, CHASE_DB1, and one locally collected 
dataset. The proposed network illustrates the state-of-the-art performance by achieving an accuracy, F1 score, 
sensitivity, specificity, and Area Under the Curve (AUC) of 96.96%, 82.63%, 83.68%, 98.35%, and 98.67% 
respectively on the DRIVE dataset and 97.70%, 82.01%, 85.60%, 98.35%, and 99.01% respectively on the 
CHASE_DB1 dataset.   

1. Introduction 

A cardinal organ, the eye perceives the visual information from our 
surroundings and transfers it to the brain through the nervous system in 
impulse signals. A report by the WHO in 2019 stated that at least 2.2 
billion people worldwide had been affected by vision impairment [1]. 
Furthermore, it was also reported that approximately 11.9 million 
people had moderate to severe risk of vision loss due to pathologies such 
as diabetic retinopathy, glaucoma, and trachoma that could have been 
avoided if these manifestations are detected earlier. Two studies in the 
US estimated that financial expenditures are amounted to $139 billion 
due to the prevalence of ocular diseases such as cataracts, diabetic 
retinopathy, glaucoma, and refractive errors [2,3]. If these are not 
identified in the early stages, they progress to a severe stage called 
neovascularization, i.e., the formation of new fragile blood vessels on 
the retinal surface. Traditionally, fluorescein angiography was carried 
out to diagnose neovascularization [4]. However, fluorescein angiog
raphy is an invasive technique that involves the injection of a fluorescent 

dye into the bloodstream. As a result, it is associated with several side 
effects such as nausea, vomiting, breathing difficulties, and in some rare 
cases, cardiac arrests also. The segmentation of vascular maps from 
retinal images by employing deep learning techniques with image pro
cessing resolves the demerits of fluorescein angiography. 

Manual annotation of blood vessels from retinal fundus images for a 
growing number of patients is a difficult and time-consuming process. 
Hence, there is an essential need to implement a non-invasive automated 
screening system that addresses the problems faced by ophthalmologists 
in routine check-ups of patients. These automated screening systems can 
be useful for the diagnosis, screening, and treatment planning of ocular 
diseases such as glaucoma, age-related macular degeneration, and dia
betic retinopathy [5–8]. Apart from this, they also reduce the cost 
burden on patients and prevent permanent blindness. Furthermore, the 
analysis of retinal images using deep learning networks helps to di
agnose other pathologies such as cardiovascular diseases, strokes, and 
arteriosclerosis [9]. 

Retinal vessel segmentation is a challenging problem due to the 
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complexity and dissimilarity in vessel structures. In addition to this, the 
quality of images is affected by different irregularities such as varia
tional lighting, blur, and noise. The presence of numerous anatomical 
structures such as the optic disk, macula, fovea, and various other ab
normalities such as haemorrhages, cotton wool spots, and exudates on 
retinal surfaces deteriorates the algorithm’s performance in segmenting 
the vascular network [10]. Over the past many years, multiple algo
rithms have been implemented for the segmentation of retinal blood 
vessels. These algorithms are broadly divided into two types, supervised 
and unsupervised methods. Unsupervised methods are rule-based seg
mentation algorithms such as matched filtering [11,12] multi-scale 
methods [13,14], vessel tracking [15,16] and morphological methods 
[17]. However, these algorithms lack generalization ability, which re
sults in the formation of false edges. 

With the progressive growth of computer vision, in present days, 
deep learning models play a vital role in medical image analysis. Among 
supervised models, Convolutional Neural Network’s (CNN) are the most 
popular methods that have been developed and are used effectively to 
diagnose different diseases. The widespread of these models enabled 
several researchers to develop a network for vessel segmentation [18]. A 
U-Net is mainly composed of the downsampling encoder and up- 
sampling decoder connected with inter skip connections to fill the in
formation gap between the encoder and decoder. There are several U- 
Net variants [19–26] in which each has its own merits and demerits. Wu 
et al. [27] presented VesselNet by combining inception and residual 
modules. Guo et al. [28] proposed the Residual Spatial Attention U-Net 
that used the spatial attention block introduced in [29] and integrated it 
into every level of the encoder and decoder structure. Zhou et al. [30] 
developed a U-Net variant and is termed U-Net++, which consists of 
nested U-Net with dense connections between the convolutional blocks 
of the encoder and decoder at every depth. Consequently, the model is 
refined to capture each pixel of information from the target image. 

Due to the imbalance of annotated data, existing models are sus
pected to over-fitting problems. Apart from this, retinal vessel differ
ences also deteriorate the performance of the network. To address these 
issues, algorithms [31,32] used the concept of cascaded U-Nets. In these 
methods, the probabilistic map of the front network is fed to subsequent 

networks as input. The subsequent network acts as a refinement module 
that enhances the performance of the overall network. However, these 
methods suffer from large memory consumption and serious computa
tional problems. 

To circumvent the above problems in the literature survey, this paper 
developed a novel architecture by cascading the two identical deep 
learning networks of depth 4. The encoders and decoders of each 
network are connected with the respective encoders and decoders of the 
other network for transferring the feature maps accordingly. The con
volutional layers in the upper blocks of the model consist of only 16 
channels. As a result, the increase in memory consumption is relatively 
lower than the memory consumption occupied by the convolutional 
blocks in the lower levels. During the downsampling of the first network 
(X1), the respective feature maps of each convolutional block are 
retained and stored. These retained feature maps are fed as input to the 
convolutional blocks of the second network (X2). Consequently, X2uses 
the feature maps of (X1) and enhances the performance of the overall 
network by extracting the feature maps of each encoder. Apart from this, 
integration of attention and residual modules with the cascaded network 
by inter skip connections for semantic segmentation of retinal vessels 
improved the model’s spatial and structural representation and gener
alization abilities. The implementation of the Convolutional Block 
Attention Module (CBAM) in cascaded AReN-UNet with pre-activation 
aggregated residual layers utilizing the dropblocks with a dropout rate 
of 20%. This block prevents the degradation of the model and simulta
neously improves the network regularization. As a result, minor and thin 
blood vessels of the vascular map are also segmented more accurately. 
Finally, it is demonstrated through experimental evaluation and com
parison that the proposed modifications made to the U-Net architecture 
significantly improve the baseline performance. As a result, it achieves 
better state-of-the-art results. The contributions of this paper are as 
follows:  

1. Implementing a novel cascading AReN-UNet that integrates with the 
attention and residual modules to reduce vessel misclassification. 
The second cascaded network improves pixel connective ability and 
reduces the bifurcation breakdowns in the vascular map. 

Fig. 1. Cascaded AReN-UNet architecture.  
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2. The inclusion of intra and inter skip connections in integrating the 
attention module and cascading the two networks enables the AReN- 
UNet and improves its performance in capturing thin vessels.  

3. The efficacy of the proposed model is estimated by using different 
publicly available datasets like CHASE-DB1, DRIVE datasets, and one 
local dataset. 

The remaining part of this paper is organized as follows: Section 2 
describes the architecture of cascaded AReN-UNet and its application in 
blood vessel segmentation. The datasets and experimental results are 
discussed in Section 3. Finally, the discussion and conclusions of the 
proposed work are depicted in Sections 4 & 5, respectively. 

2. Methodology 

The proposed network, cascaded AReN-UNet represented in Fig. 1, 
follows the encoder-decoder architecture of the U-Net. The cascaded 
AReN-UNet is a nested U-Net variant model with each network 

comprising of one encoder and three decoders as depicted in Fig. 2. As a 
result, two similar deep learning backbone networks are implemented 
and are cascaded with inter and intra skip connections. 

The loss of spatial information in deep learning models is addressed 
by considering three decoders at each up-sampling block. This results in 
the formation of 3 fully segmented vascular maps at the end of each 
network. The convolutional layers utilize 3 × 3 kernels and use zero 
paddings with a stride of 1. The Leaky ReLU activation replaces the 
conventional ReLU function. This preserves the relative feature maps for 
semantic segmentation of blood vessels. The Leaky ReLU activation 
function (α = 0.3) produced better results in comparison to the ReLU 
activation function. Mathematically, Leaky ReLU of a function with 
input xi and output yi is defined as: 

yi =

{
xiif xi > 0

α*xiif xi < 0 (1)  

Fig. 2. Proposed Architecture of AReN-UNet.  

Fig. 3. (a) Pre-activation aggregated residual block (PRB) (cardinality = 2) (b) Pre-activation aggregated residual attention block (PRAB) (cardinality = 2).  
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2.1. Cascaded AReN-UNet 

To circumvent the problems faced by U-Net variants, we adapted the 
mechanism of cascaded U-Nets [33], i.e., the output of the first U-Net is 
fed into a subsequent U-Net, which serves as a refinement model and 
aims to enhance the structural representation of the vascular map. In 
addition to this, the cascaded model is combined with attention modules 
and driven by preactivated residual layers, which will reduce the 
misclassification rate of retinal vessels. 

During the forward pass of the cascaded AReN-UNet, the image is 
initially fed into X1, and the respective feature maps of each convolu
tional block of X1 are saved and fed to X2. The feature maps produced by 
X10,0 are then concatenated with the input image and fed intoX20,0. 
Further, the output feature maps produced by X20,0 are concatenated 
with the feature maps of X10,1 and fed into X20,1. As a result, each 
convolution block in the second network concatenates feature maps of 
the front network and preceding block for segmenting the vessels. This 
yields better results by fine refinement of vessel structures. 

2.2. Pre-activation aggregated residual block 

The integration of residual blocks [34] circumvents the degradation 
problem using a skip connection for residual learning. These pre- 
activation residual structures improve the regularization ability of the 
model and ease the optimization process compared to traditional re
sidual structures. The aggregated residual network (Res-NeXt) intro
duced by Xie et al. showed that increasing the cardinality of the residual 
connections was more effective than increasing the width or depth of the 
network [24]. Cardinality is the number of residual transformations to 
be aggregated and resultant sum of individual residual paths, 
F(i)defined as: 

F(i) =
∑C

j=1
Tj(i) (2) 

Where C is the cardinality and Tj(i) is the individual residual path for 
input i. Furthermore, applying the residual function yields the output y 
as: 

y =
∑C

j=1
Tj(i)+ i (3) 

In addition to this, dropblocks [35,36] are employed to avoid 
redundancy errors in AReN-UNet architecture. The dropblock layer 
effectively improves the regularizing capabilities of convolutional 

layers, further improving the overall performance network. Fig. 3(a). 
illustrates the pre-activated aggregated residual blocks with cardinality 
2 and Fig. 3 (b). represents the pre-activated aggregated residual 
attention blocks with cardinality 2. 

2.3. Pre-activation aggregated residual attention module 

The Convolutional Block Attention Module (CBAM) [29] is a type of 
attention module that can be integrated with the feed-forward con
volutional neural networks to improve their representation ability. 
Different types of attentional modules along with conventional atten
tional modules are represented in Fig. 4. Fig. 4(c) illustrates the CBAM 
that consists of a sequence of channels and spatial modules that have 
been designed to effectively emphasize the relative features. This 
eventually suppresses irrelevant features along the channel and spatial 
axis respectively. CBAM processes an intermediate feature map 
(F∊RC*H*W). This sequentially computes the 1-dimensional channel 
attention map (Mc∊RC*1*1) and the 2-dimensional spatial attention map 
(Ms∊R1*H*W). These attention feature maps are obtained by Eq. (4). 

F′

= Mc(F) ⊗ F, F′′ = Ms(F
′

) ⊗ F
′ (4) 

where ⊗ mbolizes element-wise multiplication. During multiplica
tion, the values of channel attention are broadcasted along the spatial 
dimension, vice versa. 

The channel attention module, as illustrated in Fig. 4. (a), is designed 
to improve the model’s representation power along the channel 
dimension and emphasizes focus on relevant information to realize the 
image by employing both max-pooling and average-pooling to compute 
Fc

max and Fc
avg respectively. These are then fed into a shared Multi-Layer 

Perceptron (MLP), and the respective concatenated outputs are passed 
through an activation function, sigmoid layer, to form the channel 
attention map. Channel attention feature maps are mathematically 
represented as: 

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F))) (5)  

3. Experimental results 

3.1. Datasets 

The proposed network is trained and tested on different publicly 
available datasets such as DRIVE [37] and CHASE_DB1 [38,39]. Col
oured fundus image databases were used to evaluate the proposed 
models and test their clinical applicability. 

Fig. 4. (a) Channel attention block (b) Spatial attention block (c) Convolutional block attention module (CBAM).  
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The DRIVE dataset includes 20 training and 20 testing images of size 
584 × 565 pixels. They were collected as part of a diabetic retinopathy 
screening program in the Netherlands. Only 7 of the images in this 
dataset consist of pathological manifestations. The CHASE_DB1 dataset, 
are collected from both the eyes of 14 school children in England, 
consists of 28 retinal fundus images of size 999 × 960 pixels. In addition 
to this, a local dataset collected by conducting medical camps in rural 
areas of Andhra Pradesh, India, is used for testing the performance of the 
proposed algorithm. The segmented results of the local dataset are 
evaluated by a team of ophthalmologists from our collaborating hospital 
“Gayatri Vidya Parishad Institute of Healthcare and Medical Technol
ogy.” Initially, the network is trained with the training dataset of the 

DRIVE dataset. To maintain homogeneity and fair comparison, CHA
SE_DB1 is used for training with a 4-fold cross-validation technique. 
Initially from all the input images, the green channel is extracted and 
subjected to CLAHE and gamma correction as a prior pre-processing 
step. Thus, the edges of the blood vessels in the fundus image can 
differentiate more precisely. Table 1 represents the information of im
ages collected from different datasets to train the network. 

3.2. Implementation details 

Initially, the retinal images are resized to 592 × 592/ 1008 × 1008 
and subjected to data augmentation that enlarges the training dataset. 
The Adam optimizer is used with the learning rate initialized from 
0.001, and the models were trained over 200 epochs with the early 
stopping regularization technique. The size of the dropblocks was set to 
7 with a dropout rate of 0.2. The implementation of the proposed al
gorithm is performed using publicly available cloud GPU services, 
Google Collaboratory, and Kaggle notebooks with Tensorflow 1.14 
framework and Keras library. For the DRIVE dataset, the models were 
trained on images with a batch size of 2. While the training on the 
CHASE_DB1 dataset, the batch size was set to 1 due to computational 

Table 1 
Dataset information.  

Dataset DRIVE CHASE_DB1 

Number of Images 40 28 
Original Size 584 × 565 999 × 960 
Resized 592 × 592 1008 × 1008 
Train/Val./Test Split 18/2/20 19/2/7 
K-fold Cross-Validation None (Official Split) K = 4  

Fig. 5. Performance of different models during the training process of (a) U-Net++ (backbone) (b) AReN-UNet (c) Cascaded AReN-UNet.  
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limitations. Similarly, the cardinality hyperparameter was limited to 2 
while training the cascaded AReN-UNet on the DRIVE dataset. However, 
on the CHASE_DB1 the cardinality of the model was set to 1. The training 
performance of the proposed algorithm is depicted in Fig. 5. The fully 
trained cascaded AReN-UNet segments the vascular maps with an 
average accuracy of 96.9%. The segmented vascular maps of retinal 
images from different datasets like DRIVE, CHASE_DB1 are illustrated in 
Fig. 6. Fig. 5 describes the performance metrics such as accuracy and loss 
values of different U-Net variants along with the proposed model. These 
values are monitored and plotted during the training of the model. From 
Fig. 5, it is evident that the training curves of AReN-UNet and cascaded 
AReN-UNet depict relatively lower deviation than the U-Net model in 
evaluating training and validating data. This indicates the high stability 
of the proposed cascaded AReN-UNet over the baseline U-Net model. At 
the end of the training, an average dice coefficient of 0.87 is observed, 
and the loss value is 0.2 with a specificity of 0.98 and sensitivity of 
0.8245. 

3.3. Evaluation metrics 

The Qualitative and Quantitative analysis of the proposed model is 
performed to depict the efficacy of the proposed network. Different 
quantitative evaluation metrics like sensitivity, specificity, F1 score, 
accuracy, and area under the ROC curve (AUC) were evaluated and 
compared with baseline models. 

Sensitivity = TP/TP+FN 

Fig. 6. Visualization of vascular maps of retinal images from different datasets (a) & (c) are the rows with sample input images from DRIVE [37] and CHASE_DB1 
[38,39] datasets along with ground truth and segmentation results obtained from different module of proposed model (b) A small rectangular region of (a) to show 
the significance of each module in segmenting the vessels. (d) & (e) are the rectangular regions of (c) to show the significance of each module in segmenting 
the vessels. 

Table 2 
Ablation analysis of proposed model.  

Method F1 
Score 

Sensitivity Specificity Accuracy AUC 

Base U-Net  0.7675  0.7030  0.9876  0.9627  0.9454 
Backbone (Nested – 

UNet)  
0.8021  0.7513  0.9838  0.9642  0.9712 

Backbone with 
residual module  

0.8079  0.7576  0.9886  0.9676  0.9833 

Backbone with 
attention module  

0.8169  0.8163  0.9783  0.9667  0.9851 

Cascaded backbone 
with residual 
module  

0.8132  0.8037  0.9834  0.9684  0.9846 

Cascaded backbone 
with attention 
module  

0.8214  0.8227  0.9816  0.9682  0.9855 

AReN-UNet (C = 2)  0.8217  0.8307  0.9816  0.9684  0.9859 
Proposed Cascaded 

AReN-UNet (C =
2)  

0.8234  0.8368  0.9812  0.9686  0.9861 

Proposed AReN- 
UNet (C = 4)  

0.8263  0.8245  0.9835  0.9696  0.9867 

The bold values represent the highest values of each performance metric, when 
compared with previously existing algorithms. 
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Specificity = TN/TN +FP  

Accuracy = (TP+ TN)/(TP+ TN +FN +FP)

Where TP, FP, FN, and TN indicate True Positives, False Positives, 
False Negatives, and True Negative pixels, respectively. 

3.4. Segmentation results 

The supremacy of the proposed network is illustrated in Table. 2. 
Table 2 represents the ablation studies of the proposed networks over 
the baseline models. The model is trained and monitored by evaluating 
its performance metrics like Dice Coefficient, Loss value, Sensitivity, and 
Specificity. Fig. 6 depicts the segmentation results obtained by each 
model and the ground truth. A small rectangular region of the input 
image is considered and enlarged as shown in the second, fourth, and 
fifth rows of Fig. 6 which contain major vessels and minor vessels 
respectively. The subfigures in Fig. 6 (b), (d) & (e) illustrate the signif
icant impact of cascaded AReN-UNet and inter-network skip connec
tions. As a result, the proposed cascaded AReN-UNet model can not only 

extract accurate thin vessels but also eliminate misclassified areas than 
other models. Moreover, it can connect the cracked branches and 
enhance the vascular structure of the retinal image. Furthermore, to 
evaluate the efficacy, the networks are tested using input images by 
shuffling the patches randomly. The results are shown in Fig. 7 and 
achieved an accuracy of 94%. This evaluation justifies the supremacy of 
the proposed network over the earlier existing networks. In addition to 
this, the optimization of hyperparameters in the training process yields 
better results by achieving an F1 score of 82.3%. Furthermore, a local 
dataset is used to evaluate the performance of the proposed algorithm 
and attained an accuracy of 94.5% with specificity and sensitivity values 
of 95% and 83% respectively. The segmentation results of the sample 
image from the local dataset are depicted in Fig. 9. 

3.5. Comparison of the proposed model with baseline models and earlier 
existing models 

Initially, ablation experiments were carried out on the DRIVE dataset 
to evaluate the significance of individual features obtained from the 
attention module, residual module, and the cascaded networks. The 

Fig. 7. The performance of proposed network on shuffled patches input image [37] (Input image, labelled image, Cascaded AReN-UNet output).  

Fig. 8. (a) Fundus image (b) Ground Truth of vascular map, Vessel segmentation outputs of different models (c) U-Net (d) U-Net++ (e) VesselNet (f) Proposed 
cascaded AReN-UNet. 
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proposed model performance metrics were evaluated by combining the 
residual module and attention module in the first step. In the second 
step, the same experiment was conducted by combining the residual 
module with the cascading network. Finally, the attention module is 
integrated with the cascading network to compare the result of the 
performance metrics such as F1 score, Accuracy, Specificity, Sensitivity, 
and AUC. The result of the performance metrics is depicted in Table 2. 

From Table 2, It is observed that the individual integration of both 
residual and attention modules with the nested U-Net (backbone) 
improved the performance of the model to a greater extent. As a result, 
the residual and attention modules improved the AUC by 1.21% and 
1.45% respectively. In addition to this, the individual integration of 
these modules increased the F1 score by 0.53% and 0.45% respectively. 
Furthermore, the integration of these modules to cascading network, i. 
e., the proposed network increased the AUC by 1.59%. These improve
ments in the performance metrics depicts the robustness of the proposed 
model over nested U-Net (backbone). The segmentation results shown in 
Fig. 6 depict the impact of attention and residual modules in the pro
posed network. The combined integration of attention and residual 
modules with the nested U-Net (backbone) can extract more relevant 
information from low-resolution areas of the fundus image yielding an 
accurate segmentation of the vascular map. Finally, from Fig. 6, it is 
evident that the precise segmentation result is obtained by the proposed 
cascaded AReN-UNet enabling the improvement of different perfor
mance metrics by integrating with the attention module, residual 
module, and cascading networks. 

For a better comparison with previously existing models, the con
volutional networks [18] are considered, and all the models are trained 
with identical parameters like Adam optimizer, maximum epochs, 
learning rate, etc. Fig. 8 describes the segmentation results of different 
models such as U-Net, U-Net++, VesselNet along with proposed 
cascaded AReN-UNet. These results illustrate the significance of the 
proposed model in reducing the breakdowns of vessels and increasing 
the true positive rate. The proposed model can efficiently segment the 

minor vessels that are being neglected in U-Net, U-Net++, etc. The 
developed cascaded AReN-UNet integrated with aggregated residual 
and attention modules reduces the generalization problems and further 
increases the representation ability of the network. The single AReN- 
UNet and the cascaded AReN-UNet outperformed the existing models 
by achieving an Area Under the Curve (AUC) of 98.7%. At the same time, 
the sensitivity of the proposed models exceeded the U-Net and its vari
ants by over 5.5%. The AReN-UNet with a cardinality of 4 achieved a 
better F1 score, accuracy, and AUC while the cascaded AReN-UNet with 
a cardinality of 2 achieved superior sensitivity than previously existing 
models. Table 3 and 4 represents the comparison of the proposed model 
with earlier existing algorithms. In addition to this, due to the presence 
of minimum channels in the upper convolutional layers of the proposed 
cascaded AReN-UNet, the memory consumption is relatively lower than 
the memory consumption of other models. Table 5 represents the 
comparison of memory consumption of different models with the pro
posed network in terms of trainable parameters. 

The vessel maps produced by AReN-UNet and cascaded AReN-UNet 
are more effective in differentiating the smaller vascular structures and 
the background compared to the nested U-Net (backbone). The seg
mentation maps produced by the nested U-Net struggle to locate and 
identify vessels in low contrast regions of the input retinal image. As a 
result, it leads to high false-negative rate. The attention modules and the 
aggregated residual layers integrated with AReN-UNet improves the 

Table 3 
Performance comparison with the state-of-the-art on the DRIVE dataset [37]  

Method F1 
Score 

Sensitivity Specificity Accuracy AUC 

Unsupervised 
methods      

Al-Diri et al. [40]  –  0.7282  0.9551  0.9258  – 
You et al. [11]  –  0.7410  0.9751  0.9434  – 
Fraz et al. [38]  –  0.7152  0.9768  0.9430  – 
Roychowdhury 

et al. [41]  
–  0.7395  0.9782  0.9494  – 

Fan et al. [42]  –  0.7360  0.9810  0.9600  – 
Supervised 

methods      
U-Net [18]  0.8012  0.7677  0.9857  0.9666  0.9789 
R2UNet [43]  0.8146  0.7792  0.9813  0.9556  0.9784 
LadderNet [44]  0.8202  0.7856  0.9810  0.9561  0.9793 
BTS-DSN [36]  0.8237  0.7963  0.9800  0.9566  0.9806 
Vessel-Net [29]  –  0.8038  0.9802  0.9578  0.9821 
IterNet [31]  0.8218  0.7791  0.9831  0.9574  0.9813 
HAnet [37]  0.8293  0.7991  0.9813  0.9581  0.9852 
Tang et al. [38]  0.8155  –  –  0.9551  0.9769 
RSAN [28]  0.8222  0.8149  0.9839  0.9691  0.9855 
NFN+ [33]  0.8295  0.7996  0.9813  0.9582  0.9830 
EEA Unet [45]  0.9770  0.7918  0.9708  0.9577  – 
SAT-Net [46]  0.8174  0.8117  0.9870  0.9684  0.9822 
Wang et al. [41]  0.7863  0.8060  0.9869  0.9512  0.9748 
Proposed AReN- 

UNet(Cardinality 
= 4)  

0.8263  0.8245  0.9835  0.9696  0.9867 

Proposed Cascaded 
AReN-UNet 
(Cardinality = 2)  

0.8234  0.8368  0.9812  0.9686  0.9863 

The bold values represent the highest values of each performance metric, when 
compared with previously existing algorithms. 

Table 4 
Performance comparison with the state-of-the-art on the CHASE_DB1 
dataset [38,39]  

Method F1 
Score 

Sensitivity Specificity Accuracy AUC 

Unsupervised 
methods      

Fraz et al. [30]  –  0.7224  0.9711  0.9469  0.9712 
Roychowdhury 

et al. [31]  
–  0.7201  0.9824  0.9530  0.9532 

Fan et al. [42]  –  0.6570  0.9730  0.9510  – 
Supervised 

methods      
U-Net [18]  0.7783  0.8288  0.9701  0.9578  0.9772 
R2UNet [34]  0.7982  0.7756  0.9820  0.9634  0.9815 
LadderNet [44]  0.7895  0.7856  0.9799  0.9620  0.9772 
BTS-DSN [36]  0.7983  0.7888  0.9801  0.9627  0.9840 
Vessel-Net [29]  0.7911  0.7819  0.9807  0.9624  0.9758 
IterNet [31]  0.8146  0.7715  0.9919  0.9782  0.9915 
HAnet [37]  0.8191  0.8239  0.9813  0.9670  0.9871 
RSAN [28]  0.8111  0.8486  0.9836  0.9736  0.9894 
NFN+ [33]  –  0.8003  0.9880  0.9688  0.9894 
EEA Unet [45]  0.6453  0.6457  0.9653  0.9340  – 
SAT-Net [46]  0.7911  0.8340  0.9868  0.9739  0.9855 
Proposed AReN- 

UNet 
(Cardinality =
4)  

0.8201  0.8420  0.9838  0.9770  0.9901 

Proposed 
Cascaded 
AReN-UNet 
(Cardinality =
2)  

0.8154  0.8560  0.9835  0.9763  0.9896  

Table 5 
Comparison of different models in terms of trainable parameters.  

Method Number of parameters (in 
millions) 

U-Net [18] 7.76 M 
R2UNet [43] 1.04 M 
UNet++ [30] 9.04 M 
Proposed AReN-UNet (Cardinality = 4) 4.17 M 
Proposed Cascaded AReN-UNet (Cardinality 
= 2) 

4.88 M  
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information extraction capabilities of the model. Consequently, the 
network addresses the problems of low contrast images and efficiently 
differentiates the foreground and background pixels. The single AReN- 
UNet may suffer due to minute false-positive vascular structures. The 
cascaded AReN-UNet refines the vascular networks using probabilistic 
feature maps of the front network. Fig. 10 represents the ROC proposed 
with comparisons to baseline models and different datasets. Fig. 10 has 
shown that larger AUC is produced by the AReN-UNet and Cascaded 
AReN-UNet which indicates the superior performance of the proposed 
models in differentiating between the foreground and background. 
Table 4 presents a comparison between the proposed model and the 
existing algorithms using the CHASE_DB1 dataset. The proposed models 
trained on this dataset are scaled-down due to computational limita
tions. However, they still managed to produce competitive results in 
comparison to existing models in the literature. AReN-UNet (cardinality 
= 2) achieved the highest F1-Score of 81.91%, the second-highest ac
curacy of 97.50%, and the third-highest AUC of 99.01% respectively. 
The proposed cascaded AReN-UNet (cardinality = 1) produced excellent 
results in terms of the second-highest F1-Score and sensitivity of 81.54% 
and 85.60% respectively. 

4. Discussion 

Vessel segmentation is an essential non-invasive tool for developing 
an automated screening system for diagnosing ocular patients. Improper 
vessel segmentation fails to detect the earlier stage of eye-related com
plications like Diabetic Retinopathy, Hypertensive Retinopathy, etc, and 
progresses to a severe stage. So, it is a challenging task to segment retinal 

vascular maps with high precision to detect the retinal disorders for 
preventing vision impairment. 

In the proposed network cascaded AReN-UNet, two deep learning 
networks are cascaded such that the output of the front network is fed to 
the second network along with the input retinal image. In the cascaded 
encoder-decoder architecture, the feature maps are estimated by inte
grating the model with residual and attention modules. This inclusion 
preactivated the network to segment vascular maps more effectively 
with high representation ability. At every stage of the encoder, two 
pooling operations, MaxPooling and Average Pooling are performed. 
The resultant feature maps obtained from each pooling technique are 
concatenated. The CBAM of the network improves the generalization 
ability of layers in identifying the vessel pixel differences. The proposed 
network, cascaded AReN-UNet of depth 4 having 4.8 M trainable pa
rameters is trained for 200 epochs on cloud GPU services, Google 
Colaboratory for 4 h. Categorical Cross-Entropy is used to train the 
network, at the same time the network gets optimized. The Adam 
optimizer with an initial learning rate of 0.0001 is used for training the 
proposed cascaded AReN-UNet. The learning rate will be reduced by a 
factor of 0.1 if no reduction in loss value is found for seven consecutive 
epochs. The less deviation in training curves of the proposed network in 
Fig. 5 (c) describes the stability of the network over other networks. 
Furthermore, to illustrate the significance of each module in the pro
posed network, we performed ablation studies and respective results are 
depicted in Fig. 6 and Table 2 also. Table 2 reveals that the integration of 
attention and residual modules with the nested U-Net improved the AUC 
by 1.41%. Further, cascading the similar networks integrated with 
attention and residual modules by inter-network skip connections to 

Fig. 9. A sample image from local dataset along segmented vascular map.  

Fig. 10. Receiver operative characteristics of proposed work in comparison with baseline networks.  
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implement the proposed cascaded AReN-UNet raised the AUC by 1.59%. 
In addition to this, different evaluation techniques like testing the input 
images by randomly shuffling their patches and testing on images 
collected locally are also performed. The segmentation results in Figs. 7 
and 9 describe the better performance of cascaded AReN-UNet in 
detecting the thin blood vessels. Table 5 displayed that the memory 
consumption of the proposed algorithm is relatively lower than other 
models. Apart from this, the time complexity of the proposed network is 
estimated to be less than 8 s for segmenting an image when tested on the 
different datasets. 

5. Conclusion 

This work introduces a deep cascading mechanism, called a cascaded 
AReN-UNet, that feeds the feature maps delivered by each convolutional 
block of the primary U-Net to a subsequent U-Net for refinement. The 
integration of the network with aggregated residual structures and 
attention mechanisms efficiently increases the segmentation results by 
improving the generalization and representation abilities of the pro
posed network. The cracked vessels detected in the vascular map of the 
front network are refined by the second network of cascaded AReN-UNet 
by considering the probabilistic feature maps of the front network and 
feature maps of the second network. Furthermore, the comparison of the 
proposed network outperformed the baseline models when tested on the 
DRIVE and CHASE_DB1 datasets. To validate the network’s ability over 
heterogeneity nature, it is tested over a local dataset and achieved an 
accuracy of 94.5%. 
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