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Abstract 
This paper develops a digital model of a current source Inverter fed three phase 

synchronous motor drive system from the view point of steady state stability aspect. The 

motivation lies in the fact that to control any electrical drive system digital controller is 

needed. To develop the software and hardware of such controller, a suitable digital model 

of the original drive system becomes necessary. Approach to develop the model in s-domain 

has been outlined and then z-transform has been applied. Different aspects of the model 

like the stability assessment using pole-zero mapping, Jury’s test, range of coefficients of 

characteristic equation for stability etc., have been computed leading to various graphical 

plots. Furthermore perturbation of machine design parameters have been modeled from the 

view point of stability assessment with necessary computational results. 

 

Keywords : CSI fed Synchronous Motor, Z transform, Jury‟s test, Impulse response, stability 

analysis.  
 

1. Introduction 

Permanent magnet Synchronous Motor (PMSM) drive systems are 

becoming more popular due to their advantages such as utility of self control, 

good efficiency and operation near to unity power factor, small inertia etc. Due to 

these advantages synchronous motors are also serious competitors to both dc 

motor drives and induction motor drives [XI].When compared to an AC induction 

motor, PMSM has superior advantage to achieve higher efficiency as it produces 

the rotor magnetic flux with permanent magnets. For this reason PMSMs are used 

in high end appliances and equipments that require high efficiency and reliability 

[XII]. 

PMSMs are gaining increasing popularity and demand in various areas such as 
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automobiles, robotics and aerospace engineering [X]. In addition, Z Source Based 

Permanent Magnet Synchronous Motor Drive System [IX] is also gaining 

importance. Design of controller for PMSM has been reported in [XIII]. PMSM 

has many attractive characteristics such as high-power density, high-torque-to-

inertia ratio, wide speed operation range, and free from maintenance, it is suitable 

for many industrial applications[VI,VII]. So far the literature review is concerned, 

digital implementation of an adaptive speed regulator for a PMSM has been 

reported in [VIII].  However this work does not focus on the stability analysis 

from the digital domain point of view To evaluate the field performance 

accurately we need accurate digital simulation tools. Hence design of digital 

controllers merges to be the main area of interest for such drive systems. One 

disadvantage with PMSM is that for accurate analysis of the performance of the 

drive systems, circuit theory loses its advantage whereas in such problem, 

electromagnetic field theory becomes quite successful to analyze and then to come 

to a concrete conclusion.  

That‟s why analysis and control of a normal synchronous motor drive system 

(without PMSM) becomes advantageous.  A normal synchronous motor drive 

system does not have variety of applications due to the feature of constant speed, 

but it has some critical applications in steel industries [III] in the form of drives for 

big blowers and rolling mills. Without using power electronics devices, classical 

control of synchronous motors have not much practical importance. However, 

voltage source inverter (VSI) or current source inverter (CSI) can be used as a 

specific driver for the synchronous motor depending on the necessity. Based on 

these facts, the authors of this paper have been motivated to take up the digital 

modeling of a classical analysis performed in the complex frequency domain for a 

current source inverter fed Synchronous motor drive system [I,II]. Such problem 

carries utmost practical importance because: (a) Due to the reduction of a problem 

of two variables (armature current and field angle) to a problem of single 

variable(only, field angle). (b) Non-uniformity in air-gap within the synchronous 

motor can be modeled with sufficient accuracy. Therefore the concept in point (a) 

as stated above clearly indicates that inverter fed synchronous motor drive system 

leads to a more simpler mathematical model.  

Controlling of electrical machines by means of power electronics is one of the 

most important concerns of many engineers, whether it concerns the designing of 

complex control algorithms or turning on or off the control parameters. Parameter 

variations, error measurements and distortions need to be taken into account while 

designing phase. A model of control loop in discrete time domain or Z-domain 

needs to be obtained as it involves power electronics and as we are going to use 

digital controllers. Many studies have been carried out for this purpose in the past 

[IV,V]. 

Steady State Stability analysis of a CSI fed Synchronous Motor drive system with 
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Damper Windings in continuous time domain was done in [I,II]. The authors of 

[I,II]. expressed the transfer function of a Current Source fed synchronous motor 

drive system in a convenient manner after developing the voltage-balance 

equations and torque-balance equations in time domain. The transfer function 

obtained in this study was the ratio of Laplace transform of change in angle (β) 

between field and armature axis to the Laplace transform of change in load torque 

(TL). The detailed mathematical analysis was presented [I,II]. The base paper used 

a block diagram of the CSI (current source inverter) fed Synchronous motor drive 

system as shown in Fig.1 [I]. 

 

 

Fig.1: Drive configuration for open loop current fed synchronous motor 

In continuation with the investigation in [I]. the proposed analysis in the present 

paper targets to convert the transfer function from continuous domain to discrete 

domain. Z transform is used to analyze the transfer function in discrete domain. 

The main objective of this paper is to conduct a steady state stability analysis of 

CSI fed synchronous motor in discrete time domain and to calculate the range of 

stability. A detailed mathematical analysis in this direction is presented in this 

paper. 

The main advantage of having a transfer function in digital domain is that it 

becomes easier to design a digital controller. Since digital control offers more 

flexibility, it can perform really complicated control activities keeping scope of 

modification as per necessity compared to analog control which is slow to develop 

and difficult to make accurate designs. Furthermore such digital modeling of 

Synchronous motor can be used as a design tool to investigate the range of certain 

machine design parameters from the view point of steady state stability 

phenomenon. Basically the facts can be looked upon on the following lines: 

• If there occurs some small perturbations of load torque the corresponding 

change in the field angle is to be noticed. As, conceptually the field angle is very 

near to our traditional concept of torque angle (or load angle), such problem leads 

to the Steady State stability problem of a Synchronous motor drive system. 

• Field angle is the space angle between armature m.m.f position (axis) and 

the direct axis(d-axis).  



 

 

 

 

J.Mech.Cont.& Math. Sci., Vol.-13, No.-3, July-August  (2018) Pages 68-86 
 

71 

 

• Based on such concept, the result and discussion section shows the 

complete calculation methods for range of parameter like Rkd, Rf, Rkq and Lmd on 

the basis of maintaining steady state stability performance of the said drive 

system. Such analysis demands for Z-transform applications along with 

application of Euler‟s equation involving partial derivative concepts. These 

detailed treatments along with appropriate numerical results have been presented 

in the concerned section. 

The next section has been presented, based on the above said philosophy. In the 

Problem Formulation section, for a better clarity of understanding the proposed 

research work has been decoupled into two parts. The first part gives a brief 

outline of the modeling in s-domain with the expression for transfer function. The 

second part deals with the digital modeling of the said system. The digital 

modeling initiates with the mathematical process of the derivation for obtaining 

transfer function in  Z-domain. The transfer function obtained in complex 

frequency domain (s- domain) in [I,II]. did take care of air-gap saliency of the 

motor and that‟s why the machine equations were developed in d-q frame (using 

axis model, not phase model of the machine). After this, conceptually the 

subsequent analytical parts like computation of the range of stability, effect of unit 

impulse input on stability aspect etc.  have    been taken up in subsequent sections. 

2. Problem Formulation: 

Primitive machine model of the Synchronous motor pertaining to the model 

shown in Fig.1 has been developed and the detailed mathematical analysis is 

presented  in [I]. 

 2.1 Problem Formulation Part-1:  Development of Transfer Function  

The torque dynamic equation of a synchronous motor can be written as, 

e L

d
T T J

dt


                                                  (2.1.1) 

where, 

Te is electromagnetic torque in N-m 

TL is Load Torque in N-m 

 is Motor speed in mechanical rad./sec. 

J isPolar moment of inertia of motor and load (combined) kg-m
2
 

( )eT s  is perturbed quantity (transformed) of electromagnetic torque and the 

expression for it is derived from [I] is given as  
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( ) ( )e
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

   
   

                     (2.1.2) 

The small change in speed „‟ equal to  can be related to small change in field 

angle,  as given by, 

( )d

dt





                                    (2.1.3)  

The negative sign in equation physically indicates a drop in speed () due to 

increase in field angle (). 

Based on equation (2.1.3), the following expression can be written, 

2

2

( )
( ) ( )

d d d d
J J J

dt dt dt dt


 

  
      

 
                (2.1.4)  

The small-perturbation model of equation (2.1.4) can be written as, 

e LT T  
( )d

J
dt


                                                (2.1.5)  

Combining equations (2.1.4) and (2.1.5), it yields             

e LT T  
2

2
( )

d
J

dt
                               (2.1.6)  

The transformed version of eqn. (2.1.6), with initial condition relaxed, comes out to 

be 

)()()( 2 sJssTsT Le                                              (2.1.7) 

 Substituting the expression for Te(s) from eqn. (2.1.2) in eqn. (2.1.7), it yields 

3 2
21 2 3 4

3 2

1 2 3 4

( ) ( ) ( )L

x s x s x s x
s Js s T s

l s l s l s l
 

   
     

   
      (2.1.8)  

Equation (2.1.8) gives after manipulation, a Transfer Function, T(s) expressed as, 

 T s =

3 2

1 2 3 4

5 4 3 2

1 2 3 4 5 6

( )

( )L

l s l s l s ls

T s K s K s K s K s K s K

   


     
     (2.1.9)  

where, 

  1 1 K Jl
            

2 2K Jl
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 3 3 1K J xl 
 

    
 4 4 2K J xl 

                  

5 3  K x
 

   6 4K x
  

Once the transfer function has been developed in s-domain, the z-transfer function 

has been obtained using MATLAB as explained in the next section.  

 2.2 Problem Formulation Part-2 : Transfer Function Development in 

Discrete domain 

The transfer function in the continuous time domain was given as [I]: 

T(s)=  =

65

2

4

3

3

4

2

5

1

43

2

2

3

1

KsKsKsKsKsK

lslslsl





            (2.2.1) 

Where  

I. The algebraic expressions of l1, l2, l3, l4 and K1, K2, K3, K4, K5, K6  are available in 

[I] 

II.  is the transformed field angle (small perturbation). 

III.  is the transformed load torque (small perturbation). 

Here the terminology “transformed” means that the mathematical tool Laplace 

Transform has been applied. 

The polynomial coefficients (K1 to K6) [I] were calculated using the machine data 

present in the appendix. The values of K1 to K6 are as follows.  

K1 = 2.2871 

K2 = 0.3585 

K3 = 0.5577 

K4 = 0.0776 

K5 = 0.0023 

K6 = 2.419 x 10
-6

 

The numerator polynomial coefficients were calculated using the equations and the 

machine data [I]. The values of l1 to l4 are as follows:  

l1 = 0.2857, l2 = 0.0447, l3 = 1.615*10
-3

, l4 = 1.755*10
-6

. 

The above equation in continuous form is converted to discrete form (i.e. converted 
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to z domain). The discrete domain conversion was done using MATLAB software 

with sampling time as 0.1 seconds. Z transform was taken after substituting the 

coefficient values. The transfer function obtained is represented as T(z). 

   (2.2.2) 

2.2.1 Stability assessment using POLE-ZERO mapping 

The stability analysis of the discrete time equation is done by plotting a pole zero 

map using MATLAB software.  

 

Fig: 2 pole zero map of the transfer function 

Fig: 2 shows the pole zero map obtained for the z-transfer function. Since all the 

poles lie inside the unit circle, the steady state stability is assured for the system in 

discrete domain. Even though pole-zero locations give a basic information about the 

system stability, investigations on the coefficients of the characteristic equation of the 

same system gives a more clear picture on the stability assessment. Such investigation 

is known as Jury's test and it is taken up in the next section for a through result and 

discussion. 

  2.2.2 Jury's Test 

Jury's stability criterion is a method to analyze the stability of discrete time system 

using the coefficients of the characteristic equation derived from the transfer function. 

Using Jury's test we can do stability analysis of a discrete time system without having 

to calculate the poles of the system. 
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Detailed mathematical analysis of jury test on the system is given below. 

The characteristic equation is:  

9844.0935.4899.9931.9982.4)( 2345  zzzzzzf           (2.2.3)
 

The necessary and sufficient conditions to satisfy for the system to be considered 

stable are: 

Rule 1 

If z is 1, the system output must be positive: 

0)1( f  

Rule 2 

If z is -1, then the following relationship must hold: 

0)1()1(  fn  

Where n is highest power of the characteristic equation. 

Rule 3 

The absolute value of the constant term (a0) must be less than the value of the highest 

coefficient (an): 

|a0|< |an| , where the polynomial is given as 

n

nnnn zazazazaazf 0

3

3

2

2

1

1 ......)(  
 

 If Rule 1 Rule 2 and Rule 3 are satisfied, construct the Jury Array. 

Rule 4 

Once the Jury Array has been formed, all the following relationships must be satisfied 

until the end of the array: 

|b0|>|bn-1| 

|c0|>|cn-2| 

|d0|>|dn-3| 

And so on until the last row of the array. If all these conditions are satisfied, the 

system is stable. Jury array for the system is shown in Table.1. 
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Table.1: Jury's array pertaining to the stability assessment in discrete time domain 
 

Z
0 

Z
1 

Z
2 

Z
3 

Z
4 

Z
5 

-0.98 

44 

4.935 -9.899 9.931 -4.982 1 

1 -4.982 9.931 -9.899 4.935 -0.98 

44 

-0.03 

09 

0.1239 -0.186 0.1229 -0.03 

07 

x 

-0.03 

07 

0.1229 -0.186 0.1239 -0.03 

09 

x 

1.232x

10
-5 

1.594x

10
-4 

0.0372

x10
-3 

6.1x10
-6 

x x 

6.1x10
-6

 

0.0372

x10
-3

 

1.594x

10
-4

 

1.232x1

0
-5

 

x x 

1.458x

10
-10 

1.6814

x10
-9 

 

-

0.0514

x10
-8 

 

x 

 

x x 

The results in Table.1, hereby assures the stability of the system. It is well known that 

if the coefficients of a characteristic equation are perturbed , the system may move to 

the unstable zone. This will give a rough indication of the degree of robustness of the 

system, Such treatment is taken up in the next section. 

 2.3 Range of coefficients for stability:  

The stability ranges for coefficients were found by changing the value of one 

coefficient while keeping the other coefficients constant. The stability analysis was 

done by plotting the pole zero maps using MATLAB for the transfer function. If the 

poles of the equation lie inside the unit circle then the system was concluded to be 

stable and if the poles lie outside the unit circle then the system was concluded to be 

unstable. Table 2 represents the range of co efficient. 

Table 2: Range for the  coefficients 

 

 

 

 

 

 

 

 

The original value of the coefficients is represented in the brackets. For example 

when K1 is given value more than 2.4 the system becomes unstable. Similar analysis 

was done for rest of the coefficients as well. 

 

Range 

 

Original 

Values(stable) 

K1≤ 2.4                         (2.2871) 

K2≤ 15.9                        (0.3585) 

K3≤ 52.75                      (0.5577) 

K4≤ 0.081                      (0.0776) 
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Fig 3: pole zero map for stable system 

 

 

Fig 4: pole zero map for unstable system 

Fig 3 represents the pole zero map of the stable system when there was no change 

in the coefficient values. 

Fig 4 represents the pole zero map of unstable system. In this transfer function the 

K1 value was taken as 2.5 which clearly exceeds the maximum range which is 2.4. 

Therefore the system becomes unstable. Once the range of coefficients of the 
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characteristic equations are known from the view point of stability, it becomes 

necessary to find the impulse response of the system as an important part of the 

whole digital modeling. The analysis involving the impulse response is presented 

in the next section.  

3. Impulse response: 

It is well known that an Impulse response of a system can be looked upon 

as Inverse Laplace Transform of the Transfer Function. Hence it is a very 

important analysis of a control system. For example if we consider an AVR 

control system that controls the output voltage of the generator, when designing a 

controller for this system, one has to consider worst case scenarios or conditions. 

For example if we consider the worst case scenario can be a lightning for a very 

short period of time (in microseconds ). This causes a very big voltage to be 

impressed at the terminals of the generator. In this case the control system must be 

able to secure the generator from the worst possible scenario. In such case stability 

analysis using impulse response method becomes a strong tool for analysis.  

In the following section the stability analysis of the system with input as unit 

impulse is performed and subsequently a detailed mathematical analysis is 

represented  

3.1 Unit impulse input in s-domain: 

With reference to Fig. 1, there may occur so many types of variations in the 

magnitude of change in load torque. Due to abnormal behaviour of the 

mechanical coupling system or any other reason there may appear a sudden 

change in load torque. In other words change in load torque may be 

considered as a unit impulse function and our objective in this subsection is 

to investigate the stability assessment of the particular system with input as 

δ(t) through the method of Pole-Zero mapping. 

                               (3.1.1) 

                               (3.1.2) 

Where L and L
-1

 are  Laplace and inverse Laplace transform operator 

respectively. 

Hence 

 Δß(t)= +B +C +D +E       (3.1.3)  

 Where p1,p2,p3,p4,p5 are the roots of the characteristic equation and 

A,B,C,D,E are the coefficient values. 

p1= -0.0071+0.4874i 
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p2= -0.0071-0.4874i 

p3= -0.1011 

p4= -0.0403 

p5= -0.0011 

A= -0.0036-0.1284i 

B= -0.0036+0.1284i 

C= 0 

D= 0.0072 

E= 0 

Since all the poles of the characteristic equation have negative real parts 

assured stability is here by assured. In this context plot of change in 

amplitude versus time has been presented in Fig. 5. This plot clearly 

indicates a decaying sinusoid having both upper envelope and lower 

envelope. It is also a point of interest that  such plot is treated as a 

symmetrical wave form leading to the major physical conclusion , i.e., the 

DC component is absent. Such concept appears to be automatically correct 

because of the ordinate of Fig.5 is a change in variable (not absolute value). 

 

Fig.5: Impulse response of the transfer function in  continuous time domain 

3.2   Unit impulse input in Z-domain: 

It may be noted that the concept put in section 2.1 was valid in continuous time 

domain and that is why Laplace Transform operator was used to investigate the 

satiability assessment phenomena. However, as the present paper deals with the 
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digital modelling of the system, at this stage it becomes necessary to convert the 

above said philosophy in section 2.2 to discrete time domain. As a natural 

responsibility the use of 'Z' transform must be involved in such case to investigate 

the stability phenomenon in discrete time domain. Based on such philosophy the 

related mathematical equations   are presented as follows: 

Since the Z[ δ(n)] =1, 

Δß (z)=T(z) * 1                               (3.2.1)  

Δß(n) = T(z)]                (3.2.2)  

Hence  

Δß(n) =A δ(n)+ B + C + D + E + F        (3.2.3) 

Here l1,l2,l3,l4,l5 are the roots of the characteristic equation and A,B,C,D,E,F are 

the coefficients. 

l1= 1.1875+0.1692i 

l2= 1.1875-0.1692i 

l3= 0.9014+0.1956i 

l4= 0.9014-0.1956i 

l5= 0.8041 

A= 0.0006 

B= 0.0008-0.0007i 

C= 0.0008+0.0007i 

D= -0.0005-0.001i 

E= -0.0005+0.001i 

F= -0.0012 

The explanation behind the presentation of Fig.5 can be reproduced in similar 

lines for simulations in discrete time domain. Such approach leads to the 

development of Fig.6; where impulse response of transfer function is presented in 

discrete domain. 
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Fig 6: Impulse response of transfer function in time discrete domain 

It is natural to put a question on the fact that Δß(t) or Δß(n) are considered to be 

variables of importance, and why not ß(t) or ß(n).  

The answer lies in the fact that the very purpose of this research is to investigate 

the steady state stability of synchronous motor drive system from various 

viewpoints. Moreover the concept of the steady state stability is based on the 

theory of small perturbations. At this stage it is felt that even though necessary 

analysis has been presented involving the coefficients of the characteristic 

equation, still some more study from the view point of design aspects of the motor 

can be done. This study will be based on perturbing the real machine design 

parameters like Rf (Field winding resistance), Rkd (Direct axis damper windings) 

etc. Due to these changes, the coefficients like  K1, K2 etc (2.2.1) will be 

perturbed and hence steady state stability of the system may get affected. Such 

analysis with the relevant results are presented in the next section. 

3.3: Analysis of parameter perturbation 

Based on the stability range for the coefficients given in the table 1, it reveals that 

changing the parameter affects the design from the view point of steady state 

stability assessment through digital modeling. 

To find out which machine parameter affects the stability of the system most a 

method is proposed with a detailed explanation in an example below. If consider 

coefficient K6 as 

  K6=x4  as in (2.1.2) 

x4=n4iscosΔβ–m4issinΔβ                                                           (3.3.1)    
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where, 

n4 = c2f2b3                                              (3.3.2) 

and 

c1 = [(Ld - Lq)iq0– Lmqikq0]                                 (3.3.3) 

c2 = [(Ld - Lq)id0 + Lmdikd0 + Lmdif0]                    (3.3.4) 

f2 = Rkq                                    (3.3.5) 

b3 = RkdRf                     (3.3.6) 
 

Let,  iscosΔβ= P1  and  issinΔβ = P2 

Therefore, (3.2.1) can be rewritten as 

x4 = c2f2b3 P1 - c1b3f2P2                                           (3.3.7) 

 

    K6 = x4  = RkdRfRkq {[(Ld - Lq)id0 + Lmdikd0 + Lmdif0] P1 - [(Ld - Lq)iq0 – Lmqikq0] P2 } 

                                              (3.3.8) 

Substituting the constant values given in appendix we get, 

K6 = RkdRfRkq{[(Ld- Lq)id0 +Lmdif0] P1 -[(Ld - Lq)iq0 ] P2 }      (3.3.9)              

  

 At this stage, it will be a matter of justice if the physical significances of variables 

with suffice “0” (i.e. βo, if0,id0, iq0, ikq0, ikd0) are stated clearly. Basically, the theory of 

calculus states that Taylor‟s series expression of any function becomes 

mathematically defined about an operating point (or quiescent point).  id0, iq0 etc are 

the quiescent values. Practically also, one cannot perturb a system until and unless 

the equilibrium state is known. 

  We can see that K6 is a function of (Rkd, Rf, Rkq,Lmd ). Now from the table 1 we 

know that the system is stable when K6≤ 0.00027 the system is stable. The system 

becomes unstable at K6 = 0.0003. 

Therefore, 

dK6 = 0.0003 – 0.00027 

or  

dK6 = 3*10^-5.                                         (3.3.10) 

Now using the Euler‟s differential formula we can write it as, 

md

md

f

f

Kq

Kq

Kd

Kd

dL
L

f
dR

R

f
dR

R

f
dR

R

f
dK



















6

     (3.3.11) 

Case: 1 

When we consider RKd  is changing,  

06 



 Kd

Kd

dR
R

f
dK                                     (3.3.12) 

Since only RKd is changing and the other coefficients are constant, the rest of the 

equation becomes zero. 

Now equating (3.3.10) and (3.3.12) we get 

 
510*3 
= 0



Kd

Kd

dR
R

f  
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})(2{]})[(1{ 000 qqdKqfKd

Kd

fmddqdKqfKd

Kd

iLLPRRR
R

iLiLLPRRR
R












 
KdqqdKqffmddqdKqf RiLLPRRiLiLLPRR  ])(2)[(1[ 000       (3.3.13)

 

By substituting the values for the parameters given in the appendix we get 

KdR = 0.372                                 (3.3.14) 

Case 2: 

When we consider Rf  is changing,  

06 



 f

f

dR
R

f
dK                                      (3.3.15) 

Since only Rf is changing and the other coefficients are constant, the rest of the 

equation becomes zero. 

Now equating (3.3.10) and (3.3.15) we get 

510*3 
= 0



f

f

dR
R

f
 

})(2{]})[(1{ 000 qqdKqfKd

f

fmddqdKqfKd

f

iLLPRRR
R

iLiLLPRRR
R










  

fqqdKqKdfmddqdKqKd RiLLPRRiLiLLPRR  ])(2{]})[(1[ 000        (3.3.16)
 

By substituting the values for the parameters given in the appendix we get. 

fR = 
210*86.1 

                              (3.3.17) 

Case 3: 

Now considering  RKq  is changing,  

06 



 Kq

Kq

dR
R

f
dK                                          (3.3.18) 

Since only RKq is changing and the other coefficients are constant, the rest of the 

equation becomes zero. 

Now equating (3.3.10) and (3.3.18) we et 

510*3 
= 0



Kq

Kq

dR
R

f
 

})(2{]})[(1{ 000 qqdKqfKd

Kq

fmddqdKqfKd

Kq

iLLPRRR
R

iLiLLPRRR
R










  

KqqqdfKdfmddqdfKd RiLLPRRiLiLLPRR  ])(2{]})[(1[ 000      (3.3.19)
 

By substituting the values for the parameters given in the appendix we get. 

KqR = 527.0                                  (3.3.20) 

Case 4: 

Similarly considering  Lmd is changing,  
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06 



 md

md

dL
L

f
dK                                               (3.3.21) 

Since only RKq is changing and the other coefficients are constant, the rest of the 

equation becomes zero. 

Now equating (3.3.10) and (3.3.21) 

510*3 
= 0



md

md

dL
L

f
 

})(2{]})[(1{ 000 qqdKqfKd

md

fmddqdKqfKd

md

iLLPRRR
L

iLiLLPRRR
L










  

=[ mdfmdKqfKd LiLPRRR ]1[ 0 ]                (3.3.22) 

By substituting the values for the parameters given in the appendix we get. 

mdL = 89.17                                (3.3.23) 

The physical interpretation of such change can be explained as follows, with 

reference to (3.3.23), the specified value of the change in Lmd basically indicates a 

change in direct-axis air-gap. If the said value of perturbation in Lmd is not 

acceptable, then the direct axis air-gap will have to be changed and it will in turn 

affect the input power factor of the drive system. If, the particular value of change 

in input power factor is not allowed in practice, then field winding current of the 

motor will have to be adjusted.  
 

4. Conclusion 

This research paper concludes the following salient points:- 

 Assessment of steady state stability has been performed in discrete time domain , by 

the method of "pole-zero" mapping and " Jury's Test". The result of both the 

methods do not conflict. 

 As changing the coefficients of characteristic equation shows a direct impact on the 

stability of the system, a new view point based on machine design aspect is 

developed, which is written under the next point. 

 The machine design parameters (
fR , KdR , mdL  etc.) can be perturbed. This aspects 

has been studied using necessary mathematical formulations based on " Partial 

Differentiation". 

 It was observed that a minimum amount of perturbation on field winding resistance 

affects the stability most. This is due to the fact that a change in field winding 

resistance changes the field current. As a result the flux linkage changes and 

ultimately the electromagnetic torque is affected. If this effect happens in a 

negative direction, stability is affected and the motor may finally cease to take the 

load. 
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