
The Third International Workshop on Dynamic Scheduling Problems
Adam Mickiewicz University, Poznań, July 5th – 6th, 2021

Dual-criticality scheduling on non-preemptive, dynamic
processors using RL agents

Nourhan Sakr∗
American University in Cairo, Egypt

Youssef Hussein
American University in Cairo, Egypt

Karim Farid
American University in Cairo, Egypt

Keywords: mixed-criticality scheduling, varying-speed processors, reinforcement
learning

1 Introduction and related work
Real-time embedded systems have stringent non-functional requirements on cost,
weight, and energy that give rise to the study of mixed-criticality (mc) systems, where
functionalities of di�erent criticality levels are consolidated into a shared hardware
platform (Barhorst et al. [1], Burns and Davis [6]). The literature discusses the schedu-
lability of mc systems under various conditions and objectives (Baruah et al. [3], Gu
et al. [7], Baruah et al. [4]). In this work, we study a dual-criticality, non-preemptive
system with a varying-speed uniprocessor.

This varying-speed processor makes mc scheduling dynamic: In real-time systems,
it cannot be predetermined if, when or for how long the processor would degrade, i.e.
its speed would drop. Under speed stochasticity, it is critical to guarantee the running
of high (hi) criticality jobs by their deadlines, sometimes even at the cost of not running
low (lo) criticality jobs at all, when operating under degradation.

Scheduling mc systems non-preemptively (even without degradation) isNP -hard
(Lenstra et al. [9]). Baruah and Guo [5] model an LP to preemptively schedule dual-
criticality jobs on a varying-speed processor. Agarwal and Baruah [2] further discuss
the online nature of the problem and its intractability. We agree with the authors that
mc scheduling is inherently an online problem, as it better depicts real-time scheduling
and the dynamic nature of this problem. Therefore, we devise deep reinforcement
learning (deep rl or drl) to tackle the problem presented by Baruah and Guo [5],
under both the o�ine and online setting.

∗Speaker, e-mail: n.sakr@columbia.edu

DOI: 10.14708/isbn.978-83-951298-6-5p57-62

57

2 Problem formulation
We model the system functionalities by a set of independent jobsJ , each job j is de�ned
by its release date rj , deadline dj , processing time pj (representing worst-case execution
time) and criticality level χj ∈ {lo; hi}, describing a dual-criticality system of low
and high criticality jobs. A speed-v processor runs a job j in pj

v time units.
The system assumes two modes of operation: normal (v = 1) and degradation

mode (v < 1). We assume a self-monitoring system that immediately knows when a
degradation occurs during runtime. The degradation speed v is observed then. An
mc instance is a set of mc jobs J that are schedulable on a varying-speed processor.
According to Lemma 1 in Baruah and Guo [5], J is schedulable if an earliest deadline
�rst (edf) policy schedules all jobs on a speed-1 processor and allhi jobs on a speed-vmin

processor. That is, there is a degradation bound vmin, below which J would be no
longer schedulable. Finally, a correct schedule runs all jobs by their deadlines as long as
v = 1 and guarantees all hi jobs to meet their deadlines regardless of the speed.

3 Model and evaluation
Our environment is modeled as a Markov decision process (mdp). At each timestep t,
a reinforcement learning (rl) agent interacts with an environment by receiving an
observation ot from a state space S and taking a corresponding action at from a given
action spaceA. This action is (later) rewarded or penalized (i.e. negative reward) using
a reward function r(at, ot). The agent’s goal is to maximize the reward in an episode.

Episode, states and actions. We consider one episode to be a series of decisions
taken until all jobs in J either run (and complete by the deadline) or expire (cannot
meet the deadline). At a given time t, an observation ot is a bu�er of jobs Bt ⊆ J
and the processor speed vt. Each job in the bu�er is represented by its static tuple
(rj , dj , pj , χj), and three status parameters that indicate whether the job was released,
expired (i.e. missed its deadline) or was scheduled to run. Given ot, the action function
produces a selection for the index of the job to be scheduled at t. We next outline three
environments that help us stage the transition into our target online problem.

O�ine environment. In an o�ine setting, all decisions are taken at t = 0 when
jobs are known but degradation cannot be observed. Jobs can be scheduled at anytime
t ∈ [minj{rj},maxj{dj − pj}]. We, therefore, setBt = J and vt = 1,∀t, thereby
assuming normal operation. The the rl agent schedules jobs sequentially, so all job
binary status parameters are updated before every new decision. This sequential process
also ensures non-preemption, i.e. when a job j is selected for t, the next decision is
made for time t+ pj . During this time window, some jobs may expire before selection.

58 The Third International Workshop on Dynamic Scheduling Problems

Varying bu�er (VB). In an online setting, not all jobs are known to the agent a
priori. This constraint introduces a modeling issue since the bu�er size should be �xed
for each observation, yet the number of observable jobs changes at each time step. We
create the VB environment as a transitional stage, where we �x the size of the bu�erBt
at n. If |J | > n, we add the jobs with least laxities to the bu�er. (The laxity of a job,
de�ned as lj = dj − pj , gives early warnings on expiry. When lj ≤ t, this means that
even if the agent schedules job j at t, the time would not be su�cient for it to complete
before dj . Thus, the agent is penalized for choosing such jobs.) Otherwise, we add
all jobs plus a number of dummy jobs that would bring the bu�er size to n. To avoid
scheduling dummy jobs, we label them as expired and set their criticality to lo.

Online environment. This environment is closest to mimicking real-time schedul-
ing. Our agent is now able to observe the processor speed, so we relax the constraint on
vt = 1. We buildBt similar to that of the VB environment but impose two additional
restrictions: To be added toBt, a job must have been released (rj ≤ t) and have enough
time to complete (lj ≥ t). As such, all dynamic features of our system are captured.

To the best of our knowledge, we are the �rst to use rl agents for scheduling
mc systems and, hence, have no previous rl-based benchmarks. We remedy this
limitation by using the staging process above for testing and validation. Although, we
are ultimately interested in modeling the online problem (see Sect. 1), we start with an
o�ine environment in order to leverage available o�ine benchmarks. Once validated,
our o�ine environment became the baseline for the VB environment and subsequently
the VB became the benchmark for the online environment. In this abstract, we highlight
the reward function and results of the online environment only.

Online reward function. We use the number of completed jobs as the main metric of
comparison. A secondary goal is to complete all hi jobs in J . The online agent receives
a reward equivalent to the number of executed jobs at the end of each episode. This
design achieves the highest (over episode) average reward, emphasizing the priority of
running hi jobs. Otherwise, the agent is penalized for selecting jobs that have expired
or have run before. We test other reward designs, such as applying rewards or penalties
instantaneously rather than at the end of an episode, or scaling the reward by v (for
higher rewards in case of degradation), but they were all deemed less successful.

Algorithm choice. In general, drl allows more unstructured input to the agent
with larger data. We tested rl algorithms from RLLib and Stable Baselines, where Ape-
X DQN (Horgan et al. [8]) produced the best results in scheduling jobs and learning
edf behavior.

July 5th – 6th, 2021, Poznań, Poland 59

4 Our results
Simulation. We generate various instances of J and processor speeds. The details
of data generation are masked from this abstract but rely heavily on a modi�cation of
Baruah and Guo [5]. It is worth noting that each set J is veri�ed for schedulability
before being fed to the rl agent. Our hardware limitations cap the size of our instances,
|J | at 30. We also study the settings needed for the warm-up period, number of episodes
(steps) and run 500 iterations per experiment.

Evaluation criteria. We evaluate environments based on the general reward evalua-
tion, which assesses the agent behavior against the mean reward over a series of episodes,
i.e. the average number of executed jobs per instance. Note that the maximum reward
that the agent can receive in any episode i is |Ji|, assuming all jobs complete with-
out expiring. We additionally conduct a degradation analysis, which is essential to
understanding the sensitivity of the learned policy to the degradation speed.

Figure 1. General reward evaluation results of the online environment.

Preliminary results. After its success in the o�ine environment, Ape-X was capable
of correctly scheduling around 30-40% of the provided instances when introduced to
the online environment (see Fig. 1). The limitations come from two sources: a problem-
speci�c challenge and a hardware challenge. The online environment is non-clairvoyant
and imposes unpredictable degradation in the performance. We believe that this can
be improved by augmenting the rl agent with a prediction module that can make
forecasts on the expected processor speeds. On the hardware side, we are limited by
resources (14 CPUs working in parallel and one empowered GPU), which did not allow
us to run large scale examples. The results produced in Fig. 1 are based on instances
that are 30 jobs each and a bu�er size set at n = 10. We believe that obtaining more

60 The Third International Workshop on Dynamic Scheduling Problems

resources that can run larger examples will yield better training and testing results, as
the agent has more data to learn. However, these preliminary results show a promising
approach that is worth discussing.

Degradation analysis. When the processor degrades, it is expected that the agent
prioritizes completing all hi jobs. The model should learn to sacri�ce lo jobs to free
resources for the hi ones. We measure the sensitivity of the agent to degradation speeds:
In a total of 10,000 job scenarios(episodes), we label the scenarios where the agent
completes all hi jobs as successful. These scenarios are fed to the rl agent, and the
agent’s performance is assessed under varying speeds v ∈ [0.1, 1]. Fig. 2 shows that
online environments perform slightly better than the other two environments and
that lower speeds yield decreasing performances until it plateaus at almost 15− 20%.
This phenomenon is likely attributed to the ability of the rl agent to now observe the
processor’s speed and dynamically adapt to any disruptions exposing the system.

Figure 2. Degradation analysis results for comparing the three environments

5 Future research

For future work, we wish to improve our performance using larger examples and
contrast our results against the OCBP benchmark proposed by Agarwal and Baruah [2].
We also wish to extend our work to other variants of the problem, such as preemptive
scheduling, multiprocessor systems with resource sharing, or integral data generation.
Furthermore, we plan to study other evaluation metrics, conduct an error analysis on
unsuccessful schedules, as well as assess the bene�t of augmenting a forecasting module
for predicting speeds a priori.

July 5th – 6th, 2021, Poznań, Poland 61

References
[1] J. Barhorst, T. Belote, P. Binns, J. Ho�man, J. Paunicka, P. Sarathy, J. Scoredos,

P. Stan�ll, D. Stuart, R. Urzi, A research agenda for mixed-criticality systems, white
paper, 2009.

[2] K. Agarwal, S. Baruah, Intractability issues in mixed-criticality scheduling, 30th Eu-
roMicro Conference on Real-Time Systems, 2018, article no. 11, 11:1–11:21, doi: 10.

4230/LIPIcs.ECRTS.2018.11.

[3] S. Baruah, V. Bonifaci, G. D’Angelo, H-H. Li, A. Marchetti-Spaccamela, N. Megow,
L. Stougie, Scheduling real-time mixed-criticality jobs, IEEE Transactions on Com-
puters, 61 (2011), 1140–1152, doi: 10.1109/TC.2011.142.

[4] S. Baruah, A. Easwaran, Z. Guo, Mixed-criticality scheduling to minimize
makespan, 36th IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science, 2016, article no. 7, 7:1–7:13, doi: 10.4230/
LIPIcs.FSTTCS.2016.7.

[5] S. Baruah, Z. Guo, Mixed-criticality scheduling upon varying speed processors, 34th
Real-Time Systems Symposium, 2013, 68–77, doi: 10.1109/RTSS.2013.15.

[6] A. Burns, R. Davis, Mixed criticality systems-a review, Department of Computer
Science, University of York, Tech. Rep. 172, 2016.

[7] C. Gu, N. Guan, Q. Deng, W. Yi, Improving OCBP-based scheduling for mixed-
criticality sporadic task systems, 19th International Conference on Embedded and
Real-Time Computing Systems and Applications, 2013, 247–256, doi: 10.1109/

RTCSA.2013.6732225.

[8] D. Horgan, J. Quan, D. Budden, G. Barth-Maron, M. Hessel, H. van
Hasselt, D. Silver, Distributed prioritized experience replay, arXiv preprint
arXiv:1803.00933, 2018.

[9] J. K. Lenstra, A. H. G. Rinnooy Kan, P. Brucker, Complexity of machine schedul-
ing problems,Annals ofDiscreteMathematics, 1 (1977), 343–362,doi: 10.1016/

S0167-5060(08)70743-X.

62 The Third International Workshop on Dynamic Scheduling Problems

