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Interpretation Problems 

• Current statistical checks based on the idea of 
hypothesis testing 
– H0 and H1 often implicit 
– Null and alternative distributions seldom specified 
– Choice of significance level arbitrary 

• These tests have been successful only because 
of the omnipresence of cheating 
– Any “test” that orders a population w.r.t. a relevant 

statistic would have been! 
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Interpretation Problems 

• Schools don’t understand hypothesis testing 
– Tradeoff between Type 1 and II errors 
– Significant     true 

• How to account for a known proportion of the 
population that actually cheats? 

• Statistical tests at different levels 
– Students, classes, schools 
– Results may seem inconsistent (statistically they 

are not!) 
 

≠
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Interpretation Problems 

• Should we condition? If so, how? 
– K-index: incorrect responses by s 
– Generalized binomial test: none of the responses 

by s 
– Conditional version of same test: all of responses 

by s 
• Expected power of conditional test is equal to 

power of unconditional test (Lehmann & 
Romano, 2005, chap. 10) 
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Interpretation Problems Cont’d 

• Only nonstatistical reasons to choose an 
unconditional test over a conditional one, e.g., 
– repetitive use of test 
– symmetry 
– computational reasons 
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Bayesian Checks 

• Bayesian approach 
– Posterior odds of cheating easier to interpret than 

significance probabilities 
– Automatic allows for known proportion that actually 

cheats (prior probabilities)  
– Conditioning on all responses, both by the source 

and the copier 
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Bayesian Checks Cont’d 

• Checks should only be used if there is prior 
evidence suggesting scrutiny of a specific 
portion of the test, e.g., a section in the test or 
page of the answer sheet 
– Blind applications to the complete tests for all 

pairs of test takers are meaningless 
• Example for check on answer copying 

– For other types of cheating, see full paper 
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Bayesian Checks Cont’d 

• Notation 
– c: hypothetical copier 
– s: source 
– M: set of all items with matching (correct or 

incorrect) responses 
–            : (unknown) subset of M actually copied 
–            : no copying 
– p(Γ): prior probability of subset Γ being copied 

(defined over all possible subsets of M)  
 
 

MΓ ⊆
Γ =∅
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Bayesian Checks Cont’d 

Total set of items 

M: set of items with 
matching answers 

Γ: set of items with 
copied answers   : no copyingΓ =∅



11 

Bayesian Checks Cont’d 

• Response probability for copier on item i 
 
 

• Probability of response vectors yc and ys 
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Bayesian Checks Cont’d 

• Response probability for copier on item i 
 
 

• Probability of response vectors yc and ys 
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Bayesian Checks Cont’d 

• Posterior probability of           (i.e., no 
copying) 
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Bayesian Checks Cont’d 

• Posterior probability of            (cont’d) 
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Bayesian Checks Cont’d 

• Posterior odds of cheating can be shown to 
simplify to 
 
 
 

• Thus, odds are independent of 
– ability of source  
– any responses outside set of matches, M 
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Bayesian Checks Cont’d 

• Proposed specification of prior probabilities 
of cheating 
– Choice of prior probability of no cheating,        , 

(or odds of no cheating)   
– Assumption of independence across items 
– Choice of prior probabilities γi of cheating on 

item i to be consistent with 

( ) (1 )i
i N

p γ
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( )p ∅
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Bayesian Checks Cont’d 

• Posterior odds of cheating are now equal to 
 
 
 
 

• Complicated combinatorial expression 
– Example for set of 3 items 
– Notation: ξci=(1-γi)pci  (compare with γi·1) 
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Posterior Odds for Set of 3 Items 

 
  

 

Items 
γ ξ γ’ξ 
1 ξc1ξc2ξc3 ξc1ξc2ξc3 

{1} γ1 ξc2ξc3 γ1ξc2ξc3 
{2} γ2 ξc1ξc3 ξc1γ2ξc3 
{3} γ3 ξc1ξc2 ξc1ξc2γc3 

{1,2} γ1γ2 ξc3 γ1γ2ξc3 

{1,3} γ1γ3 ξc2 γ1ξc2γ3 
{2,3} γ2γ3 ξc1 ξc1γ2γ3 

{1,2,3} γ1γ2γ3 1 γ1γ2γ3 
 

Denominator 

Numerator 
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Bayesian Checks Cont’d 

• Odds can be calculated using modified 
version of well-known algorithm for 
calculation of number-correct score 
distributions (“Lord-Wingersky algorithm”) 
– Treat ξci   as probability of correct response on i 
– Treat γi  as probability of incorrect response on i 

         (They are no probabilities, though!) 
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Empirical Examples 

• NRM parameters for 40-item test with 5 
answer choices on each item (Wollack, 1997) 

• Suppose a proctor has witnessed supicious 
communication between c and s during first 
section of 10 items) 

• Prior probability of cheating on at least one 
item: 
– That is, odds of cheating equal to 1:3, 1:1, and 3:1 

1 ( ) .25,  .50,  and .75p− ∅ =
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Empirical Examples 

• No prior knowledge as to which items in 
section were involved: 

• Four pairs of abilities: 
– θc=-2.0,  -1.5, -1.0, and -0.5 

– θs=1.0 
• Answer copying simulated by replacing 

copier’s responses by those by source in the 
data file 
 
 
  

 

101 [1 ( )]pγ −= − − ∅
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Distribution of Number of 
Random Matches on Entire Test 

(θc,θs)=(-2.0,1.0) (θc,θs)=(-1.5,1.0) 

(θc,θs)=(-1.0,1.0) (θc,θs)=(-).5,1.0) 
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Posterior Odds for Different Cases 
(θc,θs) (-2.0,1.0) (-1.5,1.0) 
Prior 
Odds 

1:3 1:1 3:1 1:3 1:1 3:1 

No. of 
Matches 

2 0.62 1.71 4.28 0.31 0.82 1.98 
3 2.04 7.56 27.58 0.41 1.18 3.18 
4 2.42 10.51 45.50 0.76 2.52 8.50 
5 3.15 16.00 444.05 0.90 3.20 12.31 
6 6.06 45.44 681.63 1.62 7.11 38.02 
7 6.82 57.40 * 4.48 28.91 255.20 
8 13.96 188.98 * 5.12 37.47 407.13 
9 15.59 239.49 * 12.89 157.66 * 
10 19.85 391.38 * 15.11 219.86 * 
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Posterior Odds for Different Cases 
(θc,θs) (-1.0,1.0) (-0.5,1.0) 
Prior 
Odds 

1:3 1:1 3:1 1:3 1:1 3:1 

No. of 
Matches 

2 0.19 0.50 1.15 0.12 0.31 0.69 
3 0.67 1.99 5.56 0.20 0.53 1.27 
4 0.98 3.36 11.78 0.34 0.98 2.65 
5 1.14 4.18 16.82 0.47 1.43 4.38 
6 1.38 5.65 27.56 0.63 2011 7.50 
7 1.63 7.36 42.35 0.75 2.65 10.55 
8 8.97 64.74 658.47 0.85 3.18 14.02 
9 9.56 74.34 858.08 0.94 3.68 17.70 
10 11.10 101.38 * 1.12 4.72 26.35 
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Discussion 

• Posterior odds 
– increase with number of matches  
– increase with prior odds, 
– but decrease with difference between θc and θs 

• Posterior odds are strongly data dependent 
– Same number of matches but on different items 

and/or alternatives leads to different odds 
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Discussion Cont’d 

• Two examples in which we ignore information 
in the data set 
– differences between items 
– alternatives chosen by source   

• Again, Bayesian checks are only for specific 
hypothesis on specific parts of the test 
– More informative prior distributions 
– Possible to estimate θc from remaining portion 

of the test 
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Posterior Odds as Function of 
Number of Matches 

(θc,θs)=(-2.0,1.0) (θc,θs)=(-1.5,1.0) 

(θc,θs)=(-1.0,1.0) (θc,θs)=(-0.5,1.0) 

.15aciπ = .18aciπ =

.15aciπ =.19aciπ =
Average conditional  
probability of random 
match given choice by  
source 
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Posterior Odds as Function of 
Number of Matches 

(θc,θs)=(-2.0,1.0) (θc,θs)=(-1.5,1.0) 

(θc,θs)=(-1.0,1.0) (θc,θs)=(-0.5,1.0) 

.16csiπ = .23csiπ =

.41csiπ =.31csiπ =
Average marginal 
probability of random 
match (ignoring choices 
by source)  
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