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Abstract 

In this paper, the authors propose a new technique for identifying unusual changes in test 

performance at the classroom level. Using a cumulative logit regression model, test-takers’ 

performance level categories in the current year are predicted by their test scores in the same 

subject area from the prior year. Individual probabilities obtained from the cumulative logit 

model are aggregated across examinees within the classroom to derive expected proportions of 

students at each performance level. Expected and observed proportions are compared, and a 

standardized residual is computed for the purposes of flagging classrooms with much greater-

than-expected test performance gains. Results of a simulation study found that this method has 

good detection power when classrooms show moderate-to-large score gains due to cheating and 

misconduct is not overly widespread in the test-taking population. Among the total number of 

classrooms flagged by this method, over 98.9% were true cheating classrooms in all included 

conditions of the simulation. Type I error rates for this method were conservative in all 

investigated conditions. 

Keywords: cheating, test security, misconduct, performance gains 
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Using Nonlinear Regression to Identify Unusual Performance Level Classification Rates 

Large-scale educational testing is becoming an increasingly high-stakes endeavor. 

Critical decisions affecting students’ lives, such as passing courses, progressing to the next grade 

level, and graduating from high school may be directly impacted by performance on state-

mandated standardized tests. However, high stakes associated with testing outcomes are not 

limited to test-takers exclusively; educators also may experience pressures brought on by 

accountability expectations related to their students’ performance on state assessments. Given the 

ubiquity of large-scale assessments in the current educational landscape and the accountability 

pressures placed upon stakeholders, any number of individuals playing various roles in the 

testing process—such as test-takers, teachers, proctors, educational administrators, or others—

may potentially feel pressures to engage in test misconduct. Recognizing that obtaining valid test 

scores is a central concern for any testing program and that test misconduct—whether it is 

carried out with intent or not—represents a serious threat to test score validity (Cizek, 1999; 

Amrein-Beardsley, Berliner, & Rideau, 2010), it is in the best interest of assessment program 

owners, administrators, and vendors to remain vigilant for evidence of possible misconduct. 

With accountability measures directly tied to student performance on state assessments, 

educators wishing to gain rewards or perhaps avoid sanctions might be incentivized to engage in 

misconduct in an effort to boost students’ scores. Numerous high-profile allegations of cheating 

carried out by educators have been brought to light in recent years (e.g., Vogell, 2011; Molland, 

2012; National Center for Fair and Open Testing, 2013). Educators who engage in misconduct 

may manipulate test scores in a number of possible ways, including but not limited to obtaining 

test items prior to the administration and sharing answers with students; allowing assistive 

materials such as notes, posters, or textbooks to remain accessible to students during the test; 
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coaching or assisting students during the test administration; or erasing incorrect submitted 

responses and replacing them with correct answers (Cizek, 2001). When misconduct occurs, it 

may leave telltale signatures in test data, and its manifestations will likely vary depending on the 

form of misconduct as well as the role-players responsible. If one makes a reasonable 

assumption that whichever of the aforementioned forms of misconduct results in an increase in 

test-takers’ observed performance on the assessment beyond what might otherwise be expected 

given their true levels of achievement, one straightforward approach to identify potential 

incidents of misconduct may be to model student achievement longitudinally, looking for much 

greater-than-predicted increases in test-taker performance in the focal year compared to prior 

performance, provided of course that the previous year’s instructor did not also engage in 

misconduct. 

Techniques Used to Identify Unusual Performance Gains 

An observation of unusual student performance gains over time may indicate potential 

test misconduct (e.g., Jacob & Levitt, 2002; NCME, 2012). For example, a classroom (or more 

generally, unit) that includes a large number of historically low-achieving students who are now 

apparently demonstrating high achievement in the current time point—well beyond what might 

be considered a “reasonable” performance gain when consulting the results of a statistical 

prediction model—may elicit suspicion. Finding the most appropriate and widely-applicable 

statistical modeling strategy, considering the characteristics of the data and the appropriateness 

of outcomes for making inferences, was the primary goal of this research study. 

An argument could be made that one reasonable method for identifying unusual gains in 

student performance over time may involve some form of a linear regression model. In a widely-

publicized investigation, the Atlanta Journal-Constitution (2012) obtained mean scale scores for 
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schools, grades, and subject areas, and used a linear regression model, weighted by classroom 

size, to predict average classroom scale scores in the current year from average scale scores in 

the previous year. Investigators compared standardized residuals to the t-distribution, adjusting 

the flagging criterion for classroom size, and flagged classrooms with standardized residuals that 

had probabilities less than 0.05. 

Jacob and Levitt (2003) used a very different approach to find evidence of potential 

misconduct in classrooms. Rather than modeling changes in mean scores over time using a 

regression model, they computed percentile ranks for students within classrooms across several 

time points and looked for evidence of potential misconduct by identifying classrooms made up 

of students who previously had low scores relative to the population, in terms of percentile ranks, 

and now showed extremely large percentile rank improvements in the current time point. Such a 

technique shifts focus away from the scores themselves and instead emphasizes conditional 

percentile ranks across years, not unlike some of the current popular growth modeling techniques 

(e.g., see Student Growth Percentiles; Betebenner, 2009), albeit in a less sophisticated manner. 

Although these techniques are straightforward and intuitive, their limitations warrant 

consideration. For the purposes of identifying suspicious test scores, such techniques may not be 

ideal in all circumstances. Identifying large standardized residuals computed from a linear model 

will identify observed mean test scores with the greatest deviations from their predicted values. 

Similarly, any method based on percentile ranks will be most sensitive to large relative score 

gains across years. Although an observation of an extreme unit-level score gain across years may 

(rightly) elicit suspicion of the validity of the current year’s test scores for a particular unit, this 

may not be the only possible manifestation of misconduct. Because accountability measures are 

tied to performance level outcomes—not scores themselves—there may not be great incentive 
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for those inclined to engage in misconduct to intervene in such a way that results in historically 

low-performing students in the unit now scoring into the upper echelons of the state’s test-takers. 

Furthermore, larger gains like these will likely require greater levels of intervention from the 

educator (thus increasing the risk of being caught while performing said intervention) and invite 

further scrutiny and suspicion when these previously low-achieving students’ scores show such 

improbably massive gains.  

Another possible manifestation of misconduct that should warrant suspicion may be 

smaller, but systematic, score gains at the student level, which are sufficient to significantly 

improve the number of students in a unit who reach a performance level category corresponding 

to a level of proficient or above. If only small or moderate gains obtained through cheating are 

necessary to boost students’ scores in a unit into a desirable performance level category, methods 

that are most sensitive to either large differences in unit score means or large differences in 

percentile ranks over time may be less capable of identifying these cases of misconduct. 

For the purposes of this research study, the authors sought to investigate a modeling 

strategy that satisfied a number of criteria. First, the authors sought a method that is widely 

applicable to a variety of test delivery circumstances. For example, not every state uses a vertical 

scale, so methods that are scale-dependent, such as those requiring the computation of difference 

scores across years, were not considered. Next, the chosen technique should focus on 

performance level categories as opposed to scores as the outcome of interest. Accountability 

measures are tied to performance level outcomes; therefore, any techniques designed to flag 

suspicious outcomes ought to similarly focus on performance levels. Furthermore, a method 

predicting performance level outcomes should have equal or superior power to more traditional 

linear models in a wide variety of situations. For example, in circumstances in which students’ 
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test scores in a particular unit show very large gains across years due to cheating, both linear and 

nonlinear methods should have reasonable detection power. The linear model will flag the unit 

because the large change in scores will result in a significant standardized residual, and the 

nonlinear model will flag the unit because more students scored into the higher performance 

level categories than what was predicted by the model based on their previous observed scores. 

However, in circumstances in which a unit contains a large percentage of students who would be 

expected to score somewhere reasonably close to, but below the proficient cut, but those 

students’ scores were boosted above the cut (but again, not necessarily to the top of the scale) 

through cheating, nonlinear methods that compare predicted and observed performance level 

classification rates at the unit level should have superior power to linear models, which would be 

less sensitive to smaller, systematic gains such as this. Finally, because we recognize that a 

certain degree of classification error is inherently unavoidable when predicting categorical 

outcomes like performance level from continuous predictors like scale scores, any chosen 

modeling strategy should account for this uncertainty in predicted outcomes when computing 

expected values. A good modeling strategy should not produce a single expected value in the 

sense that a time t – 1 score of X results in a predicted time t performance level category of Y 

(alone), but rather, the modeling technique should provide probabilities for all possible 

performance level categories. Although some combinations of X and Y may be highly 

improbable, no combination is impossible, and there may be circumstances in which two or more 

categories are almost equally probable; expected values should reflect this reality. 

A Cumulative Logit Regression Modeling Approach 

The authors propose a strategy that uses aggregated results of an examinee-level 

nonlinear regression model to make unit-level inferences regarding the reasonableness of 
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observed proportions of test-takers classified into performance level categories (denoted j = 1, 2, 

… J), given students’ performance in the previous grade level of the subject area of interest. The 

proposed methodology models test performance longitudinally across time points and within 

test-takers. The outcome variable in the prediction model is the student’s observed performance 

level category (Y) at time t, which is treated as an ordinal variable, and the predictor variable is 

the student’s scale score in the previous grade level at time t – 1; therefore, this is characterized 

as a cumulative logit regression model (Agresti, 1996). Because students are not necessarily 

expected to be placed in identical classrooms—in terms of classrooms being comprised of 

identical peer groups—across years, we make no assumption that students are nested within units 

across the two time points. 

As described by Agresti (1996), cumulative probabilities reflect the ordering that 

P(Y ≤ 1) ≤ P(Y ≤ 2) ≤ … P(Y ≤ J) = 1; the cumulative probability that Y ≤ J necessarily equals 1, 

and the logits for the first J – 1 cumulative probabilities are  

 
logitሾܲሺܻ ൑ ݆ሻሿ ൌ log ቆ

ܲሺܻ ൑ ݆ሻ
1 െ ܲሺܻ ൑ ݆ሻ

ቇ 

(1)
 

ൌ log ቆ
ଵߨ ൅ ⋯൅ ௝ߨ
௝ାଵߨ ൅ ⋯൅ ௝ߨ

ቇ , ݆ ൌ 1,… , ܬ െ 1. 

Cumulative probabilities can be used to compute individual probabilities. For performance level 

category j = 1, the individual probability is equal to the cumulative probability for j = 1. For 

performance levels j = 2 through J, the individual probability is equal to the difference between 

the cumulative probability for category j and the cumulative probability for category j – 1. An 

example showing individual probabilities for a test with J = 4 performance level categories at 

time t is provided in Figure 1.  
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Figure 1. Example of Individual Probabilities for Four Performance Level Categories. 

As is evident from this example, we can compute independent probabilities of scoring 

into each of the four performance levels at time t conditional on any observed scale score from 

time t – 1, and independent probabilities sum to 1. For example, a test-taker who received a score 

of 300 at time t – 1 has a probability of 0.266 of scoring into Performance Level 1 at time t, a 

0.605 probability of scoring into Performance Level 2, a 0.126 probability of scoring into 

Performance Level 3, and a 0.003 probability of scoring into Performance Level 4. For this 

student, we might expect that he or she would score into Performance Level 2 at time t, although 

a score placing him/her into Performance Level 1 would not be out of the question, either. A 

score placing this student into Performance Level 4 at time t, however, would be highly 

improbable. 

This example illustrates a useful benefit of this approach over other potential methods 

that might be considered. Rather than obtaining a single expected performance level for a 

conditional scale score, we obtain expected probabilities for all four performance levels for any 
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conditional scale score. A possible performance level-oriented alternative approach might be to 

predict examinees’ scale scores at time t from their time t – 1 scale scores, and then apply the 

performance level cuts to the predicted and observed time t scale scores to obtain predicted and 

observed performance level outcomes. However, as illustrated in Figure 1, there are regions of 

scale scores where multiple performance level outcomes are nearly equally probable. For 

example, a test-taker who obtained a scale score of 364 at time t – 1 has a 0.461 probability of 

scoring into Performance Level 2 at time t, and a 0.465 probability of scoring into Performance 

Level 3. Although this test-taker has a slightly higher probability of scoring into Performance 

Level 3, practically speaking, the difference is trivial and we might conclude that either outcome 

seems fairly reasonable. When aggregating expected values across students within a unit, unit-

level expected values computed through this cumulative logit model will reflect this inherent 

uncertainty in student-level performance level classifications, particularly when multiple 

performance level outcomes are likely. 

Treating independent probabilities as examinee-level expected values, we can easily 

aggregate these and compute the expected count of examinees at performance level j for unit 

(classroom) k by summing independent probabilities for performance level j across all examinees 

in the unit (i = 1, 2, …, nk), conditioning on their respective scale scores from the prior time 

point. Dividing these expected counts by the total number of examinees in the unit yields the 

expected proportion of examinees at performance level j: 

 
൫ܧ ௝ܲ௞൯ ൌ

∑ ௜ܲ௝
௡ೖ
௜ୀଵ

݊௞
. (2)

The standardized residual for performance level j for unit k is the difference between the 

observed proportion, Pjk, and the expected proportion, E(Pjk), divided by the standard error: 



PERFORMANCE LEVEL CLASSIFICATION RATES 11 

 
ܵ ௝ܴ௞ ൌ

௝ܲ௞ െ ൫ܧ ௝ܲ௞൯
௝௞ܧܵ

, 
(3)

where the standard error is equal to the square root of the variance of the mean: 

 

௝௞ܧܵ ൌ ඩ
൫ܧ ௝ܲ௞൯ ቀ1 െ ൫ܧ ௝ܲ௞൯ቁ

௝݊௞
. 

(4)

Standardized residuals are expected to be normally distributed with a mean of 0 and a standard 

deviation of 1. For any performance level, positive residuals are taken as indication of a higher-

than-predicted proportion of students within the unit scoring into that performance level, and a 

negative residual is indication of a lower-than-predicted proportion. If, for example, a given 

assessment program has four performance level categories, and Performance Level 3 

corresponds to “proficient” or on-grade-level performance and Performance Level 4 corresponds 

to superior performance, then extremely large, positive residuals for either or both of these 

categories may be taken as a potential reason for further follow-up. 

Method 

Data Simulation 

This proposed method was investigated using a simulation study. The simulation we 

conducted included several steps, including performing a review of the characteristics of data 

obtained from various large-scale assessments, selecting data to form the foundation for the 

simulation, simulating “clean” data with no cheating interventions included, and performing 

additional manipulations to the simulated clean data to mimic cheating. These steps are described 

in further detail in the following sections. 
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Base data 

Prior to simulating data for this study, we examined a number of test data files from a 

variety of large-scale testing programs for the purposes of establishing reasonable parameters for 

the data simulation. After completing this broad examination of test data, we selected data from 

two adjacent years and grade levels of a reading assessment to serve as the base data for the 

simulation. These data were chosen to serve as the basis of the simulation after being found to be 

representative of the typical univariate and multivariate characteristics of longitudinal test data 

that were observed in the broader investigation. After matching students based on a unique 

identification variable across years 1 and 2 and performing typical test data clean-up steps, such 

as dropping invalid scores and duplicate cases found within a single administration, students’ 

reading scores were found to have a correlation of r = 0.759 across years. Univariate descriptive 

statistics for base data are provided in Table 1, and the joint distribution is shown in the density 

plot provided in Figure 2. 

Table 1 

Descriptive Statistics for Base Data Scale Scores 

Year N Mean SD Skewness Kurtosis 
1 69,709 488.032 64.710 -0.225 -0.203 
2 69,709 494.139 66.423 -0.334 -0.227 
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Figure 2. Joint Density of Base Data. 

Simulation procedure 

The data simulations were completed in two sequential steps. In the first step, data were 

simulated to match the observed distributional characteristics of the base data set. A total of 

2,000 replicated data sets were simulated. Each replicated data set contained raw scores and scale 

scores computed using the actual concordance tables from two time points (denoted Year 1 and 

Year 2) for 70,000 test-takers. For each replication, simulated test-takers were randomly 

assigned to one of 2,800 units (classrooms). Although the total number of units was fixed at 

2,800 for each replication, unit sizes were allowed to randomly vary across replications. The 

mean unit size was approximately 25 for each replication, unit sizes generally ranged between 10 

and 45, and the 25th and 75th quantiles for unit size were generally near 22 and 28, respectively. 

Because no misconduct was simulated at this stage, these simulated data sets will be referred to 

as the “clean” simulation condition in the study. 
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In the next phase of the simulation, data from the clean condition were manipulated to 

simulate the effect of cheating on units. For each replicated data set, a random draw was taken 

from a uniform distribution ranging from 0.01 to 0.30. This value was set as the replication-

specific theoretical population cheating rate. For each of the 2,800 units within that replicated 

data set, another random draw was pulled from a uniform distribution ranging from 0.00 to 1.00. 

If the unit’s random draw was less than the theoretical population cheating rate, the unit was 

selected as a cheating unit, otherwise, it was not. Due to the probabilistic nature of the method 

used to assign cheating units, observed percentages of cheating units within replications 

occasionally varied outside of the theoretical boundaries of 1 – 30%. 

For units randomly selected to be impacted by cheating, scores for all test-takers within 

that unit were increased by some fixed amount. There were three different cheating conditions: 

in the first condition, Year 2 scores were increased between 0.5 and 1.0 standard deviations 

above the originally-simulated “clean” Year 2 scores; in the second condition, scores in cheating 

units were increased between 1.0 and 1.5 standard deviations; and in the third condition, scores 

in cheating units were increased between 1.5 and 2.0 standard deviations. In terms of raw scores, 

the standard deviation for the selected Year 2 base data was approximately 6, so for the 0.5 to 1.0 

standard deviation boost condition, test scores in cheating units were increased between 3 and 6 

raw scores; for the 1.0 to 1.5 SD boost condition, tests within cheating units saw increases 

between 6 and 9; and for the 1.5 to 2.0 boost SD condition, tests within cheating units saw 

increases between 9 and 12. Boosted raw scores were converted to scale scores using the base 

test’s raw score to scale score conversion table. Score increases were not allowed to exceed the 

highest obtainable scale score, 600. Data simulations for both the clean and cheating conditions 

were performed using R, version 3.0.1. 
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Analyses 

Cumulative logit regression model 

For each replicated data set, performance levels in Year 2 were predicted by Year 1 scale 

scores in a cumulative logit regression model, estimated using PROC LOGISTIC in SAS, 

version 9.2. Examinee-level individual probabilities for the four performance levels were 

exported from the model results and used to estimate unit-level expected proportions at each 

performance level. Standardized residuals for each unit and performance level were computed 

based on observed and expected proportions. 

Because scoring into either Performance Level 3 or 4 constitutes passing on the base test, 

flagging outcomes were based on the values of unit-level standardized residuals for those 

performance levels. The theoretical flagging criterion chosen for this study was 3.00. Because 

units could be flagged based on the value of the standardized residual for either Performance 

Levels 3 or 4, the flagging criterion was adjusted to maintain control over the Type I error rate. 

To account for two comparisons being performed for each unit, the adjusted flagging criterion 

was set to be approximately equal to 3.205, which corresponds to the critical value associated 

with α / 2. Cumulative logit models were fit to the clean (no cheating) data condition, as well as 

the three conditions in which examinees in simulated cheating units had their Year 2 scores 

boosted by between 0.5 to 1.0 standard deviations, 1.0 to 1.5 standard deviations, or 1.5 to 2.0 

standard deviations. 

Weighted least squares regression model 

To contrast this proposed cumulative logit regression model with a linear prediction 

model, we computed unit mean scores for Year 1 and Year 2. Simulated examinees were 

grouped in both years based on their Year 2 unit IDs. Using SAS PROC REG, we predicted Year 
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2 unit means from Year 1 unit means, weighting by unit size. Standardized residuals were 

exported from the model results and compared to various flagging criteria, which will be 

discussed further in the Results section. 

Evaluating the Efficacy of the Investigated Methods 

Simulation research, whether it is focused on test misconduct or identification rates for 

any other phenomenon of interest, commonly reports four outcomes of interest. Reported in the 

context of a study such as this, those outcomes would be sensitivity, or the ratio of correctly-

identified cheating units to the total number of true cheating units; specificity, or the ratio of 

correct non-identifications to the total number of non-cheating units; type I error rates, or the 

ratio of false identifications to the total number of non-cheating units; and finally, type II error 

rates, or the ratio of falsely non-identified cheating units to the total number of cheating units. 

However, given the circumstances unique to test misconduct, it is critical that we examine the 

performance of these indicators more fully. If we make the very reasonable assumptions that 1) 

classification errors are unavoidable, 2) false accusations of misconduct are potentially damaging 

to the reputations of both the accused and the accuser, and 3) state education agencies (SEAs) 

and local education agencies (LEAs) have finite budgets and therefore likely cannot investigate 

every case of potential misconduct, then it becomes very important to adopt a more Bayesian-

like approach in evaluating the performance of these statistics (Skorupski & Wainer, 2013). 

As previously mentioned, sensitivity represents the ratio of correctly-identified cheating 

units to the  total number of cheating units, which is very useful for evaluating how often 

cheating units might be expected to be identified by some means. However, one could make a 

reasonable argument that perhaps an even more important consideration, particularly from a 

policy standpoint, may be how often those units that are identified by the statistic are truly 
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cheating units—information that is not directly provided by sensitivity. We suggest that the 

positive predictive value—or, the ratio of correctly-identified cheating units to the total number 

identified as cheating units by the method—holds great value in examining the usefulness of any 

statistic used in misconduct research. This value will be reported and discussed. Further, the 

negative predictive value—or ratio of correctly non-identified units to the total number of non-

identified units—and efficiency—or ratio of correct outcomes (i.e., true positives and true 

negatives) to total outcomes—will be reported and discussed as well. 

The proposed cumulative logit regression method was expected to have good detection 

power, in terms of correctly identifying cheating units, and reasonable type I error rates relative 

to the flagging criterion. Power was expected to be adequate even when rather small cheating 

effect sizes were simulated, power should increase with larger simulated cheating effect sizes, 

and the proposed nonlinear approach was expected to demonstrate equal or superior power, 

positive predictive value, and efficiency to the linear model in all investigated conditions. 

Results 

Cumulative Logit Regression Method 

Marginal results for flagging outcomes from the cumulative logit model are shown in 

Table 2. As expected, detection power was greatest when simulated examinees within cheating 

units experienced score gains greater than or equal to 1.5 standard deviations, with 

approximately 63.7% of cheating units being correctly identified in this condition. Detection 

power greatly decreased in conditions where misconduct had less impact on scores within 

cheating units, with only 8.5% of these units being detected in the condition where misconduct 

resulted in score boosts less than or equal to 1 standard deviation. Positive predictive power 

remained strong, however, with true cheating units making up more than 98.9% of the total 
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number of flagged units in all three conditions. Efficiency ranged from 85.8 – 94.3%, with the 

greatest efficiency observed in the condition with the largest cheating effect size. In terms of type 

I errors, a nominal false positive rate of approximately 0.135% would be expected with a 

theoretical flagging criterion set to 3.00. As shown in this table, empirical type I error rates were 

conservative in all three cheating conditions. Although not presented in this table, results from 

the clean data simulation condition, in which no cheating was simulated, showed a marginal type 

I error rate of 0.003%. 

Table 2 

Marginal Results for Cumulative Logit Method with Flagging set to 3.00 

ESa Sensitivity Specificity Type I Type II PPVb NPVc Efficiency
0.5 – 1.0 8.450 99.984 0.016 91.550 98.976 85.670 85.845 
1.0 – 1.5 34.869 99.965 0.035 65.131 99.450 89.454 89.991 
1.5 – 2.0 63.733 99.939 0.061 36.267 99.487 93.683 94.266 
Note. All values are presented as percentages. 
aEffect size impact of cheating on affected scores, in standard deviations. 
bPositive predictive value. 
cNegative predictive value. 
 

 Looking beyond marginal outcomes from the three levels of cheating effect size, we 

examined the impact of the extent of cheating within the data set on flagging outcomes. As 

previously discussed, we simulated theoretical population cheating percentages ranging from 1 – 

30%, and the extent of cheating in the population was allowed to vary randomly between those 

theoretical boundaries across the 2,000 simulated data sets within each of the three cheating 

effect size conditions. The following three figures illustrate the relationship between detection 

power and the extent of cheating simulated within the data set. In these scatter plots each point 

represents the outcome from a single replicated data set within that condition. As shown in these 

figures, detection power decreased in all three conditions as simulated misconduct became more 

widely prevalent within the data set. Type I error rates and positive predictive value, which are 
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not presented in these figures, were not systematically impacted by the extent of cheating in the 

data set. 

 
Figure 3. Sensitivity by Extent of Cheating: 0.5 to 1.0 SD Increase Condition. 
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Figure 4. Sensitivity by Extent of Cheating: 1.0 to 1.5 SD Increase Condition. 

 

Figure 5. Sensitivity by Extent of Cheating: 1.5 to 2.0 SD Increase Condition. 
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We also investigated the impact of unit size on detection power, type I error rates, and 

positive predictive value. Unit sizes varied within each data set. For reporting and discussion 

purposes, we grouped units into four categories based on size, splitting them at approximately 

the 25th, 50th, and 75th percentiles. The unit sizes grouped into these four categories are 1) less 

than 22 students, 2) 22 – 24 students, 3) 25 – 28 students, and 4) 29 or more students. As shown 

in the following figures, detection power was greatest for larger units. Not shown in these 

figures, type I error rates and positive predictive value remained consistent across the unit size 

groups. 

 

Figure 6. Sensitivity by Unit Size: 0.5 to 1.0 SD Increase Condition. 
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Figure 7. Sensitivity by Unit Size: 1.0 to 1.5 SD Increase Condition. 

 

Figure 8. Sensitivity by Unit Size: 1.5 to 2.0 SD Increase Condition. 
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Weighted Least Squares Regression Method 

Marginal results for the three cheating conditions from the weighted least squares 

regression model are shown in Table 3. As was true for the cumulative logit regression method, 

flagging was initially set at 3.00 for the standardized residuals. Sensitivity was poor in all three 

conditions, with hit rates ranging from only 9.0 – 9.9%. Type I error rates were extremely 

conservative in all three conditions, and the positive predictive value exceeded 99.9% in all three 

conditions. Efficiency held steady at approximately 86% in all three conditions. The type I error 

rate from the clean condition, which is not presented in this table, was very close to the nominal 

type I error rate at 0.142%. 

Table 3 

Marginal Results for WLS Method with Flagging set to 3.00 

ES Sensitivity Specificity Type I Type II PPV NPV Efficiency
0.5 – 1.0 9.043 99.999 0.001 90.957 99.943 85.751 85.950 
1.0 – 1.5 9.876 100.000 0.000 90.124 99.993 85.978 86.191 
1.5 – 2.0 9.468 100.000 0.000 90.532 100.000 85.601 85.815 
 

Because sensitivity was so poor for the WLS method in all three cheating conditions, we 

followed-up by exploring the performance of this method using additional flagging criteria. 

Performance measures were recomputed based on two additional flagging criteria for the 

standardized residuals. Results from these additional investigations are shown in Table 4 and 

Table 5. 

Table 4 

Marginal Results for WLS Method with Flagging set to 2.00 

ES Sensitivity Specificity Type I Type II PPV NPV Efficiency
0.5 – 1.0 39.411 99.948 0.052 60.589 99.281 90.030 90.597 
1.0 – 1.5 42.488 99.987 0.013 57.512 99.837 90.573 91.177 
1.5 – 2.0 41.512 99.995 0.005 58.488 99.934 90.198 90.832 
 



PERFORMANCE LEVEL CLASSIFICATION RATES 24 

Table 5 

Marginal Results for WLS Method with Flagging set to 1.00 

ES Sensitivity Specificity Type I Type II PPV NPV Efficiency
0.5 – 1.0 86.441 98.501 1.499 13.559 91.328 97.547 96.638 
1.0 – 1.5 96.784 99.358 0.642 3.216 96.462 99.418 98.963 
1.5 – 2.0 98.925 99.599 0.401 1.075 97.866 99.800 99.494 
 

As shown by these tables, sensitivity improves when lower flagging thresholds are 

used—an expected outcome. Type I error rates remain extremely conservative compared to their 

respective nominal levels, and as a result, positive predictive value and efficiency were strong at 

these lower flagging thresholds. However, the outcomes from the clean simulation condition 

once again reveal type I error rates at these new flagging criteria that are extremely close to the 

nominal levels for these new flagging criteria. When the flagging criterion was set to 2.00 and no 

cheating was present, approximately 2.3% of units were incorrectly flagged, and when the 

flagging criterion was set to 1.00 and no cheating was present, approximately 15.9% of cheating 

units were incorrectly flagged. These outcomes were both consistent with the nominal Type I 

error rates that would be expected when no cheating is present.  

The extent of cheating in the data set was found to have a rather profound impact on the 

type I error rates of the weighted least squares method. When cheating is present, type I error 

rates are extremely conservative, and this effect is multiplied as the impact of cheating on test 

scores increases, but when cheating is scarce or altogether absent, type I error rates are at their 

nominal levels. To further illustrate this phenomenon, we plotted empirical type I error rates 

observed across the 2,000 replications of the cheating condition in which scores in cheating units 

were boosted between 0.5 and 1.0 standard deviation. As shown in Figure 9, empirical type I 

error rates for the WLS method were impacted by the percentage of cheating units in the data set. 
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Figure 9. Empirical Type I Error Rates by Percent of Cheating Units for the Weighted Least 
Squares Regression Method: 0.5 to 1.0 Standard Deviation Increase Condition; Flagging at 1 
Standard Deviation. 

In contrast to this observation from the WLS method, Figure 10 illustrates empirical type 

I error rates for all 2,000 replications from the same cheating condition when using the 

cumulative logit regression model. With the exception of a handful of outliers, type I error rates 

were largely consistent and conservative across replications, regardless of the percentage of 

cheating units included within the replicated data set. 
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Figure 10. Empirical Type I Error Rates by Percent of Cheating Units for the Cumulative Logit 
Regression Method: 0.5 to 1.0 Standard Deviation Increase Condition. 

Discussion 

Overall, results from this study demonstrate that predicting performance level outcomes 

at the current time point from prior test scores holds value in detecting unusual changes in 

performance over time. Sensitivity was strong when cheating was not extensive in the population 

and moderate-to-large effect sizes for misconduct were simulated, and type I error rates remained 

stable and conservative across conditions. As expected, detection power improved as the effect 

size of cheating increased. In spite of the poor marginal detection power noted in the 0.5 – 1.0 

SD score boost condition, positive predictive value results were encouraging throughout, with 

true cheating units making up more than 98.9% of all flagged units in all investigated cheating 

conditions. 
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widespread in the test-taking population. This study included theoretical population cheating 

rates ranging between 1 – 30%, and detection rates substantially declined as population cheating 

rates approached 30%. This outcome is not altogether surprising, considering that the regression 

coefficients were estimated from the available data, and the estimation of coefficients will 

necessarily be influenced by the data used in the prediction model. As misconduct becomes more 

widely prevalent in the population, any one unit exhibiting performance gains due to misconduct 

will appear less unusual in comparison to the rest of the population. This outcome is consistent 

with findings from previous research in the area of person-fit, which similarly found evidence of 

degrading detection power as cheating became more widespread (e.g., Clark, 2012; Karabatsos, 

2003). Although detection power declines as cheating becomes more prevalent in the test-taking 

population, positive predictive value remains uniformly strong, and type I error rates remain 

consistently at or below the nominal level. 

In addition to being affected by population cheating rates, detection power was observed 

to vary across unit sizes. Generally speaking, this method had greater success detecting cheating 

units with larger student populations, with the observed effect most pronounced for conditions 

with moderate or large impacts of misconduct on test scores. Consistent with all previously-

noted findings for this method, positive predictive value remained extremely strong, and type I 

error rates remained stable, regardless of unit size. 

Results from the weighted least squares model provided an informative contrast to 

outcomes from the proposed cumulative logit regression-based method. When flagging units at a 

threshold equivalent to the level used for the cumulative logit model, the WLS model showed 

poor power, with less than 10% of simulated cheating units being correctly identified in all three 

cheating effect size conditions, although positive predictive value was strong due to extremely 
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conservative type I error rates in the cheating conditions. Unlike the cumulative logit regression 

method, which showed a positive relationship between detection power and cheating effect size, 

detection power was mostly unaffected by the effect size of cheating when using the WLS 

regression method. Negative predictive value and efficiency were largely steady, both of which 

remained near 86% in all cheating conditions, in contrast to outcomes of the cumulative logit 

model, which showed NPV and efficiency climb from approximately 86% up to approximately 

94% as cheating effect sizes increased.  

Type I error rates for the weighted least squares approach were alarmingly volatile in 

relation to extent of simulated misconduct in the test data. In simulated cheating conditions, 

empirical type I error rates were extremely conservative, yet they were very close to nominal 

levels when cheating was scarce or absent from the simulation. The most extreme example of 

this observed phenomenon comes from the condition in which units with standardized residuals 

greater than or equal to 1.0 were flagged. At this flagging level, we would expect to observe an 

empirical type I error rate of 16%. In the condition in which cheating was simulated to increase 

examinees’ scores between 1.5 to 2.0 standard deviations, the marginal empirical type I error rate 

was 0.4% at this flagging threshold (although a clear trend relating empirical type I error rates 

and percentage of cheating units emerged). In the clean simulation condition, in which no 

cheating was simulated in the test data, an empirical type I error rate of 15.9% was observed.  

One great benefit of a conducting a simulation study is having direct knowledge of the 

true nature of data used in the study, in particular, which units were impacted by cheating and 

which ones were not. In an application of a weighted least squares regression modeling 

technique on real-world test data, the investigator would be placed in the unenviable position of 

selecting amongst several less-than ideal choices. This study demonstrated that a weighted least 
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squares model has very poor detection power when a flagging criterion of 3.00 is selected. 

Furthermore, type I error rates will fluctuate greatly depending on the extent of cheating in the 

population. If the investigator chooses a stringent flagging criterion, detection power will be 

extremely poor, even when cheating has a large impact on test scores. If a lower flagging 

threshold is chosen in an effort to improve detection power, the extent of cheating in the 

population (an unknown value) will have a great deal of impact on the type I error rate. If 

cheating is moderate to widespread, type I error rates will be very conservative, but if cheating is 

relatively rare, type I error rates will be near their nominal levels, which may be too 

unacceptably high to be practical. In addition to evaluating the impact of the extent of cheating 

on outcomes, issues surrounding model selection bear discussion as well. 

Choosing the right predictor variables to include is a very important consideration when 

building any regression model. In the model proposed in this paper, we included the prior year’s 

test score as the only predictor variable in the model. A valid argument could be made that 

adding predictor variables, such student gender, ethnicity, or socio-economic status, for example, 

may account for a significant amount of variability in performance level outcomes at time t. 

Indeed, this consideration in the present context is not unlike discussions on what predictors to 

include in growth and value-added models. We recognize that the subject of misconduct is a 

sensitive one for stakeholders, and although there may be valid reasons—from a statistical 

standpoint—to control for student characteristics in a prediction model such as this, we opted to 

exclude any such covariates from the model due to concerns for potential face validity issues 

when sharing results with the public at large. The potential impact of including or excluding such 

covariates on flagging outcomes is a topic that should be considered in future research in this 

area. 
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Limitations 

Although it is perfectly reasonable to assume that cheating—when effective—results in 

some boost to test scores above and beyond what would otherwise be expected in the absence of 

misconduct, the actual specifics of how various cheating behaviors affect scores are not known. 

If, for example, the classroom teacher shares correct answers from compromised items with 

students prior to the test administration, it would be reasonable to assume that the score boost 

achieved due to the misconduct would be influenced by some interaction between the teacher’s 

actions and the characteristics of the students in the classroom. The methodology used to 

simulate cheating in this study—adding a fixed amount to all scores within a simulated cheating 

unit—is a rather simple approach toward simulating the impact of cheating on test scores. More 

research needs to be conducted to better understand how cheating impacts test scores so future 

simulations can have greater fidelity, particularly when simulating cheating behaviors in which 

characteristics or behaviors of students and third parties may potentially interact. 

Although the positive predictive value for the cumulative logit method was excellent in 

all cheating conditions, marginal sensitivity was poor in the condition in which test scores within 

cheating units were boosted between 0.5 and 1.0 standard deviation. This proposed cumulative 

logit method was anticipated to outperform the weighted least squares approach when small 

cheating effects were simulated, but both methods showed poor sensitivity in this condition. It is 

worthwhile to consider that the cheating effect simulated in this condition resulted in increases of 

only 3 to 6 raw scores, which would likely prove difficult for any method to detect consistently. 

Future research to further explore this proposed method will include a “targeted” cheating 

condition, in which test scores within cheating units are boosted just enough to reach the 

performance level associated with proficiency. Including such a condition in a future study will 
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better address the question of how well a method like this identifies small to moderate 

cheating—in terms of score boosts—that has a large impact on performance level classification 

rates at the unit level. 

Conclusion 

The major purpose of this study was to evaluate the performance of a novel technique for 

identifying unusual unit-level performance changes under a variety of circumstances. We 

investigated a wide range of cheating effect sizes and extent of cheating within data sets. As 

expected, detection power varied as a function of the effect of cheating on test scores, with the 

method having greatest success identifying cheating that is most impactful on students’ test 

scores. Detection power also was observed to vary as a function of how widespread misconduct 

appeared in the data, with detection power being greatest when cheating is a relatively isolated 

occurrence within the test-taking population. Observed marginal positive predictive value results 

were encouraging throughout, with true cheating units making up more than 98.9% of all flagged 

units in all conditions at the investigated flagging criterion. The longitudinal modeling technique 

proposed in this paper shows potential to provide a useful framework for comparing observed 

with expected outcomes and flagging those cases where observed performance greatly exceeds 

what is expected, as defined by the prediction model.  
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