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Abstract 

The purpose of this study was to demonstrate, through Monte Carlo simulation, the utility 

of a newly presented method for detecting group-level cheating and aberrance (Skorupski & 

Egan, 2011). The method relies on vertically scaled test scores over grades levels. Using these 

data, the change in individual scores, nested within groups (classrooms or schools) over time 

may be modeled. The approach is based on a hierarchical linear model (HLM), and evaluates 

unusually large group-by-time interaction effects as evidence of potential cheating or aberrance. 

The authors have previously demonstrated this method using real data from a large, statewide, 

testing program. Some external evidence of suspected cheating was available and used to cross-

validate those schools flagged as potential cheaters. This approach provided some encouraging 

success, but because real data were used, the accuracy of the method couldn’t be demonstrated. 

The purpose of the current study was to directly evaluate how well the method can identify 

simulated groups which are known a priori to demonstrate such aberrance (which could be 

evidence of cheating or something else unusual). This evaluation was conducted by fitting a fully 

Bayesian HLM and considering marginal recovery of the known parameter values from the 

model, as well as a determination of power and Type I error rates for identifying aberrant versus 

non-aberrant groups. Results indicate an acceptable Type I error rate for non-aberrant groups, 

with relatively high power for aberrant groups. 

  



HLM Cheating 3 

 

Introduction 

Cheating on statewide assessments (SWAs) has gone on for decades. Current and former 

state directors of assessment can share amusing, startling, and even depressing anecdotes of the 

perpetrators that have been caught in their particular state. Based on a review of literature, 

Thiessen (2007) estimates that 25% of educators cheat on standardized tests; this cheating may 

involve anything from subtle forms of cheating (e.g. teaching to the test) to blatant forms of 

cheating (e.g. changing student answer documents). This figure provides a disquieting 

perspective of the validity of the student response data used to make many important decisions.  

Cheating on SWAs may have serious implications for the psychometric integrity of item 

parameters and test scores as well as the validity of how those test scores are used.   

There are a myriad of methods in the literature to detect possible incidences of cheating 

on SWAs, such as detecting similar response string patterns (e.g., Wollack, 1997, 2003) and 

analyzing person-fit data (e.g., Levine & Rubin, 1979; Drasgow, Levine, & Williams, 1985). See 

Skorupski and Egan (2010) for a comprehensive review of these and other methods.  These 

techniques have tried to detect cheating at the student level by means of detecting answering 

copying or aberrance, which is how individual cheaters cheat. However, cheating on SWAs may 

likely occur at the teacher or even the school level. Students have little incentive to cheat on 

SWAs when those tests are not tied to student grades, retention, budgets, or graduation policies.  

Teachers and administrators, however, may be motivated to cheat on the SWA because test 

results are often used for teacher, school, and/or district accountability.  In some cases, teacher 

merit pay is tied to test results.  Under adequate yearly progress (AYP) standards associated with 

NCLB, schools and/or districts may be shut down or taken over by the state based on test results. 

The threat of not making AYP provides a large incentive for educators to cheat.  In many 
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states, AYP is based, in part, on the percentage of students reaching proficiency.  This type of 

status model makes it relatively easy for educators to game the system.  So long as educators 

ensure a certain percentage of students do well on the SWA, then they should make AYP 

(assuming that other criteria are met).  Other states have started using growth models when 

estimating AYP.  On the surface, it seems that it may be harder to game a growth model, which 

is based on individual student growth across years. In either case, however, the temptation to 

cheat must be great if it could make the difference between keeping or losing one’s job.  

A limited number of researchers have examined cheating at the classroom level. Jacob 

and Levitt (2004) examined fluctuations in student test scores and similarity of answer patterns 

to detect classroom-level cheating incidents at a Chicago area school.  Their work uncovered 

cheating incidences in four to five percent of classrooms studied.  Their indices, however, 

require that students can be grouped by teacher.  Schools and districts often do not report the 

students’ teachers.  This is especially true in the upper grades where students have different 

teachers for each content area, and test materials allow only for a single teacher (such as a 

homeroom teacher) to be entered. Recently, Skorupski and Egan (2011) presented a statistical 

method for detecting possible group-level cheating using a Bayesian Hierarchical Linear 

Model (HLM). Using real data from a vertically scaled SWA, they modeled the change in 

individual scores, nested within groups (schools) over three years. Unusually large group-by-

time interaction effects (i.e., high performance not explained by group and/or time marginal 

effects) were treated as evidence of potential cheating or aberrance. Some external evidence of 

suspected cheating was available and used to cross-validate those schools flagged as potential 

cheaters. This approach provided some encouraging success, but because real data were used, 

the accuracy of the method couldn’t be demonstrated. 
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Statement of Problem/Purpose 

The purpose of the current study was to directly evaluate how well this Bayesian HLM 

approach can identify simulated groups which are known a priori to demonstrate such aberrance 

(which could be evidence of cheating or something else unusual). The ultimate goal is to develop 

and validate a reliable method for identifying group-level cheating behavior, such as 

inappropriate coaching, widespread use of improper materials during testing, or answer changing 

by teachers. It is hypothesized that any such group-level cheating behavior would not manifest 

itself using traditional individual-level cheating detection procedures. These aberrances would 

likely only be detectable at a group level.  This evaluation was conducted by simulating 

vertically scaled test scores for sixty groups over three test administrations. A fully Bayesian 

HLM was fit to each replicated dataset, with parameter recovery of the group-by-time interaction 

effect used to evaluate cheating detection. Groups simulated to display aberrant behavior were 

used for power analyses, non-aberrant groups were used to evaluate Type I error rates. An 

advantage of using the fully Bayesian framework was that stochastic inferences about cheating 

likelihood (given an aberrance criterion) could also be obtained. These methods are explicated 

below. 

Method 

Simulated Data 

Data were simulated for this study to appear similar to vertically scaled test scores over 

three administration years. Based on a previous study using real data (Skorupski & Egan, 2011), 

groups and sample sizes within groups were created to be proportional to a geometric 

distribution. Figure 1 contains a histogram of school sample sizes from the Skorupski and Egan 

(2011) study.  
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Figure 1. Histogram of school sample sizes for real data (total N of groups = 781) studied in 

Skorupski & Egan (2011). 

For the present study, sixty groups were simulated, with group samples sizes chosen to be 

proportional to what was observed in the real data. Figure 2 contains a histogram of these group 

sample sizes. Fewer groups were used for computational purposes, but a large enough number of 

groups was included to simulate a realistic HLM analysis. Simulated group sizes ranged from Ng 
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= 10 (the minimum sample size used in Skorupski & Egan (2011)) to Ng = 260, with the total 

sample size equal to 4,650. 

Figure 2. Histogram of simulated group sizes (total N of groups = 60), chosen to be proportional 

to real data studied in Skorupski & Egan (2011). 

These 4,650 “examinees” within 60 groups were simulated over three time points, with a 

mean increase of half a standard deviation from one administration to the next. These values 
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were chosen based on what was observed in real data from Skorupski & Egan (2011). A 

histogram of group means at Time 1 are contained in Figure 3. 

Figure 3. Histogram of simulated group means at Time 1 (total N of groups = 60).  

Fifty-one means of these Time 1 means were randomly sampled from a standard normal 

distribution; three schools were assigned group means of -1, three others were assigned means of 

0, and three other groups were assigned means of 1. These nine groups were simulated to 
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demonstrate cheating/aberrant behavior (each of the three group means represented at each of the 

three time points). 

Individual scores were simulated directly by sampling from a multivariate normal 

distribution, θ ~ MVN(0,R)1, where 0 is a vector of zeros, and R is a correlation matrix with 0.77 

on all off-diagonal elements. This constant correlation was chosen based on what was observed 

in real data from Skorupski & Egan (2011). After individual scores over three time points were 

simulated, each was altered by adding each individual’s respective Time 1 Group mean and 

respective time point mean (Time point means: µ1 = 0, µ1 = 0.5, µ1 = 1). Finally, a group-by-time 

interaction effect was added to each individual’s score. A group-by-time (60 x 3) matrix of 

interaction effects was created to simulate cheating/aberrance. If an element of this matrix was 

zero, then individuals within that group-time combination had scores which were explainable by 

main effects (Group and Time) alone. Any non-zero value in this matrix would produce 

aberrance. In the 60 x 3 matrix of interaction effects, exactly nine (5%) were selected to 

demonstrate aberrance, by replacing a coefficient of zero with one (i.e., scores at this time point 

for this group were one standard deviation larger than the main effects would predict, a “large” 

effect, which would be expected if caused by some purposeful cheating behavior). For each time 

point, three groups were selected for aberrance, one for each of the three non-randomly-sampled 

Time 1 group means (-1, 0, 1). Each of these group means was assigned to groups of varying 

size, Ng = 10, 60, or 110 to emulate “small,” “medium,” and “large” groups. Thus, at each time 

point three out of 60 groups were aberrant, so the aberrance rate was 5% at each time point, and 

across all time points, which has been observed in previous studies (Jacob & Levitt, 2004; 

Skorupski & Egan, 2001).  
                                                
1 These scores were treated as observed scores in the Bayesian HLM (that is, they were treated as being perfectly 
reliable). This was done to present a “best-case scenario” for the approach. However, a measurement model could 
easily be nested within this methodology if it were desirable to account for unreliability in the estimation. 
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Figure 4 presents a graphic representation of five of the 60 simulated groups over the 

three time points (a subsample chosen to avoid clutter in the figure). The values represented in 

this figure are true group means, and don’t represent individual variability within group. 

Figure 4. Group means over three time points for five of the 60 simulated groups.  

Groups indicated by Blue and Teal lines are non-cheating/aberrant (i.e., main effects of 

Group and Time account for all growth). Groups indicated in Black, Red, and Green are 

simulated to be cheating/aberrant. The Black group has a Time 1 mean of -1, but demonstrates 
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cheating/aberrance at Time 1, so this mean was actually 0. No cheating/aberrance was simulated 

at Times 2 and 3, so these individuals subsequently revert back to their main effects (thus, they 

decline at Time 2 and return to “baseline” at Time 3). The Red group has a Time 1 mean of 0, 

and demonstrates cheating/aberrance at Time 2. So, while other groups increase 0.5 standard 

deviations from Time 1 to Time 2, this group increases 1.5 standard deviations. No 

cheating/aberrance was simulated at Time 3, so these individuals subsequently revert back to 

their main effects and thus appear to decline. The Green group has a Time 1 mean of 1, and 

demonstrates cheating/aberrance at Time 3. They increase 0.5 standard deviations from Time 1 

to Time 2, but then increase 1.5 standard deviations from Time 2 to Time 3. 

Each of these datasets, containing 4,650 individuals nested within 60 groups over three 

simulated time points, was replicated 50 times. Each of these replicated datasets was analyzed 

with the fully Bayesian HLM approach (described in the following section). Results were 

averaged over replications to insure the reliability of results. 

Analysis 

A hierarchical growth model was fit to each of the 50 replicated datasets, with scores 

over time nested within students, who in turn are nested within groups2. The parameters of the 

HLM were estimated within a fully Bayesian network, implemented with Markov Chain Monte 

Carlo (MCMC) techniques using the freeware WinBUGS 1.4 (Lunn, Thomas, Best, & 

Spiegelhalter, 2000). The basic premise of a hierarchical model is to establish a series of nested 

equations, wherein independent variables from one level of the model become dependent 

variables at the next level.  The complete model for an individual’s score at time point t 

(indicated by “T”) nested within student i within Group g (indicated by “G”) was as follows:  

                                                
2 As a practical consideration with real data, the analysis is more robust if scores for examinees are available for all 
Time points, and if they stay in the same Group for all administrations. However, dynamic group-changing and 
missing data extensions to this approach are possible. 
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igtgttgigt GTTGY εββββ ++++= )()()( 3210 , 

where Yigt is the (vertically linked) score of student i in Group g at time t, i=1,…,N(g), the 

number of individuals in Group g, g=1,..,60, the total number of groups, and t= 1,2,3. The 

coefficients in the model are indexed to indicate their level of the hierarchy: β0 is the common 

intercept (the grand mean), and all other effects are centered around it. β1g is the main effect for 

Group, accounting for the average performance of groups around the grand mean, β2t is the main 

effect for Time, accounting for the average rate of growth, β3gt is the interaction effect for each 

Group by Time, accounting for any unique effects occurring for a particular group at a particular 

time that cannot be explained by the main effects, and εigt is a random error term, reflecting 

individual variability within Group-by-Time clusters. Thus, this model can capture all of the 

variability of test scores over time, nested within students within groups. When Yigt is replaced 

with its expected value in the model, the random error term drops out (its expected value is zero). 

Thus, β3gt in the model will represent the interaction effect plus any additional random error, the 

traditional approach in such ANCOVA-type designs. Thus, the “signal” of this effect should only 

be detected if it is stronger than the “noise” created by within-group variability. Using this 

approach one can monitor individual growth of students within schools over time, effects which 

might help us evaluate potential sources of cheating evidence. It should be noted that this model, 

as specified, only considers linear trends, which was appropriate given the simulation. However, 

other applications of this method could certainly consider quadratic growth as a possibility (or 

higher-order polynomials if more time points were observed). 

After fitting the model, posterior distributions were evaluated for the convergence of their 

solutions. The successful convergence of the models to the data from the MCMC processes was 

assessed using techniques suggested by Gelman, Carlin, Stern, and Rubin (1995). Parameter 
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estimates from WinBUGS were used to evaluate these Group, Time, and Group-by-Time 

interaction effects. Large, positive values for the β3gt coefficients are indicative of 

cheating/aberrance behavior. That is, if a group were to perform unusually well at a given time, 

relative to that time’s mean and the group’s own average performance, this coefficient could be 

“flagged” for further review, as some unusual group-level aberrance has occurred (whether this 

performance is commendable or condemnable would have to be independently investigated). 

Furthermore, the β1g coefficients (group level main effects) could also be monitored for evidence 

of unusually high performance across all three years. That is, if a school’s performance was 

consistently very high, its β1g coefficient would be large, though its β3gt coefficients would be 

close to zero. Because aberrance was only simulated at individual time points, these were not 

considered in this study, but they could be used in real data analysis. Such a pattern would 

indicate systematically high performance, which could represent excellence, but may also be 

consistent with a pattern of persistent group-level cheating behavior. 

 The delta (δ) statistic (Cohen, 1988) is a simple, standardized measure of an effect size. It 

does not incorporate information with regard to sample size. The result is that δ is equal to an 

estimate of how many standard deviations different a group’s performance is from an expected 

baseline level. Its general form is to divide an observed difference by an estimate of the 

population standard deviation. In order to better interpret the magnitude and practical 

significance of the model parameter estimates, δ statistics were computed for each group-based 

coefficient, the β1g values for group main effects and the β3gt values for each Group-by-Time 

interaction effect. 

'
01

aa
g

g
∑

−
=
β

δ   and  
2

3 0

t

gt
gt

σ

β
δ

−
=  , 

 



HLM Cheating 14 

 

where a is a 1x3 row vector with each element equal to 1/3, a = [1/3, 1/3, 1/3], Σ  is the 3x3 

variance-covariance matrix of scores over the three Time points (thus the denominator for δg is 

the standard deviation of scales scores averaged over time points), and 2
tσ is the tth diagonal 

element of Σ . Following standard conventions proposed by Cohen (1988), δ ≥ 0.8 was 

considered a large effect and used as criterion for flagging groups as potential cheaters 

(obviously, other choices could be used here). 

The parameters of these models could be evaluated using any software capable of 

handling multilevel data (e.g., HLM, or SEM software like LISREL, for example). However, this 

model was fit using WinBUGS 1.4 (Lunn et al, 2000) in order to take advantage of the stochastic 

inference MCMC output can provide. Specifically, it was desirable to obtain estimates of the 

Group-by-Time interaction effects (β3gt) to evaluate potential outliers which might be construed 

as “unusual” (and therefore possibly cheating). An MCMC algorithm produces random draws 

from the posterior distribution of each parameter being estimated. As such, these values can be 

used to make any sort of probabilistic inference desired, without having to assume a known 

density function for the parameter (which would be necessary in order to make similar kinds of 

inferences using parameter estimates and standard errors from a maximum likelihood estimation 

procedure).  For example, one can iteratively test a series of potential “cutscores” for flagging 

potentially cheating groups by specifying a baseline expected value and determining the 

posterior probability that a group’s performance is unusual compared to this. This probability is 

easily calculated once the MCMC output is available: all one needs to do is set the cutscore, 

count the number of random posterior draws that appear above that threshold, and divide that 

number by the total posterior draws available.  
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This approach is methodologically quite similar to a method developed by Wainer, 

Wang, Skorupski, and Bradlow (2005) for evaluating the reliability of pass/fail decisions. 

Wainer et al (2005) define the Posterior Probability of Passing for an examinee as the proportion 

of posterior draws at or above a given cutscore. Adapted from this, the current approach is to 

define the Poster Probability of Cheating (PPoC) for a group based on the proportion of posterior 

draws at or above a given threshold.  For this study, a baseline was established by treating the 

threshold as zero, that is, PPoC is equal to the proportion of posterior samples greater than zero. 

Cross Validation of Cheating Detection 

Based on analyses in Skorupski and Egan (2011), both the delta statistic and PPoC were 

used to flag potentially cheating groups. To avoid unnecessary Type I error, relatively strict 

criteria were employed for detection. Group-by-Time interaction effects were flagged as 

cheating/aberrant if δgt was greater than or equal to 0.5 and PPoCgt was 0.75 or greater 

(indicating a group/time mean at least 0.5 standard deviations above expected, with a 75% or 

greater chance of being a greater-than-zero effect). These values were selected based on real-data 

analyses from Skorupski and Egan (2011), which maintained an overall detection rate of less 

than 10%. 

Summary of Analysis Steps 

Operationally, implementation of this procedure should take place as a series of eight 

steps, detailed below: 

1. CALIBRATE. Conduct an Item Response Theory (IRT) calibration of item response data. 

2. LINK. Use anchor item parameters from the previously established vertical scale to link 

examinee scale scores on a common metric. 
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3. MODEL: A Bayesian hierarchical growth model is fit to the scale scores, and parameter 

estimates and posterior draws from the MCMC algorithm are retained. Note: Steps 1 - 3 

could be combined into a single analytic step. 

4. CLEAN. Any groups with N<10 (or another criterion) are removed from consideration. 

5. FLAG. Groups with parameter estimates that have δ and PPoC statistics greater than criterion 

levels are flagged as potential cheaters. 

6. VALIDATE. Any group flagged for aberrance is compared to any previously established 

examples of documented security breaches which have occurred. 

7. EXPLORE. Examining the sampling distributions of posterior draws from parameter 

estimates may help to refine a process for when to flag a group’s performance. 

8. INVESTIGATE. Any group ultimately flagged as potentially cheating would need to be 

investigated. Such statistical criteria are never “proof” of cheating. It is even possible that 

these criteria could alternatively be used to identify exemplary groups. Conversely, group 

estimates in the extreme opposite direction (i.e., decreases relative to baseline) might be used 

to identify “at risk” groups. 

Results and Discussion 

Based on MCMC convergence diagnostics, results indicate that the parameters of the 

hierarchical growth model converged to stable solutions3. Parameter recovery was very good for 

these analyses. Figure 5 contains a scatterplot of true Time means versus average Time mean 

over replications. It is readily apparent that these true and estimated values are highly correlated 

(r = 0.995). The scale of the estimates is different than that of the true due to the indeterminacy 

                                                
3 Additional MCMC details: Parameters for each of the 50 replicated datasets were estimated by creating two 
independent Markov Chains for every parameter, each of which was 30,000 iterations long, with a burn-in of 
25,000. Retained posterior draws from these chains all represented converged solutions. 
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of the overall metric (i.e., the “zero” was at Time 1 in the simulation, but was placed at Time 2 

for the estimates), but this has no effect on the relative position of groups. 

Title 5. Scatterplot of true Time means by average estimated Time means. 

Figure 6 contains a scatterplot of true Group means versus average estimated delta values 

over replications. It is also apparent that these true and estimated values are highly correlated (r = 

0.95). The scale of these estimates is more in line with the generating metric. It is also clear that 
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group mean recovery was not a function of sample size, and that the nine groups simulated for 

aberrance (circles indicated in Red) all had their marginal means well recovered. 

Figure 6. Scatterplot of true group means by estimated delta values. Circle sizes are 

proportional to sample size (N) within group. Circles shaded in red indicate groups simulated 

with aberrant/cheating behavior at one of three times. 

Figure 7 contains a scatterplot of mean estimated delta by mean PPoC values for all 60 x 

3 interaction terms (the cheating/aberrance indicators). Not surprisingly, there is a strong, 
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somewhat curvilinear relationship between these indicators (delta has no lower/upper bounds, 

while PPoC is bounded by 0 and 1).  

Figure 7. Scatterplot of mean estimated delta by mean PPoC value for interaction terms across 

three time points. Circle are proportional to group size. Those shaded in red indicate groups 

simulated with cheating/aberrant behavior at one of three times. 
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It was very encouraging to see that all of the nine simulated aberrant groups (Red circles) 

were located in the upper right quadrant of this graph, with relatively few non-aberrant groups 

present there. These results are further broken down, and better understood, by evaluating 

cheating/aberrance detection at each time point separately. Figures 8 through 10 contain these 

results.  

Figure 8 contains a scatterplot of the mean estimated delta by mean PPoC values (over 

replications) at Time 1. Using criteria that groups would be flagged as potential cheaters if δgt >= 

0.5 and PPoC gt >= 0.75, the detection power at Time 1 was only 0.07. The Type I error rate was 

0.04, close to a reasonable accepted value of 0.05. Figure 9 contains a scatterplot of mean 

estimated delta by mean PPoC values at Time 2. Using the same criteria, the detection power at 

Time 2 was 0.71, a considerable improvement over the Time 1 power rate. As with the Time 1 

restults, the Type I error rate was 0.04, close to a reasonable accepted value of 0.05. Lastly, 

figure 10 contains a scatterplot of mean estimated delta by mean PPoC values at Time 3. Using 

the same criteria, the detection power at Time 3 was 1.0 (perfect identification), while 

maintaining a Type I error rate of 0.05. 
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Figure 8. Scatterplot of mean estimated delta by mean PPoC value for interaction terms at Time 

1. Circle sizes are proportional to group size. Circles shaded in red indicate groups simulated 

with cheating/aberrant behavior. 

-1.0 -0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cheating/Aberrance Indicators at Time 1

Mean Estimated Delta for Interaction Term

M
ea

n 
P

P
oC

 fo
r I

nt
er

ac
tio

n 
Te

rm



HLM Cheating 22 

 

Figure 9. Scatterplot of mean estimated delta by mean PPoC value for interaction terms at Time 

2. Circle sizes are proportional to group size. Circles shaded in red indicate groups simulated 

with cheating/aberrant behavior. 
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Figure 10. Scatterplot of mean estimated delta by mean PPoC value for interaction terms at 

Time 3. Circle sizes are proportional to group size. Circles shaded in red indicate groups 

simulated with cheating/aberrant behavior.  
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Conclusion 

Overall, this Bayesian HLM methodology appears to have great promise for detecting 

groups of individual demonstrating cheating or aberrant behavior. The group-level main and 

interaction effects, once standardized in δ statistics, provide a straightforward way to 

conceptualize group-level aberrance.  The PPoC provides additional insight into the probability 

of this aberrance being a non-zero effect. The combination of δ and PPoC values seems to be a 

reasonable way of achieving good detection power while maintaining very reasonable Type I 

error rate. Using some reasonable criteria, we have demonstrated how these statistics might be 

used to flag groups as potential cheaters. Detection of aberrance was very good for Times 2 and 

3, but quite low for Time 1. It appears that this is due to the nature of the simulation of 

aberrance. Aberrance at Time 1 made the growth trajectory overall look fairly flat, which tended 

to change the estimate of the group mean, but fail to detect the interaction effect. It is at least 

encouraging that these interaction effects were among the largest of those estimated, but overall 

the interaction effects at Time 1 were the smallest. Ultimately, if the baseline (Time 1) for the 

group mean has been affected, it may be very difficult to detect cheating and aberrance. 

Additional research into this phenomenon seems warranted. However, it also appears that if 

cheating or aberrance occurs at a time point after an established baseline, this methodology is 

very effective at flagging potentially cheating groups. For real data, one would expect these 

interaction effects to all be close to zero, if group- and time-level main effects were adequate to 

explain performance. However, for any analysis like this one, a statistical procedure can only 

produce a flag that implies aberrant performance, it can never prove that, for example, teachers in 

a school, are cheating.  Thus, this procedure, like any other, will still need to be validated by 
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personally investigating those schools which are flagged. The Bayesian HLM approach should 

be useful for providing more insight into the groups for which such investigations are warranted. 
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