Agentic AI in K-12: From Help Desk to Human Empowerment

Bob Roark

Date: November 2025

Executive Summary:

Restoring Time and Trust in K-12 through Agentic Al

Technology in education has reached a breaking point. Classrooms depend on stable connectivity, interactive displays, secure communications, and fast support. Yet, most school districts still rely on the same ticket-based Information Technology (IT) model created twenty plus years ago. When systems fail, teachers lose valuable instructional minutes, students lose focus, and administrators lose confidence. That lost time is the real crisis and it's exactly what Agentic Artificial Intelligence (AI) is designed to restore.

Every minute restored to instruction is a return on investment that no automation metric can fully quantify and that's precisely where Agentic AI begins delivering value.

Agentic AI offers a practical path forward (ServiceNow, 2025; Microsoft Tech Community, 2025). Unlike traditional automation, Agentic AI can interpret intent, learn from context, and act within safe boundaries. It does not replace staff. It empowers them by removing the repetitive friction that consumes their time.

This white paper outlines how kindergarten through 12th grade (K-12) IT organizations can responsibly transition from reactive service delivery to proactive experience management using Agentic AI, guided by the Grove Method for ITSM (IT Service Management) Excellence™ (Roark, 2025). The focus is not on technology for its own sake, but on restoring time, trust, and human capacity across education.

Disclosure and Copyright Notice

This paper reflects independent analysis and does not represent the official policies or plans of any specific district or organization. Opinions expressed are soley my own and do not express the views or opinions of my employer.

© 2025 Bob Roark. All rights reserved.

"The Grove Method for ITSM Excellence™," "Trust Delta™," and "Time Restored™" are registered trademarks of Bob Roark.

No part of this publication may be reproduced or transmitted in any form without prior written permission.

Portions of this document were developed with assistance from AI-enabled drafting tools under the direct authorship, review, and editorial control of Bob Roark. All final content and intellectual property remain human-authored.

Introduction

Technology has become the oxygen of modern learning. Every digital platform, projector, and network cable connects directly to a teacher's ability to teach and a student's ability to learn. Yet the systems designed to support this infrastructure were built for a different era. Most district IT teams still operate as if their job begins when something breaks (*Roark*, 2025).

This model worked when technology was limited to a few computers in a lab. It fails in a world where every device, classroom, and assessment depends on technology. The growth in digital tools has not been matched by growth in staffing or capability. Teams are leaner than ever but achieving diminishing returns (*Roark*, 2025).

Agentic Al introduces the opportunity to reverse that trend. By combining automation, reasoning, and decision-making, it allows systems to take meaningful action before people even notice a problem (*Raza et al., 2025; Narajala & Narayan, 2025*). The goal is not to remove the human touch, but to give it room to matter again. In K-12, that means returning time to teachers, stability to classrooms, and purpose to the people who support them.

The Current K-12 IT Reality

School IT departments are often the invisible backbone of education. They are responsible for tens of thousands of devices, hundreds of applications, and every phone, switch, and cable that connects them. Yet their structures, tools, and staffing ratios have remained largely unchanged for a decade.

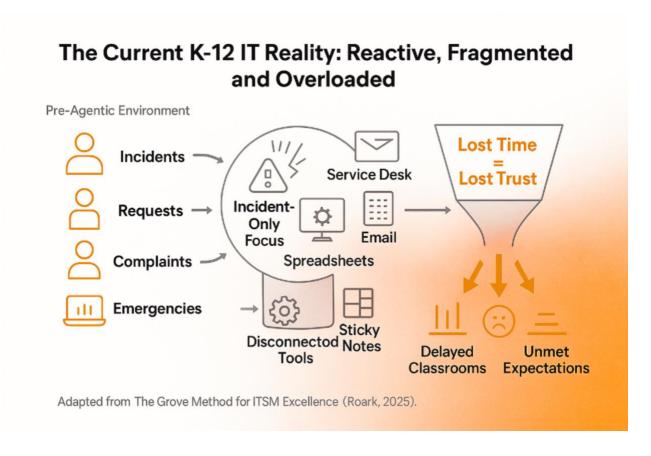


Figure 1. The Current K-12 IT Reality: Reactive, Fragmented, and Overloaded.

This diagram depicts the current state of IT in many K-12 districts, reactive service models, disconnected tools, and manual processes that drain time and trust from staff and students. Adapted from The Grove Method for ITSM Excellence (Roark, 2025).

Across districts, the average IT ratio is one technician per 800 to 1000 devices (*Gartner via Reuters*, 2025). A single outage can affect an entire grade level or even a school. Teachers wait for help, students sit idle, and administrators face complaints. The data tells the story clearly.

Common District Metrics:

- Average incident response: 36–48 hours
- Classroom impact per issue: 24 students
- Instructional time lost: 10 minutes per ticket
- Annualized loss: over 100,000 minutes of instruction

These statistics are not the result of apathy. They are the outcome of an inherited design. IT Service Management in education was built to fix problems, not prevent them. It rewards closing

tickets, not reducing them. The result is a reactive culture where every day feels like triage (Roark, 2025). This isn't just inefficiency, it's erosion of trust, time, and teacher confidence.

The Hidden Costs of Reactivity

Reactivity is expensive. Each repetitive incident consumes not only technician time but mental energy. Staff burn out. Morale drops. Teachers lose faith. Technology becomes something to survive instead of something to rely on.

The Grove Method identifies this as a "Trust Delta™," the gap between what users expect from IT and what they experience (*Roark, 2025*). The wider that gap becomes, the harder it is to close.

K-12 IT needs a model that scales with complexity. The answer is not more people or more tools. It is smarter systems that work *with* people instead of waiting for them.

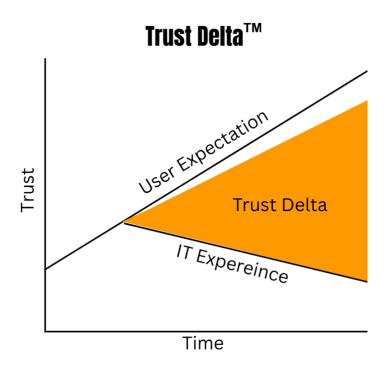


Figure 2. The Trust Delta™, Gap Between User Expectation and IT Experience.

This conceptual model illustrates how user expectations and IT performance diverge over time, creating a measurable "Trust Delta™." Adapted from The Grove Method for ITSM Excellence (Roark, 2025).

The Limits of Traditional Automation

Over the last decade, many districts have tried to modernize through automation and ticketing systems (*ServiceNow*, 2025). These have helped, but they only solved half the problem.

Modern ITSM platforms like ServiceNow and Freshworks (and many others) have begun introducing agentic capabilities, allowing limited reasoning and action within policy-defined boundaries. However, most education environments still rely on human input for detection, classification, and closure because their data, integrations, and governance models are not yet mature enough to enable full autonomy (ServiceNow, 2025; Microsoft Tech Community, 2025). In practice, today's automation is faster and smarter, but it's still largely human-supervised.

In other words, automation helps you climb faster but not higher. It speeds up the reactive process without changing its nature. That may be progress, but it is not transformation.

The missing ingredient is agency, the ability for systems to interpret intent, act independently within limits, and improve from experience (*Raza et al., 2025; Narajala & Narayan, 2025*). That is where Agentic AI enters.

Defining Agentic AI in Education

Agentic AI is more than another technical term. It describes a system that can perceive conditions, reason about them, and take action aligned with defined goals. It is built to collaborate, not control (*Raza et al., 2025*).

In a K-12 environment, Agentic AI could:

- Detect early signs of device failure or Audio Visual (AV) degradation
- Automatically restart services or reset configurations when thresholds are exceeded
- Reassign or close tickets that match known patterns
- Notify the right people with accurate context
- Learn from human corrections to improve over time

This does not remove people from the process. It frees them to work on what only humans can do, such as, empathize, communicate, plan, and design better experiences (*Narajala & Narayan*, 2025). The promise of Agentic AI is not replacement. It is restoration.

The Grove Method Implementation Path

Adopting Agentic AI is not a technical project, it's an organizational evolution. The Grove Method defines this path as a series of maturity stages that build trust, capability, and measurable outcomes over time (Roark, 2025). Each phase focuses on aligning people, process, and technology so that automation enhances, rather than replaces, human expertise. Each stage depends on clean data and consistent process documentation, the invisible infrastructure of intelligent automation.

The Grove Method Implementation Path: A Ten-Year Roadmap to Agentic IT Maturity

	Foundational (2026-2027)	Integrated (2028–2030)	Predictive (2031–2033)	Cooperative (2034–2035)
PEOPLE QQQ	Cross-train SD and Field on automation basics and KCS Stand up a small "automation guild" for shared learning Add Al literacy to onboarding	Shift SD to validation and exception handling Assign automation owners with KPIs Train field staff on remote triage and script execution	Create a small analytics and insights pod Field leads plan proactive site work from predictions CX manager coordinates cross-team readiness	Joint ops cadence with IT, Facilities, Instructional CX manager oversees experience and ethics governance Staff serve as Al trainers and playbook authors
PROCESS	Document top 50 incidents with clear resolution paths Standardize ticket categories, SLAs, and escalation Create a change approval checklist for automations	Convert repeat fixes into approved runbooks Add prevention tasks to weekly work plans Measure "Tickets Prevented" and "Time Restored"	Planned maintenance windows from trend alerts Root cause reviews tied to prevention backlogs Quarterly data quality sprints	Shared KPIs across departments for uptime and learning time Post-incident reviews include bias and impact checks Continuous improvement loop tied to budget planning
TECHNOLOGY	Enable AI copillots for summarization and routing Build low-risk runbooks for common fixes Start clean data efforts on assets and CMDB	Auto-classification and intent detection in ITSM Orchestrate multi-step fixes for common issues Telemetry feeding incidents and knowledge updates	Anomaly detection on devices and networks Early-warning alerts with recommended actions Automated grouping of work by site and asset	Agentic coordination across IT, Facilities, HR systems Closed-loop feedback into knowledge and automations Experience scoring feeds prioritization and funding

Figure 3. The Grove Method Implementation Path: A Ten-Year Roadmap to Agentic IT Maturity.

This model outlines the evolution of IT Service Management across four maturity phases, Foundational, Integrated, Predictive, and Cooperative, detailing key shifts in People, Process, and Technology that enable Agentic Al adoption in K-12 environments. Adapted from The Grove Method for ITSM Excellence (Roark, 2025).

In education, success depends less on how quickly districts deploy new tools and more on how intentionally they guide change. The Grove Method emphasizes incremental improvement: start

small, prove value, document outcomes, and expand with confidence (*Roark, 2025*). This disciplined progression allows teams to evolve from reactive support to proactive service, eventually achieving a balance where humans and systems cooperate to deliver seamless experiences.

The following stages outline how school systems can transition from today's manual operations to a future of predictive, collaborative, and autonomous service management, without losing the human touch that defines effective IT.

Stage	Years	System Capability	Human Role
Assistive	2025–	Al copilots recommend actions,	Service Desk staff validate responses,
	2027	summarize tickets, and	refine documentation, and ensure
		automate low-risk tasks.	accuracy.
Semi-	2028–	Al executes multi-step fixes such	Technicians approve automation logic,
Autonomous	2030	as printer rebuilds, account	monitor exceptions, and manage
		restorations, or AV resets.	escalations.
Predictive	2031–	Al anticipates outages using	Field Services shift to proactive
	2033	telemetry and past data,	maintenance and configuration
		initiating preventive work.	optimization.
Cooperative	2034–	Multiple AI agents coordinate	Managers govern performance, ethics,
	2035	across IT, Facilities, and HR to	and data quality; leaders focus on
		solve cross-domain issues.	service experience outcomes.

Table 1. Evolution of Al Maturity and Human Roles in IT Service Management.

This table illustrates how AI capabilities and human responsibilities evolve across stages of maturity, from Assistive through Predictive systems. As automation advances, the human role transitions from validation and documentation toward proactive maintenance and optimization. Adapted from The Grove Method for ITSM Excellence (Roark, 2025).

This is a 10-year maturity path, and we anticipate adjustments as AI and Technology evolve, but the foundation can begin today. Each phase builds confidence and trust Every success compounds learning. (ServiceNow, 2025; Microsoft Tech Community, 2025; Roark 2025).

The Human Experience

The most important outcome of Agentic AI is not efficiency, but humanity. When systems work better, people feel better. Teachers regain confidence. Students stay engaged. Technicians experience pride instead of fatigue.

This shift transforms IT from a complaint department into a strategic enabler of education (*Roark*, 2025). Staff roles evolve naturally:

- Service Desk analysts become hybrid experience specialists.
- **Field technicians** become predictive engineers focused on prevention.
- Managers become leaders of outcomes rather than traffic controllers.
- Directors evolve into governors of trust and service value.

When people spend less time reacting and more time improving, culture improves too. That is the real power of Agentic AI, not the code, but the confidence it restores.

Governance and Ethics

Public education cannot deploy Al casually (*Raza et al., 2025; Narajala & Narayan, 2025*). Every automation must be explainable, auditable, and equitable. The Grove Method's Al Governance Charter is built on five principles that protect trust while enabling progress.

Bias Monitoring Incident Review Oversight Accountibilty

Governance & Ethics Framework

Figure 4. Governance & Ethics Framework for Agentic Al in K-12.

This framework illustrates the continuous relationship between Policy, Oversight, and Accountability required for ethical Al governance in education. The inner components, Bias Monitoring and Incident Review, represent the

operational mechanisms that ensure transparency, safety, and trust. Adapted from *The Grove Method for ITSM Excellence* (Roark, 2025).

- 1. **Transparency:** All Al actions must be visible, logged, and reviewable.
- 2. **Accountability:** A human must remain in charge of all instructional-impacting or privacy-sensitive actions.
- 3. **Equity:** Automation benefits must reach every school equally, regardless of size or funding.
- 4. **Data Protection:** All data used for automation must comply with FERPA (Family Educational Rights and Privacy Act), COPPA (Children's Online Privacy Protection Act), Open Records Acts, and local privacy laws.
- 5. **Ethical Intent:** All exists to improve human work, not eliminate it.

The simplest way to think about it is this: Al should work like a trusted assistant, not an uninvited guest.

Readiness Roadmap for Districts

The move toward Agentic AI is not a race. It's a readiness journey, one that requires clarity, structure, and purpose before a single line of automation is deployed. Most districts don't fail because they lack technology; they fail because they lack alignment. Success in this new era depends less on what tools you buy and more on how you prepare your people, processes, and governance to use them responsibly.

READINESS ROADMAP

Agentic AI Readines Milestones for K12 IT Levels of Maturity

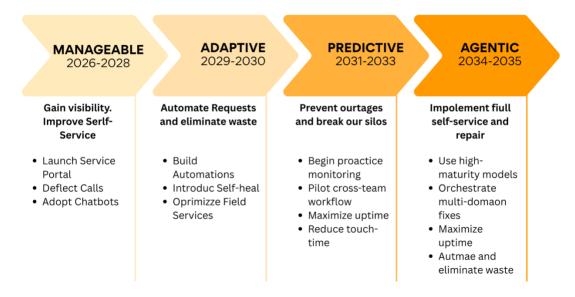


Figure 5. Readiness Roadmap for K-12 Agentic Al Maturity.

This roadmap illustrates the four stages of readiness, Manageable, Adaptive, Predictive, and Agentic, showing how districts progress from basic visibility and self-service to full automation and cross-domain orchestration. Adapted from The Grove Method for ITSM Excellence (Roark, 2025).

The readiness phase is about building trust, not replacing teams. It begins with understanding what you already have, documenting what you do every day, and identifying where technology can safely take over repetitive work. Agentic Al maturity depends on clean data, disciplined documentation, and consistent process design, without these foundations, even the most advanced system will fail to act intelligently. In most K-12 environments, that means shifting from "fix it when it breaks" to "know before it fails." (ServiceNow, 2025; Microsoft Tech Community, 2025).

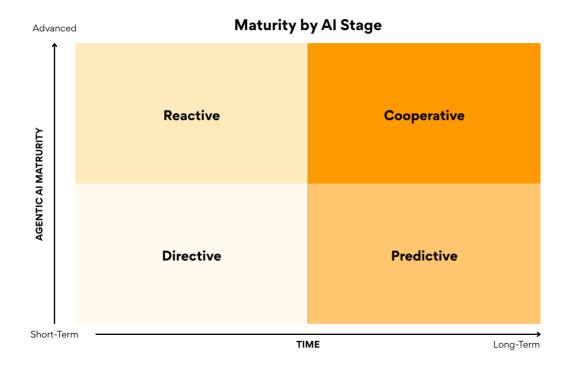


Figure 6. Maturity by AI Stage.

This quadrant model depicts the progression of Agentic AI maturity over time, moving from Reactive and Directive stages toward Predictive and Cooperative maturity. Each stage represents increasing alignment between human capability and AI-driven automation. Adapted from The Grove Method for ITSM Excellence (Roark, 2025).

Each quadrant tells the story of IT's relationship with automation. **Reactive** is where most districts start, solving problems only after they appear. **Directive** begins when AI starts lending a hand, automating simple fixes but still needing human supervision. **Predictive** means AI has learned the patterns; it spots trouble before it hits the classroom. **Cooperative** is the destination, where IT, Facilities, HR, etc., and Instructional teams work alongside Agentic AI as a trusted partner that restores time, prevents downtime, and deepens trust across the district.

This roadmap focuses on foundational readiness, the disciplined, low-risk steps every district can take now to modernize their IT culture without overcommitting resources or disrupting classroom operations. It prioritizes clarity before complexity and governance before automation (*Roark, 2025*). Each step strengthens your ability to adopt Agentic Al confidently, ethically, and with the full support of district leadership and staff.

The goal isn't to move fast. It's to move forward, deliberately, transparently, and together. K-12 districts can begin preparing now. The work is not technical at first. It is foundational.

1. Document what exists.

Build an accurate map of systems, assets, and dependencies. No Al system can act responsibly without clean data.

2. Automate the obvious.

Start with repetitive, low-risk tasks such as password resets or printer queues. Show measurable time savings.

3. Form an Al Governance Group.

Include IT, Human Resources (HR), Legal, and Instructional leaders to define boundaries and accountability early.

4. Train your people.

Build Al literacy, ethical awareness, and process thinking. Teach teams how to supervise technology rather than fear it.

5. Measure success in human terms.

Move beyond ticket counts. Track "minutes of instruction restored," "issues prevented," and "staff satisfaction."

The goal is readiness, not perfection. Districts that begin these steps today will be able to adopt safely as technology matures.

Agentic AI delivers measurable benefits, but its most meaningful return is not in dollars, it's in minutes. Every avoided incident gives a teacher time to teach instead of troubleshooting. Every self-healing device prevents an interruption that ripples across an entire classroom. Over the course of a school year, those small wins add up to thousands of hours of restored instructional time and hundreds of avoided frustrations.

These outcomes aren't theoretical. They occur because Agentic Al changes *where* time is spent. Traditional IT teams lose time to triage, escalation, and repetitive fixes. Agentic systems intercept many of those tasks before they ever reach a technician. They categorize issues automatically, route tickets to the right team, and apply proven fixes based on prior outcomes. That reclaimed time can then be redirected toward higher-value work: preventive maintenance, staff training, and continuous improvement.

Quantifiable Impact

Agentic Al delivers measurable benefits, but the most meaningful Return on Investment (ROI) is time. These outcomes collectively represent what the Grove Method defines as *Time*Restored™ the measurable return districts gain when people and systems stop reacting and start preventing (Roark, 2025). Every avoided incident gives a teacher a few minutes back. Every self-healing device prevents one more student from waiting.

Time Restored™ ROI Model

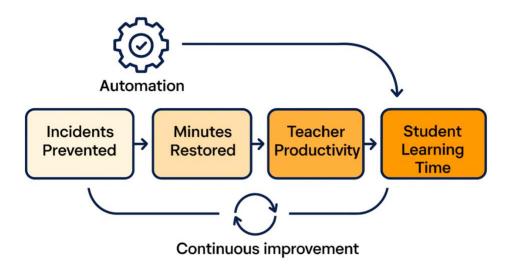


Figure 7. Time Restored™ ROI Model.

This model illustrates how automation converts incident prevention into measurable instructional value. Each step, from Incidents Prevented to Minutes Restored, Teacher Productivity, and Student Learning Time, creates a feedback loop of continuous improvement that enhances both operational efficiency and educational outcomes. Adapted from *The Grove Method for ITSM Excellence* (Roark, 2025).

Districts that adopt structured automation and early-stage agentic workflows typically observe:

- 30–50 percent fewer repeat tickets within three years.
 Repetition drops because known issues are captured, resolved once, and converted into automated responses or self-healing scripts.
- 50–60 percent faster resolution of common incidents.
 Contextual Al assistants summarize the issue, suggest next steps, and prefill data for technicians, eliminating unnecessary back-and-forth.

Reduced travel and overtime for field services.

Predictive insights identify failing devices before dispatch is needed, allowing grouped or scheduled repairs instead of reactive site visits.

• Improved morale and satisfaction among staff and users.

When systems work as expected, teachers stop submitting duplicate tickets, and technicians can focus on visible, high-impact work.

Quui	ntifiable Impact	
most impactful incidents before	ers tangible benefits, but perhaps the return is time restored" by preventing they happen and enabling self-healing antifiable benefits districts can expect	
30-50%	fewer repeat tickets within three years	
50-60%	faster resolution of common incidents	
	travel and overtime for	
Reduced	field services	

Figure 8. Quantifiable Impact of Agentic AI in K-12.

This figure summarizes the measurable benefits districts can expect from implementing Agentic AI, including reductions in repeat incidents, faster resolution times, and improved staff morale. The data represents modeled outcomes based on early ITSM automation benchmarks. Adapted from The Grove Method for ITSM Excellence (Roark, 2025).

These results mirror early findings from districts and enterprises piloting ServiceNow's Now Assist and Freshworks' Freddy Copilot, where automation cut routine workloads by nearly half when paired with strong governance and clean data (ServiceNow, 2025; Microsoft Tech Community, 2025). The key is that success scales with maturity, the better the data, documentation, and process discipline, the greater the return.

Qualitative Gains

The harder-to-measure value is trust. When classrooms stop losing time to technical interruptions, teachers begin to see IT as a partner rather than a barrier. That shift is cultural and cumulative. Over time, confidence replaces skepticism, collaboration replaces complaints, and technology becomes part of the learning rhythm rather than a disruption to it.

The Grove Method refers to this as Time Restored ™ (Roark, 2025), a measurable, human-centered metric that translates technical efficiency into educational impact. Each minute recovered from downtime is a minute returned to instruction, creativity, and engagement. The compounding effect is powerful: less frustration, stronger relationships, and a culture that values prevention over repair.

That is the true ROI of Agentic AI in education, not just the cost you save, but the time and trust you regain.

Funding and Sustainability

Having demonstrated the measurable and cultural impact of Agentic AI, the next step is ensuring it can sustain itself financially. This transformation does not require massive new budgets. It requires a disciplined investment in people before platforms. The most valuable resource districts already have is staff and the path forward begins by retraining and refocusing them, not by purchasing new systems (*Roark*, 2025).

The first phase of modernization is about capacity building through skill development. Service Desk and Field teams can be cross-trained in automation management, data hygiene, and root cause prevention. Those skills directly reduce recurring incidents and uncover opportunities to consolidate redundant tools and processes. As duplication drops, existing budget lines begin to free themselves.

Instead of redirecting funds from other departments, organizations, reclaim resources internally through three levers:

1. **Consolidate where overlap exists.** Streamline licenses, vendors, and tools that perform similar functions.

- 2. **Automate repetitive work.** Every hour saved through automation returns time for higher-value projects.
- 3. **Eliminate obsolete practices.** As workflows evolve, legacy processes and unnecessary steps can be retired, further reducing cost.

The Efficiency Flywheel

Consolidate

Goal: Streamline operations by reducing duplication. **Description:** Identify overlapping tools, redundant vendors, and duplicate licenses. Consolidation minimizes cost and simplifies support structures, freeing resources for innovation.

Eliminate

Goal: Retire outdated practices.

Description: Evaluate and remove legacy processes that no longer add value.

Simplifying workflows reduces operational drag, cuts expenses, and enables continuous improvement.

Automate

Goal: Eliminate repetitive, manual work. **Description:** Implement automation for routine tasks and ticket handling. Every automated process restores valuable time for higher-impact projects and improves staff productivity.

Figure 9. The Efficiency Flywheel

Originally developed by Bob Roark (2005) as part of his ITSM optimization framework, the Efficiency Flywheel illustrates the compounding effect of three continuous improvement drivers—Consolidate, Automate, and Eliminate—to restore capacity, reduce operational drag, and enable sustainable innovation.

These reclaimed efficiencies create a self-funding cycle. The time saved by automation is reinvested into staff training and continuous improvement. Over time, the district develops an adaptive workforce capable of sustaining Al-enabled operations without dependency on external consultants or new budget requests.

This approach builds financial credibility as well as technical capacity. It shows leadership that IT can modernize responsibly by training its people, simplifying what already exists, and turning efficiency into the currency that funds the next phase of growth.

Conclusion

Agentic AI will change the way schools manage technology, but only if leaders approach it responsibly. The Grove Method teaches that transformation is not about the tool, it is about trust (Roark, 2025). The future of IT in education will belong to districts that start preparing now, documenting systems, defining governance, and teaching people how to work alongside intelligent automation.

The goal is simple: restore time for teaching, reduce friction for staff, and rebuild confidence in technology. Agentic AI is not about replacing people. It is about reminding everyone why people matter most.

Every minute restored is a moment reclaimed for learning. That is the promise of Agentic AI, and it begins with leadership willing to see beyond the ticket.

Author:

Bob Roark

Creator of The Grove Method for ITSM Excellence™

References

Atlassian. (2025, February 28). *Al in action: The next chapter for Jira Service Management.* https://www.atlassian.com/blog/announcements/jira-service-management-agentic-ai

Freshworks. (2025). Freshservice Freddy AI: Smarter IT service operations. https://www.freshworks.com/freshservice/ai-itsm/

Gartner via Reuters. (2025, June 25). Over 40 % of agentic AI projects will be scrapped by 2027, Gartner says. Reuters. Retrieved from https://www.reuters.com/business/over-40-agentic-ai-projects-will-be-scrapped-by-2027-gartner-says-2025-06-25/

Microsoft Tech Community. (2025). From automation to intelligence: How generative AI is evolving ITSM in 2025. Retrieved from <a href="https://techcommunity.microsoft.com/blog/modern-service-management-blog/from-automation-to-intelligence-how-generative-ai-is-evolving-itsm-in-2025/4410326

Narajala, V. S., & Narayan, O. (2025). Securing agentic AI: A comprehensive threat model and mitigation framework for generative AI agents. arXiv. https://doi.org/10.48550/arXiv.2504.19956

Raza, S., Sapkota, R., Karkee, M., & Emmanouilidis, C. (2025). TRISM for agentic AI: A review of trust, risk, and security management in LLM-based agentic multi-agent systems. arXiv. https://doi.org/10.48550/arXiv.2506.04133

Roark, B. (2025). The Grove Method for ITSM Excellence: Lead high-output ITSM teams with Grove's Method (Grove Series for ITSM Excellence). Independently published. https://www.amazon.com/Grove-Method-ITSM-Excellence-High-Output/dp/B0F74DLB24

ServiceNow. (2025, May 6). *ServiceNow launches AI Control Tower at Knowledge 2025* [Press release]. Retrieved from https://www.servicenow.com/company/media/press-room/ai-control-tower-knowledge-25.html

ServiceNow. (2025). *Enterprise AI Maturity Index 2025* [White paper]. Retrieved from https://www.servicenow.com/content/dam/servicenow-assets/public/en-us/doc-type/resource-center/white-paper/wp-enterprise-ai-maturity-index-2025.pdf

ServiceNow. (2025). 7 agentic AI trends to watch for 2025. Retrieved from https://www.servicenow.com/products/ai-agents/agentic-ai-trends.html