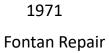


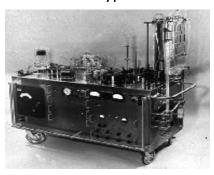
An Introduction to Adult Congenital Heart Disease

Dr Louise Coats
ACHD Consultant
Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust

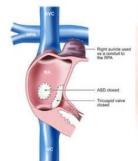
Blalock Taussig Shunt 1944

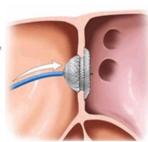

TOF Repair Lillehei 1954

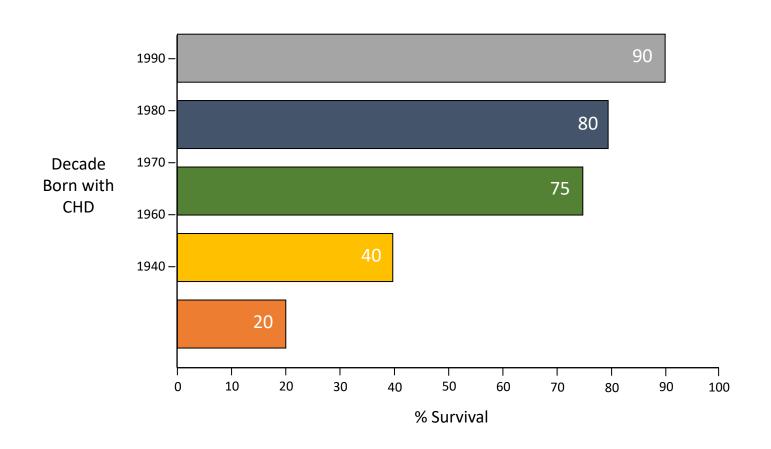
Arterial Switch (TGA) 1976


TPV 2007

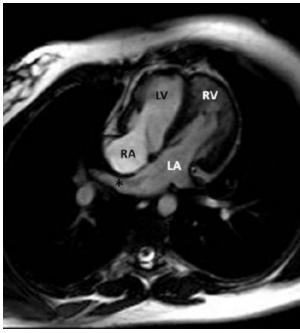
1953 Cardiopulmonary Bypass



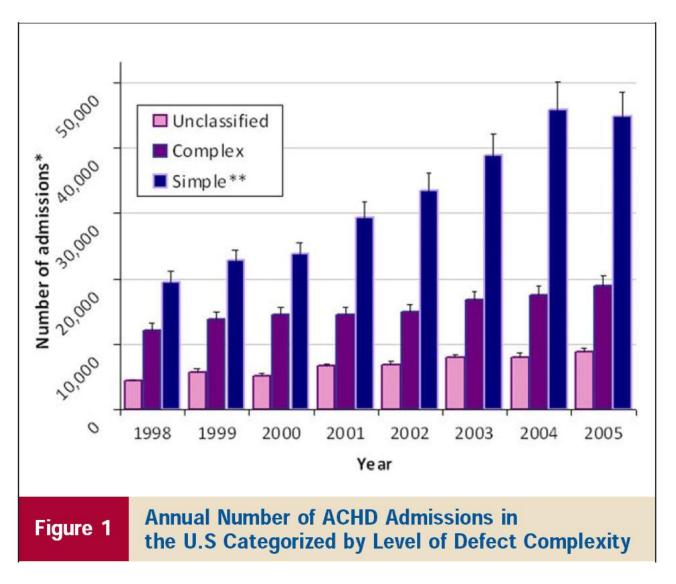

1989 ASD Device



A. Classical Fontan



Survival to 18 years of age with CHD


Sometimes diagnosed for first time in adult life.....

Increasing burden of disease

The Severity of ACHD

AP Classification

ANATOMY

I: Simple

Native: small ASD or VSD, mild PS

Repaired: PDA, secundum ASD, sinus venosus defect, VSD

II: Moderate Complexity

Ao-LV fistula, PAPVD, TAPVD, anomalous coronaries, PAVSD, CAVSD, congenital AV or MV disease, coarctation, Ebstein, RVOTO, primum ASD, >moderate PR/PS, branch PS, sinus of Valsava fistula/aneurysm, sub or supravalvular AS, straddling AV valve

Unrepaired: sinus venosus defect, moderate/large secundum ASD/PDA, VSD with associated anomaly and/or >moderate shunt

Repaired: tetralogy of Fallot

III: Complex

Double-outlet ventricle, interrupted aortic arch, pulmonary atresia, transposition of great arteries, truncus arteriosus

Single ventricle (including double inlet left ventricle, tricuspid or mitral atresia, hypoplastic left heart), unrepaired or palliated (Fontan)

Cyanotic congenital heart defect (unrepaired or palliated)

Other abnormalities of atrioventricular and ventriculoarterial connection (crisscross heart, isomerism, heterotaxy syndromes, ventricular inversion)

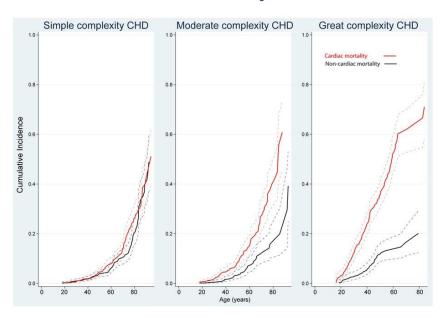
PHYSIOLOGY

Α

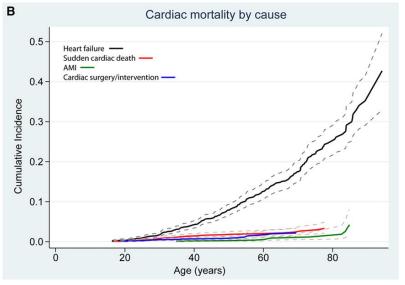
NYHA I, No hemodynamic, anatomic or arrhythmic sequelae, Normal exercise capacity, renal/hepatic and pulmonary function

В

NYHA II, Mild hemodynamic sequelae (aortic or ventricular enlargement/dysfunction), Mild valvular disease, Trivial or small shunt, arrhythmia not requiring treatment, Objective cardiac limitation to exercise


C

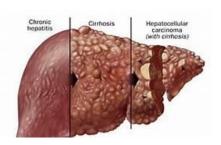
NYHA III, Significant valvular disease or ventricular dysfunction, moderate aortic enlargement, venous or arterial stenosis, mild/moderate hypoxemia/cyanosis, significant shunt, arrhythmias controlled with treatment, pulmonary hypertension (less than severe), end-organ dysfunction responsive to therapy


D

NYHA FC IV symptoms, severe aortic enlargement, Arrhythmias refractory to treatment, Severe hypoxemia (almost always associated with cyanosis), Severe pulmonary hypertension, Eisenmenger syndrome, Refractory end-organ dysfunction

Survival Prospects and Circumstances of Death

			Pat	ient'	s age	(yea	ars)		
	20	25	30	35	40	45	50	55	60
ASD	25	26	32	38	42	47	52	57	61
Valvar disease	29	31	36	40	45	49	54	59	63
VSD	28	30	36	40	44	49	53	59	63
Aortic Coarctation	32	33	38	43	47	52	56	62	66
AVSD	33	34	39	44	48	52	57	62	66
Marfan syndrome	37	38	42	46	50	54	59	64	68
Tetralogy of Fallot	37	38	42	47	50	54	60	65	69
Ebstein anomaly	42	43	47	51	54	59	63	68	72
Systemic RV	46	48	51	55	59	63	67	72	76
Eisenmenger syndrome	57	58	62	65	69	73	77	81	84
Complex CHD	58	59	63	67	70	74	78	82	85
Fontan	64	65	68	72	75	78	82	86	91


- Low complexity ACHD have a higher burden of CV risk factors and cardiac events ²
- 11-21% SCD <35 years due to ACHD ³

³ Lynge et al. Circulation AE 2018

Extra-cardiac complications in ACHD

LUNG

Restrictive lung disease Pulmonary hypertension Pulmonary hemorrhage Plastic bronchitts

LIVER

Congestive hepatopathy Cardiac cirrhosis Fontan associated liver disease

IMMUNOLOGY/ INFECTIOUS DISEASE

Protein-losing enteropathy Infective endocarditis Pneumonia Brain abscess

HEMATOLOGY

Secondary erythrocytosis/Iron deficiency/Hyperuricemia (Cyanotic CHD) Thromboembolism

ONCOLOGY

Low-dose ionizing radiation and malignancy Hepatocellular carcinoma Age-appropriate cancer screening

PSYCHOSOCIAL

Depression Anxiety Neurodevelopment deficits

ENDOCRINE

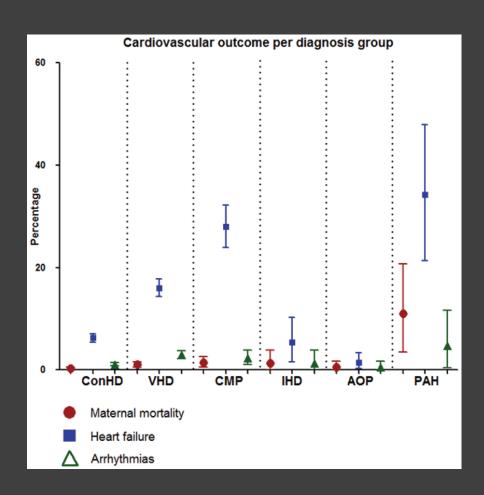
Thyroid
Calcium hemostasis/Bone health
Obesity/Metabolic syndrome
Diabetes
Dyslipidemia

RENAL

Chronic kidney disease Cardiorenal syndrome

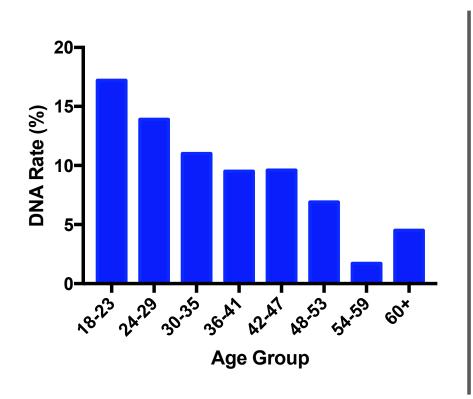
VASCULAR

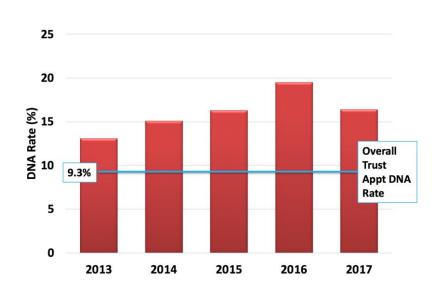
Cerebrovascular disease Peripheral venous/arterial disease Aortopathy Endothelial dysfunction Hypertension



Pregnancy in women with congenital heart disease

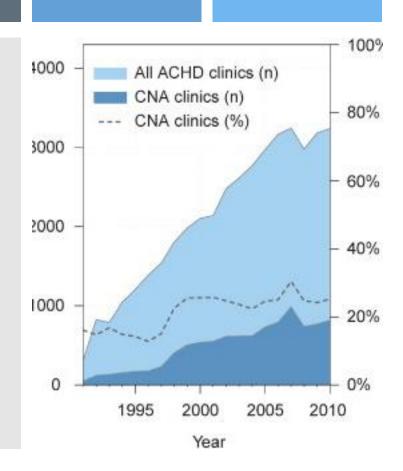
- Majority tolerate pregnancy well
- Specialist care best provided by MDT
 - ACHD/heart failure cardiology, obstetrics
 - Haematology, neonatology, anaesthesia and genetics
 - Timely counselling essential
- Team should be involved early in pregnancy in order to plan antenatal care, including delivery and postpartum follow-up



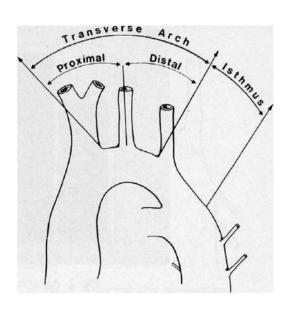

Lesion specific estimates

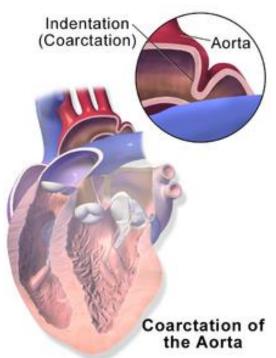
WHO 1	WHO II	WHO III	WHO IV
Uncomplicated, small or mild PS, VSD, PDA MVP with no more than trivial MR Successfully repaired simple lesions, e.g. ASD, VSD, PDA, APVR Isolated ectopic beats	cardiac and preconception of	Mechanical valve Systemic RV Fontan Cyanotic heart disease Other complex congenital lesions Aortic dilatation 40–45 mm in Marfan 45–50 mm in aortic disease associated with bicuspid aortic valve eed expert joint d obstetric counselling, and at the antenatal	PAH of any cause Severe systemic LV dysfunction (LVEF<30%) Previous PPCMP with residual LV dysfunction Severe symptomatic AS, severe MS Native severe coarctation Marfan and root > 45 mm Fontan with complications Early contraception advice should be provided Termination should be discussed if pregnancy occurs
		rtum period	

Non-Attendance


NUTH Data

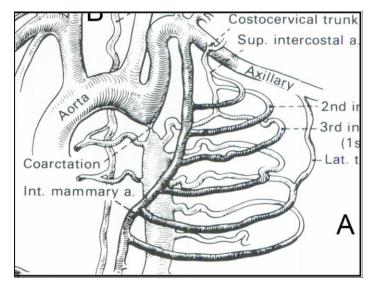
ACHD non-attendance associated with higher mortality

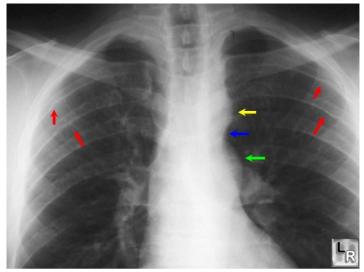

- Risk factors
- non-white ethnicity
- previously missed clinic appointments
- lower socioeconomic status


Kempney et al. Int J Cardiol 2016

Coarctation of the Aorta

"constricted aortic segment comprising localized medial thickening, with some infolding of medial and neointimal tissue"


- Juxtaductal
- Just distal to left subclavian
- Shelf like or membranous
- Discrete or long segment
- Heterogeneous



Part of a generalized arteriopathy

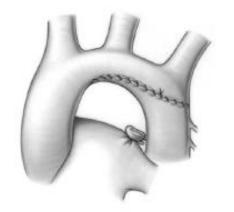
Coarctation of the Aorta

- 5-8% CHD (30% simple, 30%VSD, 40% complex)
- Bimodal presentation
 - Early life: CHF
 - Late life: 个BP, murmur, headache, epistaxis, ICH
- BAV (50%)
- Turners (X0) 15-20%
- Association with berry aneurysms (10%, ↑age)

Indications	Classa	Levelb
All patients with a non-invasive pressure difference >20 mmHg between upper and lower limbs, regardless of symptoms but with upper limb hypertension (>140/90 mmHg in adults), pathological blood pressure response during exercise, or significant LVH should have intervention	ı	С
Independent of the pressure gradient, hypertensive patients with ≥50% aortic narrowing relative to the aortic diameter at the diaphragm level (on CMR, CT, or invasive angiography) should be considered for intervention	lla	С
Independent of the pressure gradient and presence of hypertension, patients with ≥50% aortic narrowing relative to the aortic diameter at the diaphragm level (on CMR, CT, or invasive angiography) may be considered for intervention	IIb	С

Options for treatment

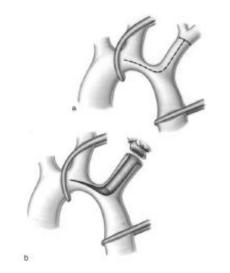
- 1. Percutaneous
- a) Balloon Angioplasty
 - b) Stent

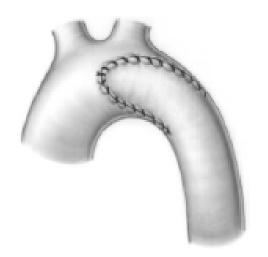

Treatment of choice in adult native CoA with appropriate anatomy

2. Surgical

Indications for Intervention

End to End Anastomosis




Pro: excise ductal tissue, hypoplastic segment

Cons: circumferential scar,

anastomosis tension

Reverse Subclavian Flap Technique

Pro: Tension free anastomosis, less dissection, growth, partial scar Cons: residual ductal tissue, arch hypoplasia, limb growth

Natural history of coarctation of the aorta

Maurice Campbell

From the Cardiac Department, Guy's Hospital, London S.E.I, and the Institute of Cardiology, London W.I

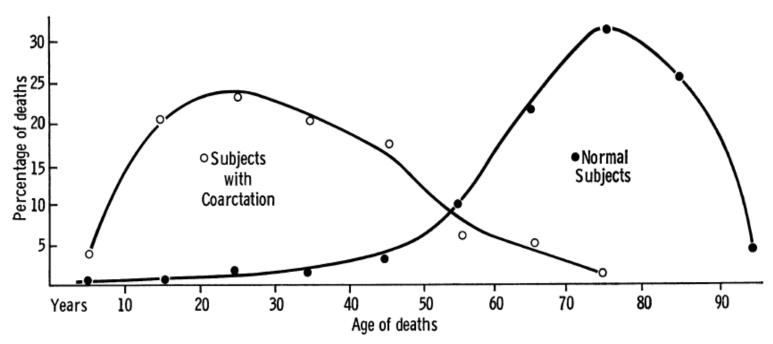
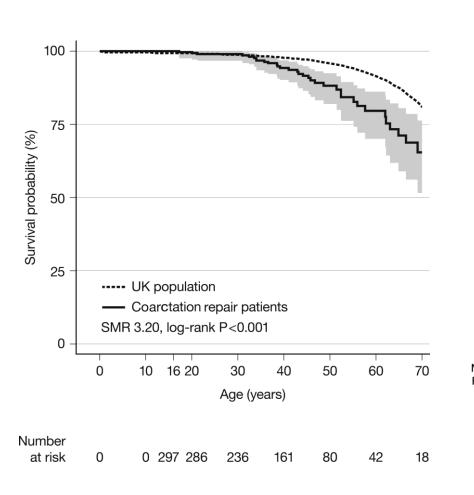
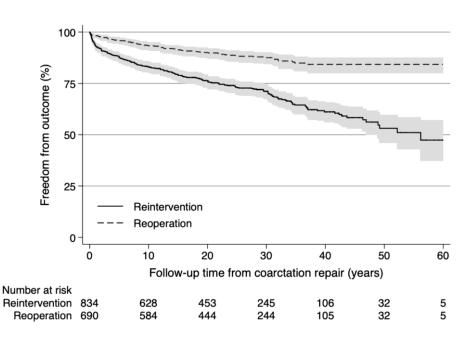
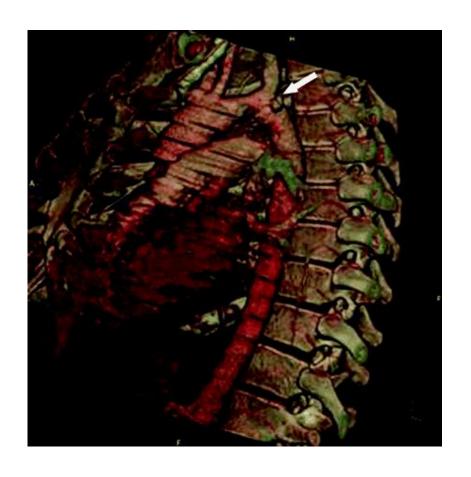
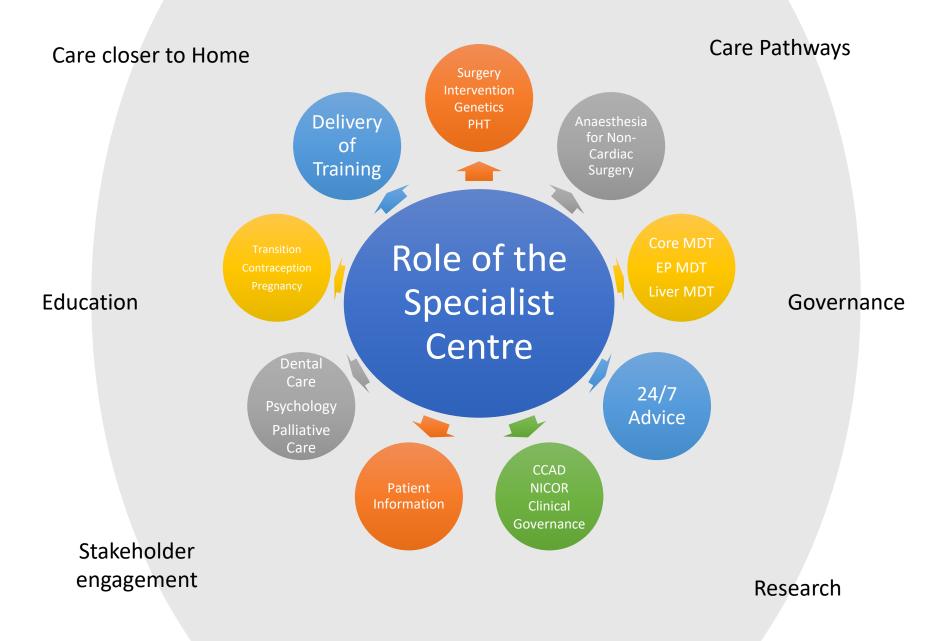




FIG. I The distribution of deaths by age, excluding deaths in the first year of life. In coarctation on the left and in normal subjects on the right, there is relatively little overlapping. For coarctation, the more rounded curve from reported necropsies is shown but the flatter curve from my calculations from deaths of patients under observation is similar (see Fig. 2).


Long-term mortality and cardiovascular burden for adult survivors of coarctation of the aorta

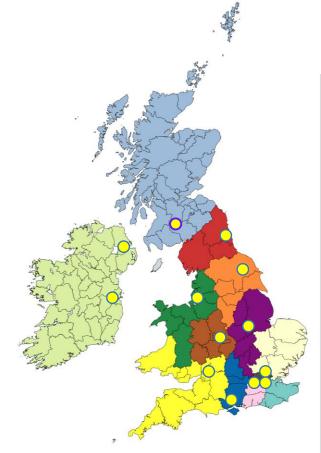
Survivors of repair: fixed not cured

- Recoarctation
- Late aneurysm (rupture)
- Hypertension
- Accelerated coronary disease
- Premature cerebrovascular disease
- High incidence of BAV →
 AVR


Require long term, interval 3D imaging to screen for aneurysm or re-coarctation

The Pregnant Mum with Coarctation

- Higher miscarriage rate
- Placental insufficiency
- Higher rates of hypertensive disorders (x4)
- Higher rate of LSCS (Limit the second stage)



The Wider Network

NHS **England**

The CHD Operational Delivery **Networks**

Thank You

