Sleep and Stroke

Glen P. Greenough M.D. Associate Professor of Neurology and Psychiatry (Sleep Medicine) Dartmouth Medical School

Objectives

- 1. Understand what sleep apnea is
- 2. Understand the relationship between sleep apnea and stroke.
- 3. Understand the relationship between insomnia and stroke

Why Sleep Apnea and Stroke?

Sleep Apnea

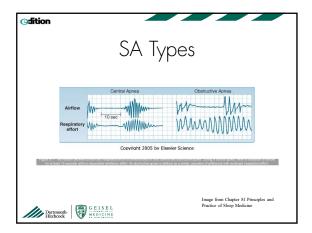
 One billion people world wide

- 80 million people world
- · Leading cause of adult disability

Sleep Apnea and Stroke

Sleep apnea is present in > 50% of stroke survivors

wide



Sleep Apnea (SA)

- Sleep related breathing disorders composed of the following events:
 - Apneas: Cessation of breathing and/or
 - Hypopneas: Partial reduction in airflow
- Two types of sleep apnea:
 - Central (CSA)
 - Obstructive (OSA)

SA Severity

• Apnea and Hypopnea Index (AHI) = total of the apneas and hypopneas noted per hour of sleep.

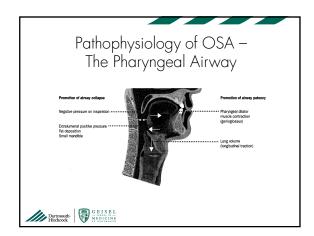
AHI	Severity
5 to < 15	Mild
15 to < 30	Moderate
30 or more	Severe

OSA ICSD 3TR Definition

- Repetitive episodes of complete (apnea) or partial (hypopnea) upper airway obstruction occurring during sleep.
- These events may lead to <u>arousal</u> from sleep and/or desaturation.

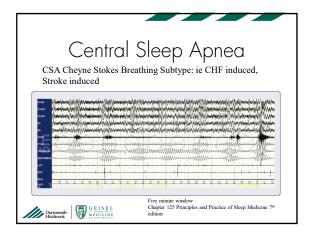
Epidemiology of OSA

- Incidence in United States approximately 8% of population.
 - Men more commonly than women
- Certain subpopulations at increased risk
 - le Stroke, Downs syndrome
- · Obesity not necessary for diagnosis


Symptoms of OSAS

- Nighttime
 - Snoring
 - Witnessed apneas
 - Dyspnea upon awake
 - Restlessness
 - Nocturia
 - Diaphoresis
 - Reflux

- Daytime
 - Sleepiness
 - Fatigue
 - Depression
 - · Poor concentration
 - Inattention
 - Morning headaches
 - Decreased Libido


CSA ICSD 3TR Definition

- Repetitive episodes of complete (apnea) or attenuated (hypopnea) drive to breathe during
- These events may lead to arousal and/or desaturation.
- · Two main types:
 - Cheyne-Stokes Respirations (CSR)
 - · Ataxic Breathing
 - Either type can be seen after a stroke

Central Sleep Apnea CSA Ataxic Subtype: ie Opiate induced Five minute window Chapter 125 Principles and Practice of Sleep Medicine 7th edition Dartmouth-Hitchcock MEDICINI

Sleep Apnea and Stroke

Frequency of SA Post Stroke

- SA is common post stroke
- Meta analyses by Seiler (2019) on the frequency of SA post stroke
 - SA defined as AHI > 5
 - SA of any severity seen in 71% of patients
 - Severe SA seen in 30% of patients

What Type of SA Post Stroke

- OSA is the most common form of SA post stroke
- Frequency of CSA post stroke is 8-12% (Seiler 2019, Dong 2018)
 - Lack of scoring of central hypopneas may lead to an underestimation of central sleep apnea frequency

Course of Post Stroke SA

- Prospective longitudinal study of sleep apnea post stroke (Ott 2020)
- Of patients with SA in the acute phase, 91% still had SA at the three month mark.

Course of Post Stroke SA OH 2020

		3-months follow-up				
0	ę.	No-SDB	OSA	CSA	Total	
Acute phase	No-SDB#	10 (66.7%)	4 (26.7%)	1 (6.7%)	15 (14.4%)	
	OSA¶	7 (9.9%)	56 [78.9%]	8 [11.3%]	71 (68.3%)	
	CSA1	1 (5.6%)	9 (50%)	8 (44.4%)	18 (17.3%)	
	Total	18 (17.3%)	69 (66.3%)	17 (16.3%)	104	

- 33% of survivors who had <u>no</u> SA at baseline had SA at 3 months
- 50% of survivors who had CSA at baseline had OSA at 3 months

Clinical Implications

- Consider re-evaluation after 3 months if diagnosed with SA in acute phase.
 - Why? To assess for presence, severity and type of

Diagnosis

- Screen stroke patients for SA:
 - Ask about snoring, apneas
 - Screening Questionnaires
 - le Stop Bang
 - · Screening questionnaires have a high sensitivity and low specificity in stroke patients (Takala 2018)

When to Test for SA

- European guidelines: Recommend evaluation for and treatment of SA in the acute phase of stroke (Bassetti 2020)
- AHA guidelines: Do not recommend evaluation in the acute phase

Why the difference?

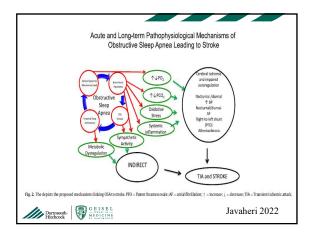
- SA may improve after the acute stroke period so delaying testing would allow for identification of patients with more stable/persistent SA.
 - This assumes there is no benefit to treatment of SA in the acute phase.
- There is an assumption in the US that acute stroke patients will not tolerate SA therapy

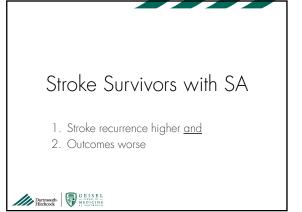
How to Diagnose

- · AASM recommends in lab PSG post stroke but access problematic
 - PSG in lab better at distinguishing CSA and OSA
- Baillieul et al (2022) suggest use of a HST in the acute stroke period unless significant co-morbidies present (ie COPD or CHF)

Chicken or the Egg?

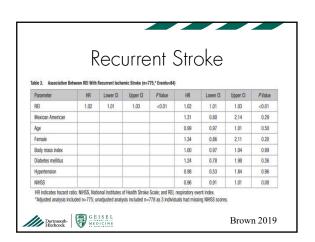
• Is OSA the <u>cause or the consequence</u> of stroke?




OSA = Stroke Risk Factor

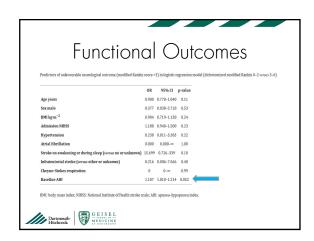
- Stroke severity, lesion topography and cause do not generally correlate with severity or type of sleep apnea.
- Frequency of sleep apnea <u>same</u> in stroke and TIA patients

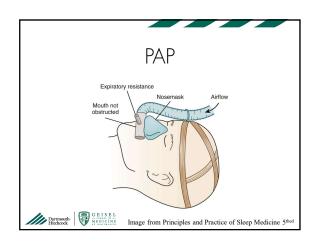
OSA Consequences						
Effect	Magnitude (odds ratio)	Reference				
Neurocognitive						
MVAs	7	Tehren-Santos				
Occ. accidents	2.2	Lindberg				
<u>Cardiovascular</u>						
Prevalent hypertension	1.2 - 1.4	Nieto				
Incident hypertension	1.3 - 2.9	Peppard				
Coronary disease	1.3 - 2.3	Shahar, Hung				
Stroke	1.6	Shahar				
Congestive heart failure	2.4	Shahar				
Dartmouth-Hitchcock GEISEL						

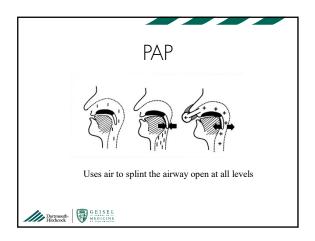


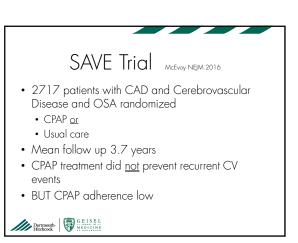
Recurrent Stroke

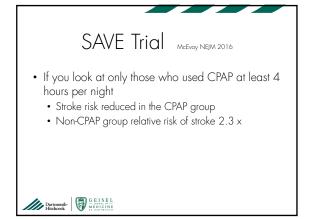
- Population based prospective cohort of 842 patients with ischemic stroke
- Association between sleep apnea (REI > or = 10) and recurrent ischemic stroke after 591 days
 - But not all cause mortality
 - See next slide

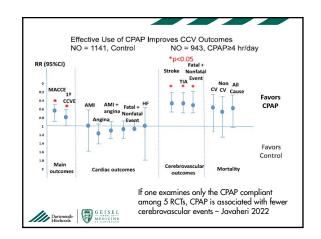



Functional Outcomes


 Prospective study of 165 patient with stroke shows an association between AHI and neurological outcome as assessed by the Rankin scale at 3 months (Ott 2019)



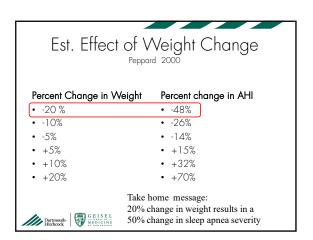


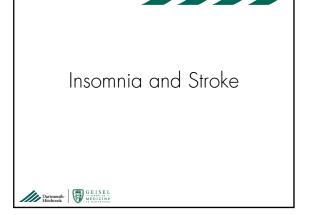


Does PAP Improve Outcomes in Stroke?

PAP and Outcomes

- Pooled data from 5 studies with 400 ischemic stroke patients with OSA
 - Better short term neurological improvement with CPAP
- · Adquately powered RCT needed


Dartmouth Hitchcock


| GEISEL | Tsivgoulis G etal Stroke 2017

Non-PAP OSA Treatments

- Oral appliance
- Surgery
- Inspire
- Not studied in stroke populations

Dartmouth-Hitchcock GEISEL

Insomnia

• The persistent difficulty with sleep initiation or maintenance that is associated with concern, dissatisfaction or perceived daytime impairment, such as fatigue... (ICSD3TR)

Insomnia in Stroke Survivors

Insomnia is present in 50% of stroke survivors (Palomaki et al. Cerbrovascular Dis 2003)

Insomnia (Sterr 2018)

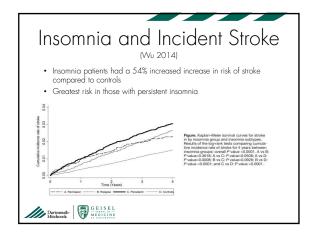
- Sleep study 12 months post stroke in right hemispheric stroke patients compared to age and sex matched controls
 - Stroke patients had worse sleep (longer <u>sleep latency (p=0.035)</u>, lower sleep <u>efficiency (p=0.018)</u>, increased WASO (p=0.014))
 - No difference in sleep apnea
 - Lesion size did <u>not</u> correlate with these variable

Sleep parameters	Patients	Control	difference	
"Sleep latency (SL; Time to fall asleep after lights off)	23.9 ± 4.01	15.9 ± 1.96	8.0	
Sleep period time (SPT; sleep onset to awakening (incl. wake))	497±13.64	475.4 ± 12.6	21.6	
Total sleep time ("TST; Time spend asleep (i.e. SPT- wake))	394.3 ± 14.49	403.3 ± 10.13	-9.0	
Sleep efficiency (SE; % asleep as a function of time in bed)	72.0 ± 2.67	79.1 ± 1.97	-7.1	
Wake since sleep onset (WASO; Time spent awake after sleep initiation)	107.2 ± 10.18	72.1 ± 8.90	30.6	
% N1; % stage 1 in SPT	15.4 ± 1.88	13.3 ± 1.98	2.1	
% N2; % stage 2 in SPT	45.5 ± 2.54	49.4 ± 2.51	-3.9	
% N3 (slow wave sleep; % stage 3 in SPT)	1.4±0.46	4.0 ± 1.84	-2.6	
% REM (rapid eye movements; REM sleep in SPT)	17.2 ± 1.01	18.3 ± 1.15	-1.1	

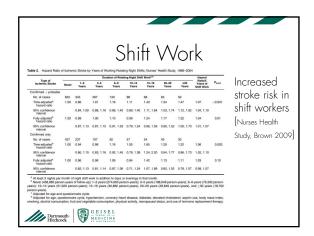
Table 1. mean and standard error of sleep stage characteristics; "time in minutes.

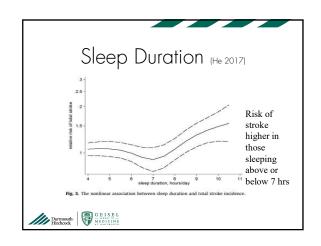
Insomnia Treatment

• Cognitive behavioral therapy for insomnia (CBTI) effective post stroke in 5 patients (Herron 2018)


Case	Sleep diary parameter	Pre-treatment	Post-treatment	Post minus pre	Follow-up
PI	SOL (min)	300 [†]	75†	-225	2101
	SD (min)	180°	2107	+30	2007
	SE (%)	37.51	55.71	+17.2	43.9°
P2	SOL (min)	32.1	14.3*	-17.8	17.5*
	SD (min)	402.9**	419.3**	+16.4	410**
	SE (%)	74.6*	85.8*	+11.2	84.8"
P3	SOL (min)	115†	51.4*	-63.6	80°
	SD (min)	2871	3341	+47	3301
	SE (%)	57.1	74.31*	+17.2	70.7
P4	SOL (min)	601	351*	-25	52 [†]
	SD (min)	3851+	415**	+30	450**
	SE (%)	80.6**	83.41*	+10.4	91*
P5	SOL (min)	10°	13.6°	+3.6	11.9*
	SD (min)	445**	462*	+17	462*
	SE (%)	89.1*	96.2"	+7.1	94.9"

Dartmouth-Hitchcock GEISEL


Insomnia as a Stroke Risk Factor



Bibliography

- Baillieul S. Et al. Sleep apnoea and ischaemic stroke: current knowledge and future directions. Lancet Neurology 2022;21:78-88.
- Khot S and Morgenstern LB. Sleep and Stroke. Stroke 2019 June; 50(6): 1612-1617.
- Ott SR. Et al. SAS Care 1: sleep-disordered breathing in acute stroke and transient ischemic attack – prevalence, evolution and association with functional outcome at 3 months, a prospective observational polysomnography study. ERJ Open Res 2020; 6:00334-2019.

