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KEY POINTS

! For most patients with otosclerosis, audiologic biomarkers include reduced middle ear
compliance as revealed by tympanometry, and a 10- to 15-dB reduction in sound trans-
mission via bone conduction most often in the vicinity of 2000 Hz (known as Carhart
notch).

! Wideband acoustic immittance is an effective technique in identifying middle ear pathol-
ogies, such as otosclerosis; it can provide all the useful information that could be obtained
from conventional and multifrequency tympanometry and additional information on the
transfer of energy into the middle ear system across much wider range of frequencies.

! Middle ear resonance frequency shifts to higher frequency regions in most of the otoscler-
otic ears.

! In addition tomiddle ear ossicular surgery, hearing aids and implantable hearing devices are
alternative approaches for the management of hearing loss in patients with otosclerosis.

! Tinnitus sound therapy and cognitive behavioral therapy are successfully used for the
management of tinnitus in the otosclerotic population.
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INTRODUCTION

Formany otologists and audiologists, otosclerosis is not a puzzling condition anymore.
Advances indiagnostic and therapeutic procedures haveprovidedavast numberof pa-
tients with otosclerosis with proper management. This article is designed in a fashion
that enables otologists in better diagnosis and management of otosclerosis with the
use of audiologic procedures. The accuracy of audiometric air-bone gap, appropriate
use of masking techniques, and immittance measurements can completely influence
the decisions made by otologists for the surgical management of otosclerosis. Otolo-
gists rely on the precision of the audiologic results and determination of the degree of
the conductive component. Therefore, a precise audiologic work-up is a crucial part
of thediagnostic protocol for otosclerosis. This article reviews theaudiologic diagnostic
test battery and the audiologic management of auditory effects of otosclerosis.

AUDIOMETRIC PATTERNS

As with other middle ear disorders, otosclerosis reduces sound-related energy pass-
ing from the tympanic membrane to the inner ear. Fixation and resultant stiffening of
the ossicular chain almost always produces a hearing loss, particularly for lower-
frequency sounds. The characteristic pattern of hearing loss in otosclerosis is useful
in diagnosing the disease.1–3 The diagnostic value of hearing assessment is enhanced
when such test procedures as pure tone audiometry, tympanometry, and acoustic re-
flexes are combined into a test battery. Indeed, for most patients with otosclerosis, a
unique pattern of findings for an appropriate collection of auditory tests almost always
contributes to early and accurate diagnosis. Basic hearing test findings in patients with
otosclerosis are summarized in Table 1.

Table 1
Patterns of basic auditory findings in patients with the diagnosis of otosclerosis

Procedure Findings

Pure tone audiometry

Air conduction Hearing loss greater for low frequencies.

Bone conduction Apparent decrease in bone conduction thresholds sometimes with a
notching deficit at 2000 Hz (Carhart notch). Actual bone
conduction hearing is typically normal.

Audiometric Weber
test

Perception of low-frequency pure tone stimuli in the ear with
conductive hearing loss.

Sensorineural acuity
level test

Presence of an air-bone gap and confirmation of normal bone
conduction hearing.

Acoustic immittance measures

Tympanometry Shallow type A tympanogram reflecting increased stiffness of the
ossicular chain (see immittance measurement section for further
discussion).

Acoustic reflexes Absence of stapedial acoustic reflex activity even in patients with
minimal air-bone gap and conductive hearing loss. Atypical
acoustic reflex pattern in patients with very early subclinical
otosclerosis.

Otoacoustic emissions Otoacoustic emissions cannot be detected in patients with
otosclerosis and conductive hearing loss. Recovery of detectable
otoacoustic emissions is possible in patients following
microtraumatic stapedotomy.
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Representative pure tone audiometry findings for one ear of a patient with otoscle-
rosis are shown in Fig. 1. There is a conductive hearing loss with considerably poorer
hearing sensitivity for air versus bone conduction hearing. Bone conduction hearing is
generally normal with the exception of a distinct notch-like decrease in bone conduc-
tion thresholds in the audiogram region of the 2000 Hz. The horizontal dotted line
indicates actual bone conduction hearing whereas the bone conduction thresholds
reflect an apparent deficit in sensory function. “Mechanical modifications” and effects
of middle ear resonant frequency in bone conduction hearing associated with stapes
fixation in patients with otosclerosis have been appreciated since the 1940s (dis-
cussed later). Indeed, normal bone conduction hearing sensitivity is unusual for pa-
tients with otosclerosis. Multiple theories have been offered for the negative effect
of middle ear abnormalities on the response to bone conduction stimulation. However,
evidence and agreement in support of a single mechanism are lacking.
Named after the well-known audiologist who first described it in detail,1,4 Carhart

notch has for more than 60 years been one of the most recognizable audiometric fea-
tures of otosclerosis. Carhart1 described an average decrease in bone conduction
thresholds of 5 dB at 500 Hz, 10 dB at 1000 Hz, 15 dB at 2000 Hz, and 5 dB at
4000 Hz, as illustrated in Fig. 1.
More recent studies raise three general questions about the diagnostic value and

specificity of a notching deficit in bone conduction thresholds at 2000 Hz.5–8 First,
bone conduction hearing thresholds are often decreased also at other test frequencies
in patients with the diagnosis of otosclerosis. Researchers have observed for patients
with the diagnosis of otosclerosis the possibility of a notching deficit in bone conduc-
tion thresholds in the low-, mid-, and high-frequency region, not just at 2000 Hz.9,10

Second, Carhart notch at 2000 Hz is not invariably observed in patients with the
diagnosis of otosclerosis or fixation of the ossicular chain. A group of scientists re-
ported a 2000-Hz notch in bone conduction thresholds for only 31% of 102 patients

Fig. 1. Typical air and bone conduction hearing threshold patterns for a patient with
otosclerosis. Notice the appearance of Carhart notch in bone conduction hearing at
2000 Hz. The dotted line indicates true bone conduction hearing or “cochlear reserve.”
(Courtesy of James W. Hall III, PhD, Salus University, Elkins Park, PA.)
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with stapes fixation.7 Finally, related to this second point, patients with etiologies for
conductive hearing loss other than otosclerosis may show a notching deficit in bone
conduction thresholds at 2000 Hz. Studies have reported the presence of Carhart
notch in one-third of a series of 75 patients with congenital aural atresia.8 Carhart
notch pattern was shown only for 30% of patients with malleus or incus fixation and
for 26% of 19 patients with detachment or discontinuity at the malleus and incus joint.7

The resonant frequencies of the middle ear and particularly the ossicular chain seem
to be in the vicinity of 2000 Hz, which is potentially why a reduction at 2000 Hz is seen
in a good number of patients with stapes fixation as seen in otosclerosis.4,7,8 In
advanced cases of otosclerosis, conductive hearing loss develops into mixed hearing
loss. Additionally, in cases with cochlear otosclerosis, moderate to profound sensori-
neural hearing losses are commonly observed in clinical practice.
Two additional pure tone hearing tests deserve mention because they sometimes

contribute to the accurate assessment of auditory status in patients with otosclerosis.
One is the audiometric Weber test and the other procedure is the sensorineural acuity
level or sensorineural acuity level test.2,3,11,12 The sensorineural acuity level technique
provides valuable clinical information and plays a unique role in clinical audiology
when performed with insert earphones and used as a supplement to conventional
bone-conduction measurements for confirming ear-specific information on sensory
hearing thresholds (see Table 1).
As summarized in Table 1, three other auditory findings are consistent with fixation

of the ossicular chain and typical of patients with otosclerosis, in addition to the
conductive hearing loss and Carhart notch. One is a shallow type A tympanogram,
referred to as type As, which reflects abnormal restriction of the ossicular chain (dis-
cussed later).3,13 A second typical finding is the absence of normal acoustic reflex ac-
tivity, even for patients who have little evidence of conductive hearing loss with pure
tone audiometry.2,3 Indeed, the presence of acoustic reflex activity at expected inten-
sity levels, that is, about 85 dB for pure tone stimuli, essentially rules out fixation of the
ossicular chain and otosclerosis. Third, word recognition scores in quiet are good or
excellent in most patients with otosclerosis, even in those with some apparent deficit
in bone conduction hearing thresholds.
We conclude this discussion of auditory findings in otosclerosis with a few com-

ments about the possible application of otoacoustic emissions (OAEs). There is a gen-
eral consensus that OAEs are not recordable in patients with middle ear dysfunction
including those with fixation of the ossicular chain and otosclerosis. However, several
recent published papers describe a potential role for OAEs in the evaluation of auditory
function following “microtraumatic stapedotomy.”14,15 Although results are inconsis-
tent among studies and variable among patients, there are reports of the emergence
of detectable OAEs in the frequency region of 1000 to 1500 Hz perhaps associated
with normalization of the resonance frequency of the middle ear following microtrau-
matic stapedotomy.

MIDDLE EAR ANALYSIS IN OTOSCLEROTIC EARS

For clinicians, middle ear analysis is the most important diagnostic component of
otosclerosis. Many have encountered cases with a conductive pathology and normally
appearing tympanograms where the nature of underlying pathology is not clear. Sim-
ply put, not all of the ears with otosclerosis show a reduced tympanometric compli-
ance and not all of the tympanograms with reduced compliance are caused by
otosclerosis. The following section describes the science behind differentiation of
the underlying middle ear pathologies with the use of immittance measurements.
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Immittance Measurements

Immittance measurement has been used for several decades in the assessment of
middle ear disorders. Immittance measurement consists of tympanometry and middle
ear muscle reflex (MMR). Individuals with otosclerosis typically present a conductive
hearing loss, sometimes type As or normal type A tympanograms,16,17 absent
MMRs, and normal otoscopic results. The normal otoscopy with conductive hearing
loss is not distinctive to otosclerosis.18 Similar patterns have been observed in cases
of superior canal dehiscence and ossicular discontinuity.19 However, MMRs are pre-
sent in superior canal dehiscence and a type Ad tympanogram is observed in ossicular
chain discontinuity. Differentiation of middle ear pathologies with the use of immit-
tance measurements can sometimes be paradoxic.

Tympanometry

Tympanometry is a safe and quick method for assessing middle ear function. In this
technique, a pliable probe is sealed in the external ear canal. Then a sound is presented
while the air pressure is changed within the ear canal. The sound pressure level moni-
tored at the probe tip provides an index of the ease with which acoustic energy flows
into the middle ear system, which is referred to as acoustic admittance (Ya). Currently,
tympanometry is mainly conducted at a conventional low probe tone frequency. Tym-
panometry performed at conventional low probe tone frequency (226 Hz) cannot iden-
tify most of the lesions that specifically affect the ossicular chain. For example,
information provided by a conventional 226-Hz tympanogram is typically inadequate
for distinguishing a normal middle ear from otosclerotic (stapes fixation) ears.20–26

Different parameters can be obtained from a conventional low probe tone frequency
tympanogram. Two absolute parameters, static admittance (Ytm – admittance at the
level of the tympanic membrane) and tympanometric width in daPa, are most often
derived from conventional low probe tone frequency tympanometry. Several studies
have compared Ytm in healthy and otosclerotic ears.16,25–30 These studies have
consistently shown that, on average, Ytm tends to be lower in otosclerotic ears. How-
ever, the extensive overlap in the distributions of Ytm for these two groups at conven-
tional low probe tone frequency severely limits the diagnostic utility of this measure.
It has been shown that an abnormality is most obvious when the probe tone fre-

quency approaches the frequency at which middle ear vibrates most readily.26,31–33

This frequency is called the resonant frequency. Middle ear pathologies, such as
otosclerosis, affect the resonant frequency of the middle ear system. The greatest
impact of middle ear pathology on the Ytm is at frequencies close to the resonant fre-
quency.26,34 Therefore, Ytm measured in the vicinity of the resonant frequency may
provide the most useful information regarding the differential diagnosis of middle
ear pathologies. Several clinical and laboratory studies have reported prominent dif-
ferences between healthy and otosclerotic ears25,26,33,35–37 when Ytm recorded using
higher probe tone frequencies or resonant frequency were compared between healthy
ears and otosclerotic ears.
Tympanometric shape has also been reported to be affected by otosclerosis. A

measure that is, most commonly used to index the sharpness of the tympanometric
peak at conventional low probe tone frequency is the tympanometric width. Some
studies have reported narrower tympanometric peaks in otosclerotic ears than healthy
ears.25,38–40

The appearance of multifrequency devices has made it possible to derive immit-
tance subcomponents, susceptance (B) and conductance (G), and to perform tym-
panometry across a wide range of probe tone frequencies. Recent studies suggest
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that identification of otosclerosis (or stapes fixation) is improved using measures
derived from multifrequency tympanometry or by combining tympanometric variables
in specific ways.25,26,31,33,41,42

One potentially useful parameter that is derived from multifrequency tympanometry
is an estimate of the middle ear resonant frequency. The resonant frequency of the
middle ear system may be shifted higher or lower compared with healthy ears by
various pathologies. One major effect of otosclerosis is to increase the stiffness of
the middle ear system resulting in a shift of the middle ear resonant frequency to
the higher values. In the case of otosclerosis, the resonant frequency has been shown
to be significantly higher than healthy ears.21,25,26,43–47

Middle Ear Muscle Reflex

MMR is measured by monitoring the change of the immittance, either a decrease in
admittance or an increase in impedance, in the ear canal in response to a sufficiently
loud sound. Stapedial muscles contract in both ears simultaneously in response to a
sufficiently loud sound presented to one or both ears. This contraction is recorded in
either ear by monitoring the change of immittance, which is time-locked to the stim-
ulus presentation. To elicit stapedial muscle contraction in response to a loud sound,
middle ear (conductive system), cochlea, 8th cranial nerve, and stapedial branch of
the 7th cranial nerve should be intact. MMR is an excellent tool in conjunction with
tympanometry to detect the presence or absence of the middle ear disorders
including otosclerosis.
Normally, MMR is absent in presence of a modest conductive hearing loss of only

20 dB.48 Typically, in cases of unilateral otosclerosis, MMR is absent in the ipsilateral
mode (stimulus and probe tone are presented to the affected side-probe ear). How-
ever, MMR is elevated or absent in contralateral mode depending on the severity of
the conductive hearing loss. It should be noted that contralateral MMR in the unaf-
fected side is also absent when the probe is placed in the affected side (probe effect).
The reason for the absence of MMR in the probe ear is that it is not possible to monitor
the changes in immittance as a result of the stapedial contraction likely because of the
stiffening of the ossicular chain, which prevents stapedial muscle to evoke a measur-
able change in the immittance.48

It should be noted that in early stages of otosclerosis a biphasic reflex response (an
on-off effect also known as a diphasic response) has been observed.49 This effect has
been observed even before the commencement of an air-bone gap in the otosclerotic
ears.50 The biphasic middle ear reflex response is characterized by a sudden increase
in admittance (a paradoxic response, as stapedial muscle contraction, should result in
a decrease in admittance) by switching the stimulus on and off, which surrounds a
central plateau at 0.

Wideband Acoustic Immittance

Wideband acoustic immittance (WAI) (Fig. 2) is a new middle ear assessment tech-
nique that has enabled researchers and clinicians to quantify the reflected, or the
absorbed energy in the ear canal across a wide range of frequencies typically between
250 and 8000 Hz.48 Power absorbance (PA) is a ratio of absorbed power over the inci-
dent power and varies between 0 and 1. A value of 0 means all sound energy has been
reflected back and a value of 1means all sound energy has been absorbed by themid-
dle ear system.48

WAI has several potential advantages over conventional tympanometry. The tech-
nique measures over a large range of frequencies (250–8000 Hz). It is also very fast,
taking only a couple of seconds to perform. Additionally, the magnitude of the PA

Danesh et al6

 Downloaded for Anonymous User (n/a) at Florida Atlantic University - Florida state consortium from ClinicalKey.com by Elsevier on
 February 08, 2018. For personal use only. No other uses without permission. Copyright ©2018. Elsevier Inc. All rights reserved.



does not depend on the distance between the probe tip and the eardrum and so the
location of the probe in the ear canal is not as critical as it is in tympanometry in chil-
dren and adults.51 Finally, WAI can be run at ambient pressure and does not require
pressurization of the ear canal.52 It is, however, possible to run a pressurized WAI
measurement by varying the pressure in a manner identical to tympanometry.53 At
ambient pressures, healthy adults show a pattern of low absorption in the low fre-
quencies, which increases to a maximum between 1000 Hz and 4000 Hz before
decreasing again at high frequencies.54 Fig. 3 demonstrates this pattern in a
normal-hearing individual.
Growing body of the literature suggests that WAI is a good indicator of middle ear

pathologies in neonates, children, and adults.55–63 Compared with conventional
226-Hz tympanometry, WAI may provide for a more sensitive test in evaluating middle
ear disorders and conductive hearing loss.52,64,65 In contrast to conventional 226-Hz
tympanometry, WAI is significantly more sensitive to ossicular pathologies.18 More-
over, the patterns of absorbance vary depending on the status of the middle ear
and thus different pathologies result in different patterns of absorbance. Generally,
a stiffening pathology results in decreased absorbance over a specific frequency
range. For example, otosclerotic ears demonstrate significantly increased reflectance
between 400 Hz and 1000 Hz.18 Researchers found that PA was the most effective
way of identifying ears with otosclerosis compared with 226-Hz tympanometry and
multifrequency tympanometry.18 PA was able to identify otosclerosis in 82% of their
sample and had a false-positive rate of 17.2%. The research suggests that the use
of PA in conjunction with other tools for assessment of middle ear function will improve
the identification of otosclerotic ears in a clinical setting.18 Fig. 4 demonstrates an
example of PA in surgically confirmed otosclerotic ears. The PA was obtained before
the surgery and fixation of the stapes was confirmed during the surgery.

AUDIOLOGIC INTERVENTION FOR OTOSCLEROSIS

Auditory complications of otosclerosis include hearing loss and tinnitus. Involved pa-
tients rarely complain about sound sensitivity disorders, such as hyperacusis, and the

Fig. 2. Wideband acoustic immittance tracings showing three-dimensional multifrequency
evaluation and power absorbance of the middle ear. (Courtesy of Interacoustics Audiology
Solutions, Middelfart, Denmark; with permission.)
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Fig. 4. Power absorbance in a surgically confirmed otosclerotic ear. Note that the absorption
less than 1500Hz is significantly reduced comparedwith the 90%range for normal individuals
(shaded area). The y-axis is absorbance in% and the x-axis is the frequency in Hz. (Courtesy of
Navid Shahnaz, PhD, University of British Columbia, Vancouver, BC, Canada.)

Fig. 3. Power absorbance in a normal-hearing adult. The y-axis is absorbance in % and the
x-axis is the frequency in Hz. The shaded areas represent 80% (dark gray) and 90% range
(light gray) of the normative data. (Courtesy of Navid Shahnaz, PhD, University of British
Columbia, Vancouver, BC, Canada.)
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reports of vertigo and balance disorders are not common in presurgical otosclerotic
ears. Many patients with otosclerosis are treated with otologic surgery; however,
occasionally patients may choose amplification instead of surgery for medical compli-
cations, such as stapes gusher or dehiscence of anterior semicircular canals, which
may be revealed by high-resolution computed tomography scans.66 A survey of 184
otologists indicated that hearing aids are advised before surgery.67

Hearing Aids and Implantable Auditory Devices

Hearing aid evaluation should always be discussed and offered to have a well-
informed consent before to surgery. Occasionally there are patients who do not select
surgical management as a solution for their hearing loss and choose amplification.
Additionally, because of some unforeseen circumstances, patients’ hearing sensitivity
does not improve or even worsen after surgical intervention68 and patients are advised
to use hearing aids. Use of hearing aids has been helpful in themanagement of hearing
loss postsurgery.69–71 Hearing loss caused by otosclerosis can also exacerbate
because of sensorineural involvement72 and this similarly heightens the inclusion of
amplification and hearing management protocols in this population.
Modern hearing aids are highly advanced and small.73 Fig. 5 demonstrates contem-

porary hearing aids. Most of today’s hearing aids are digital and have the ability of su-
per computation and signal processing. The employment of wireless technology, such
as Bluetooth, has enabled users to stream their telephone conversation and music or
news to their hearing aids reducing the stigma of hearing aid use. Otologists should
encourage their patients to use hearing aids and emphasize the role of neuroplasticity
and enhancement of auditory function for the hearing impaired. There is ample
evidence in the literature that supports the improvement of auditory function with
amplification not only in patients with sensorineural hearing loss but also in those
with conductive pathology.74–77

Those patients who choose amplification should receive ample amount of time for
rehabilitation, orientation, verification, and validation by their audiologists. Successful
hearing aid users usually are the ones who communicate effectively with their audiol-
ogists about their hearing aids. The advanced clinical standards and practice guide-
lines emphasize the role of real ear measurements in proper amplification and

Fig. 5. Modern hearing aids. These hearing aids can stream acoustic signals from electronic
devices, such as cell phones and tablets, directly to the hearing aids. (Courtesy of Starkey
Laboratories, Eden Prairie, MN; with permission.)
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verification of hearing devices. Unfortunately, most of the over-the-counter hearing
aids lack such standards of care.
The amplification management of hearing loss in otosclerosis can also be accom-

plished with the use of implantable technology. Auditory prosthesis and implantable
devices, such as bone-anchored hearing aids78 and Bonebridge,79 have been used
as alternatives for conventional hearing aids. These implantable devices provide direct
signal transmission through bone conduction (ie, bypassing the middle ear with a
conductive pathology, such as otosclerosis), which results in direct stimulation of
the cochlea. The bone-anchored hearing aid approach also has been used in pathol-
ogies, such as congenital atresia and chronic otitis media.78 In far advanced otoscle-
rosis, profound or total hearing loss can be detected. These cases of far advanced
otosclerotic ears have been managed by cochlear implants with great success.80,81

Tinnitus Management in Patients with Otosclerosis

For a large number of patients with otosclerosis, tinnitus can be as annoying as hear-
ing loss. Tinnitus caused by otosclerosis has been associated with reversible modifi-
cations in the central auditory pathway because of conductive hearing loss.82

In many cases of patients with otosclerosis, tinnitus may improve following surgical
intervention.83 Current research indicated tinnitus improvement of 85% of cases
within 6 months following stapedectomy.83 A recent study has shown improvement
of low-frequency tinnitus following stapedectomy; however, the researchers of the
same study also reported that high-frequency tinnitus persists following surgical inter-
vention.84 The improvement of tinnitus also has been reported in patients with
stapedotomy.85

Tinnitus improvement following stapedectomy is age-related. It has been shown
that younger patients with otosclerosis may get relief from tinnitus following surgical
intervention when compared with the older subjects.86 In some cases, tinnitus may
persist or even become louder after the surgery. Therefore, tinnitus management
and intervention is an important component of the postsurgical management of
otosclerosis.
Tinnitus management for patients with otosclerosis falls in the line of tinnitus man-

agement protocols that are used for those with sensorineural hearing loss caused by
such conditions as noise-induced hearing loss or degenerative changes of the audi-
tory system caused by aging. Tinnitus management includes such approaches as
counseling, sound therapy, acoustic enrichment, and use of amplification.87,88 Many
patients report no significant perception of tinnitus with the use of hearing aids. The
masking effect of amplification diminishes the patient’s awareness of his or her
tinnitus. In some cases, particularly in those patients with no significant hearing
loss, cognitive behavioral therapy has been used for better coping with tinnitus.89,90

The cognitive behavioral therapy and potentially sound therapy have been supported
as effective methods for tinnitus management by practice guidelines presented by ac-
ademic and clinical professionals.91 Many patients habituate to their tinnitus with help
and guidance from professionals who are specialized in tinnitus management. Atten-
tion to the patients’ annoyance from tinnitus is important and clinicians should never
dismiss the problem by downplaying tinnitus. Clinicians should avoid such statements
as “nothing can be done.” Tinnitus is a manageable condition!

Balance Disorders and Otosclerosis

Vertigo is rare in nonoperated otosclerotic ears; however, presence of vertigo
may suggest inner ear malformation92 or vestibular hair cell loss.93 There is also evi-
dence that otosclerosis is associated with endolymphatic hydrops and use of
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electrocochleagraphy for better diagnosis has been reported.94 Occasionally, patients
with otosclerosis develop vertigo and dizziness following surgery.95–97 A recent report
has included secondary endolymphatic hydrops following operative interventions for
otosclerosis as a pathologic finding.98 Extensive evaluation and providing vestibular
therapy is important for those who suffer from vertigo or other balance disorders.
The vestibular evaluation test battery may include such procedures as videonystag-
mography, caloric tests, video head impulse test, and cervical and ocular vestibular
evoked myogenic potential assesments.99,100 These evaluations, particularly vestib-
ular evokedmyogenic potential studies, are helpful in the better diagnosis of such con-
ditions as superior canal dehiscence, which potentially is associated with otosclerosis
in some cases.100–102 In general, low vestibular evoked myogenic potential thresholds
and enhanced amplitudes in cases with superior canal dehiscence are expected
(Fig. 6).101–103 For patients with otosclerosis who develop balance disorders, vestib-
ular therapy, balance exercises, and vestibuloadaptive therapy have been shown to
be effective in managing their symptoms.104
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