
Cognitive Apparatus Simulation
Model (CASM) – Formal Specification
Overview: CASM treats perception and cognition as arising from a single embodied generative system that 
integrates the brain with bodily networks (enteric nervous system, endocrine, immune, and microbiota). In 
this view, the brain uses hierarchical models to predict both external sensations and internal bodily signals. 
Recent work emphasizes that the “gut complex” – comprising enteric nerves, gut hormones, immune cells

and microbes  –  is  integral  to  cognition .  For  example,  Boem et  al.  (2024)  argue that  embodied
cognition must include the enteric nervous, endocrine and immune systems along with gut microbiota

.  Likewise,  Mayer  (2011)  describes  complex  bidirectional  gut–brain  communication:  gut  signals  (via
neurons,  hormones and immune cells)  influence affect,  motivation and higher cognition . CASM
therefore posits hidden state variables for neural and bodily components, with sensory inputs from both
exteroceptive (e.g. vision, hearing) and interoceptive (e.g. gut stretch, hormone levels, cytokines) channels. 

System Components: CASM consists of coupled modules for each subsystem, each providing state and 
sensory variables:

Neural Generative Model: A hierarchy of cortical states $\mathbf{x}(t)$ implements Bayesian
inference (predictive coding). It generates predictions for sensory inputs and receives error signals to
update beliefs . 
Enteric (Gut) System: The gut has its own neural plexus (ENS) and afferent pathways. Gut sensors
(stretch, nutrients) and enteroendocrine cells send signals (via vagus and hormones) to the
brainstem and insula . CASM includes gut state variables $\mathbf{g}(t)$ (e.g. distension,
chemical milieu) that produce interoceptive observations. 
Endocrine System: Hormones (e.g. cortisol, insulin, gut peptides) are modeled as slow internal state
variables $\mathbf{h}(t)$. The hypothalamic–pituitary–adrenal (HPA) axis and other pathways
provide top-down control of $\mathbf{h}(t)$, while brain receptors sample actual hormone levels via
feedback. These hormonal signals modulate neural gain/precision, thus influencing attention and
arousal in the model . 
Immune System: Cytokines and immune mediators $\mathbf{c}(t)$ are included in $\mathbf{b}(t)$ 
(bodily state). Immune cells in the gut and periphery sense pathogens and release cytokines, which 
affect brain activity (microglia, sickness behavior). In CASM, unexpected immune signals act like 
prediction errors that update internal priors on bodily integrity, coordinating with neural circuits to

preserve homeostasis . 
Microbiota: The gut microbiome is treated as an environmental factor $M$ that influences gut state.
Microbes produce metabolites (e.g. short-chain fatty acids, neurotransmitters) that enter circulation
or stimulate vagal afferents. These effects are encoded in the generative model as modulatory
inputs to $\mathbf{g}(t)$ and indirectly to $\mathbf{x}(t)$. For instance, subliminal microbial signals
have been shown to affect memory and emotion via insular networks . 

This  embodied  architecture  ensures  that  each  modality  of  information (neural,  hormonal,  microbial,
immunological)  becomes  part  of  the  joint  state  $\mathbf{w}(t)=(\mathbf{x}(t),\mathbf{b}(t))$,  where  $
\mathbf{b}(t)$ summarizes bodily states (gut, hormones, immune, etc.). 
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Generative Model and Perceptual Inference

CASM is built on a probabilistic generative model $p(\mathbf{s}_t,\mathbf{i}_t,\mathbf{w}_t)$, where $
\mathbf{s}_t$ are exteroceptive observations and $\mathbf{i}_t$ interoceptive observations at  time $t$. 
Consistent with predictive-coding theory, we assume: 

Generative Observations:

where $g_e,g_i$ are (generative) mapping functions and $\boldsymbol{\nu}_t,\boldsymbol{\omega}
_t$ are Gaussian noise. For example, $g_e$ may encode how visual and auditory causes in $
\mathbf{x}_t$ produce retinal inputs $\mathbf{s}_t$, while $g_i$ encodes how combined neural and
bodily states produce visceral sensations or hormone readings in $\mathbf{i}_t$. Here $\mathbf{x}
_t$ are high-dimensional brain states and $\mathbf{b}_t=(\mathbf{g}_t,\mathbf{h}_t,\mathbf{c}_t,
\dots)$ are bodily states. 

State Dynamics:

where $f_x,f_b$ describe the (possibly nonlinear) evolution of neural and bodily states, and $
\boldsymbol{\xi}$ are process noise. For example, $f_x$ might encode cortical predictive dynamics
and recurrent connectivity, while $f_b$ includes physiological laws (e.g. hormone release, cytokine
decay, microbiome growth) coupled to brain signals. Equations of this form generalize classical
predictive models . In particular, Friston and Kiebel (2009) describe hierarchical dynamical
models $y=g(x)+z$, $\dot x=f(x)+w$ which we extend to include interoceptive variables .

In Bayesian terms, CASM thus defines a joint distribution $p(\mathbf{s}t,\mathbf{i}_t|\mathbf{x}_t,
\mathbf{b}_t)\,p(\mathbf{x}_t,\mathbf{b}_t)$ whose inversion yields posterior beliefs  $p(\mathbf{x}_t,\mathbf{b} 
_t|\mathbf{s})$. Perception/inference minimizes prediction error: the system computes},\mathbf{i}_{1:t

and updates its estimates $\hat{\mathbf{x}}_t,\hat{\mathbf{b}}_t$ to reduce these errors. In practice, this is
achieved by minimizing a variational free energy $F$, which Friston shows yields dynamics equivalent to
predictive coding . For example, one can define free energy as 

so that $\partial F/\partial \hat{\mathbf{x}},\partial F/\partial \hat{\mathbf{b}}$ drive updates. As Friston
(2010) explains, minimizing such free energy implements Bayes-optimal perception and action in a single
scheme .

In CASM, these updates are continuous in time (often formulated in generalized coordinates) with 
recurrent feedback loops. Neural populations encode prediction errors which are propagated up the
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hierarchy. Crucially, physiological signals serve as additional “top-down” predictions: e.g. the brain’s model
predicts  hormone levels  or  gut  pressure,  and  actual  endocrine/visceral  readings  produce  interoceptive
errors.  This  links  allostatic  regulation  to  cognition.  Barrett  &  Simmons  (2015)  argue  that  interoceptive
experience mainly reflects such cortical predictions about bodily state, issued by visceromotor cortices .
CASM formalizes this by having $g_i$ generate expected bodily sensations from brain states, with 
agranular cortex areas outputting predictions that are reconciled with true signals.

Attention, Precision and Feedback Control

CASM incorporates precision-weighted predictive coding to model attention and salience. Prediction errors 
are weighted by precision (inverse variance), implemented neurophysiologically as synaptic gain. Friston 
(2010) notes that minimizing free energy entails adjusting gain on prediction errors, effectively coding the

confidence (precision) of predictions . In our equations, let $\Pi^s_t,\Pi^i_t$ be precision matrices for
exteroceptive and interoceptive errors. Then state updates include terms like 

and similarly for $\dot{\hat{\mathbf{b}}}$ using $\partial g_i/\partial \mathbf{b}$. Biologically, 
neuromodulators like norepinephrine or dopamine adjust these precisions: for instance, arousal could 
increase $\Pi^s$ for threat-related exteroceptive cues, while stress hormones (cortisol) might increase 
$\Pi^i$ for bodily threat. Thus CASM links physiology to attention: hormonal state modulates which

prediction errors dominate the inference process . 

Feedback  loops  abound:  ascending  (bottom-up)  signals  convey  actual  interoceptive  and  exteroceptive 
errors to higher areas (e.g. insula, prefrontal cortex), while descending predictions from limbic and cortical 
areas drive autonomic, endocrine and immune adjustments. For example, a high-level prediction of “need 
glucose” might descend via the hypothalamus to increase insulin, while the resulting blood glucose level is 
sensed  and  fed  back  as  an  interoceptive  signal.  The  model  therefore  includes  efferent  pathways  (e.g. 
autonomic nervous outputs controlling heart/gut, HPA axis modulating hormones) as part of $f_x,f_b$ 
coupling. In sum, CASM is a closed-loop dynamical system: internal states generate sensory projections, 
errors update beliefs,  and belief  changes produce bodily  responses (actions or  hormone releases)  that 
affect future inputs.

Interoceptive and Physiological Inputs

CASM explicitly incorporates non-neural information sources. Mayer’s review highlights three mechanisms 
encoding gut state: (1) afferent neurons of the ENS and vagus, (2) immune cell signals, and (3)

enteroendocrine hormones . Accordingly, CASM’s interoceptive vector $\mathbf{i}_t$ includes, for
instance,  vagal  nerve  activity  from  the  stomach/intestinal  wall,  cytokine  levels  from  gut-immune
interactions, and gut hormone concentrations. These are predicted by the model (via $g_i$) and compared
to actual measures, producing visceral prediction errors that update cortical representations. For example,
enteroendocrine cells secrete gut peptides (ghrelin, CCK, GLP-1, etc.) that signal hunger or nutrient status;
Mayer notes these regulate CNS circuits via vagal and endocrine routes . In CASM, such hormones are
treated as part of $\mathbf{i}_t$ with known generative dependencies on $\mathbf{b}_t$. 
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The gut microbiota’s role is modeled through its effect on $\mathbf{b}_t$. Microbial metabolites (e.g. short-
chain fatty acids, tryptophan metabolites) can be considered exogenous inputs that shift the generative
mapping  $g_i$.  For  instance,  certain  bacteria  modulate  inflammation  (cytokines)  or  produce  serotonin
precursors. The model can capture this by letting an internal variable $M$ (microbiome state) influence the
parameters  of  $f_b$ or  $g_i$.  Indeed,  Mayer  et  al.  report  that  “intestinal  microbes”  provide subliminal
interoceptive inputs affecting memory and emotional arousal ; CASM would treat these as additional
hidden causes inferred from the data.

Overall,  the  generative  mappings  $g_e,g_i$  and  dynamics  $f_x,f_b$  explicitly  unify  neuroanatomy  and
physiology. For example, allostatic set-points (homeostatic goals) can be encoded as priors $p(\mathbf{x}_t,
\mathbf{b}_t)$  that  the  inference  tries  to  maintain.  Barret  and  Simmons’  EPIC  model  shows  that
visceromotor cortices issue predictions to regulate heart rate, gut, etc., while sensory cortices receive the
sensory consequences . CASM captures this by having cortico-hypothalamic loops in $f_b$: cortical state
$\mathbf{x}$ drives hormone release $\mathbf{h}$ (via $f_b$), which is then sensed and compared to the
predicted $\mathbf{i}_t$. 

Cognitive States and Behavior

The  posterior  distribution  $p(\mathbf{x}t,\mathbf{b}_t|\mathbf{s}},\mathbf{i{1:t})$  constitutes  the  model’s
internal state or “beliefs”. From these, the system can compute cognitive outputs and decisions. In formal terms,
we can augment the model with a value or utility function $U(\mathbf{x},\mathbf{b},a)$ that evaluates states and
actions.  For  example,  by  defining  preferred  (homeostatic)  levels  of  $\mathbf{b}$  (e.g.  normal  glucose,  no
infection),  any deviation yields a “surprisal” cost.  The agent then selects action policies $a_t$ to minimize the
expected future free energy (combining expected surprisal and information gain). This aligns with active inference:
choosing $a_t$ to minimize $E[F_t,a_t]$. }|\mathbf{x}_t,\mathbf{b

Practically, CASM can implement decision-making in a Bayesian or reinforcement-learning style. One may 
compute predictive distributions of future observations under candidate actions and pick the action that 
maximizes expected reward or minimizes expected prediction error. Attention and valuation also emerge: 
Friston  notes  that  perception  under  FEP  maximizes  mutual  information  between  sensations  and  their

causes (infomax) . In CASM, this means the model continually refines its beliefs to capture as much
structure from the multimodal inputs as possible. Affective valence is then tied to how well  predictions
match key bodily needs: e.g. a positive affect when homeostasis is achieved, negative when large prediction
errors persist (pain, anxiety). 

Importantly, all forms of information converge on the belief state. Neural spikes, hormone levels, microbial
signals and cytokines are each treated as data within $p(\mathbf{s},\mathbf{i}|\mathbf{x},\mathbf{b})$.
The same inference rules apply: each signal influences the posterior. For example, an unexpected spike in
cortisol  would  enter  $\mathbf{i}_t$  and  increase  error,  leading  to  updated  $\mathbf{x}_t$  (perhaps
interpreting the situation as stressful) and adjustments in behavior (e.g. heightened vigilance). 
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Simulation Architecture
The CASM architecture can be implemented algorithmically. At each time step $t$, the model maintains 

estimates $\hat{\mathbf{x}}_t,\hat{\mathbf{b}}_t$. A prototypical update loop is: 

(1) Observe: Receive exteroceptive input $\mathbf{s}_t$ and interoceptive input $\mathbf{i}_t$ from
sensors and bodily measures. 
(2) Predict: Compute predicted observations $\hat{\mathbf{s}}t=g_e(\hat{\mathbf{x}}})$, $
\hat{\mathbf{i}t=g_i(\hat{\mathbf{x}})$ using the generative model. },\hat{\mathbf{b}}_{t
(3) Error: Calculate prediction errors $\boldsymbol{\epsilon}^s_t=\mathbf{s}_t-\hat{\mathbf{s}}_t$
and $\boldsymbol{\epsilon}^i_t=\mathbf{i}_t-\hat{\mathbf{i}}_t$. 
(4) Update States: Update beliefs via predictive coding (e.g. gradient descent on free energy ):

These differential updates are integrated to adjust $\hat{\mathbf{x}}{t+1},\hat{\mathbf{b}}$. 
(5) Action: Optionally compute an action $a_t$ (motor command or internal adjustment) that will
minimize expected future free energy. For instance, predict outcomes under different $a$ and
choose the one that best restores homeostasis. 
(6) Effector Update: Apply $a_t$ to the body/environment, affecting future states (e.g. muscle
movement, hormone secretion in $f_b$). 
(7) Iterate: Move to $t+1$ with updated states and repeat.

This loop embodies feedback: errors influence belief updates, which change predictions and actions, which
in turn alter both external inputs and internal physiology. The simulation thus captures real-time dynamics,
prediction-error minimization, and probabilistic inference. (See Friston et al. for similar predictive-coding
schemes .)

Relation to PRT, DIM, ISM, ESM, GCM

CASM serves as a unified generative submodel consistent with broader cognitive frameworks. In the 
Projection Rendering Theorem (PRT) perspective, one imagines internal representations “rendered” into 
sensory experience. Formally, CASM’s generative mappings $g_e,g_i$ are the projection operators: they map 
internal state $(\mathbf{x},\mathbf{b})$ to predicted sensations. Thus each sensory prediction $
\hat{\mathbf{s}}_t=g_e(\hat{\mathbf{x}}_t)$  is  the  “informational  projection”  of  the  brain’s  model  into 
exteroceptive  space,  and  similarly  $\hat{\mathbf{i}}_t=g_i(\hat{\mathbf{x}}_t,\hat{\mathbf{b}}_t)$  is  the 
interoceptive projection. Prediction-error minimization then corresponds to correcting this rendering. CASM 
thus instantiates the core PRT idea in mathematical form using Bayesian inference (see Friston on

generative models as the basis of perception ). 

Similarly, any Dynamic Interaction Model (DIM) or Embodied Systems Model (ESM) can be seen as 
special cases of CASM’s dynamics: DIM arises by focusing on the coupled differential equations for $
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\mathbf{x}$ and $\mathbf{b}$, showing how they interact over time, and ESM by including the full bodily 
coupling. An Interoceptive State Model (ISM) would be the submodel concerning only $\mathbf{b}$ and $
\mathbf{i}$ (fixing neural priors), while a Generative Cognitive Model (GCM) is CASM’s neural hierarchy $
\mathbf{x}$ and $g_e$. In practice, CASM’s modular specification allows one to “project” onto these 
subsystems by marginalizing or constraining parts of the generative model. 

In all cases, CASM provides the mathematical infrastructure (Bayesian updates, dynamical equations, 
information measures) that defines how internal states give rise to observable projections and how various 
information channels are integrated. It  ensures that neural,  hormonal,  microbial,  and immune data are 
transformed into unified cognitive representations by the same probabilistic inference engine. 

References: Key concepts are drawn from predictive coding and embodied cognition literature . For
example, Friston (2009, 2010) formalizes perception as free-energy minimization with generative models

;  Barrett & Simmons (2015) develop the EPIC model of interoception ; and Mayer (2011) and
Boem  et  al.  (2024)  review  gut–brain–microbe  influences  on  cognition .  Kiverstein  et  al.  (2022)
explicitly  integrate  neural,  endocrine and immune systems into  a  single  predictive  framework (the NEI
model) .  ICASM’s  equations  and  architecture  generalize  these  ideas  into  a  formal,  simulable
specification. 
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