
Statistical Projection Model (SPM) – Formal
Framework

Overview and Motivation

The Statistical Projection Model (SPM) is a comprehensive probabilistic framework that formalizes how an
initial informing state (describing a system’s statistical state of knowledge) projects into a realized projected
state under the Projection Rendering Theorem (PRT). The SPM is designed to unify classical and quantum
statistical mechanics, and to bridge them into a hybrid regime where necessary. It defines rigorous rules for
state evolution or collapse, incorporating information-theoretic measures and feedback mechanisms. Key
elements include classical  Boltzmann–Gibbs ensembles,  quantum  density-matrix ensembles,  entropy
measures (Shannon and von Neumann),  mutual information,  transition probabilities, and divergence
measures (Kullback–Leibler and quantum relative entropy). The model supports  statistical conditioning
(Bayesian updates) and feedback from emergent structures, ensuring consistency with a Thermodynamic
Constraints Model and a  Temporal Emergence Model, and providing a formal bridge to the Projection
Rendering Engine for simulations. In what follows, we present the SPM in a structured, rigorous manner
suitable for scientific development and computational implementation.

Unified Statistical Ensemble Framework (Classical–Quantum
Compatibility)

Classical Ensembles: In the classical regime, the state of a system in SPM is described by a probability
distribution $P(x)$ over the space of  microstates $x$.  The framework is  fully  compatible with standard
statistical mechanics ensembles:
- Microcanonical ensemble: $P(x)$ is uniform over all microstates consistent with a fixed energy $E$ (or other
conserved quantities).
-  Canonical  ensemble: $P(x)  \propto  \exp(-\beta  E(x))$  for  microstate  energy  $E(x)$,  recovering  the
Boltzmann–Gibbs  distribution  at  inverse  temperature  $\beta=1/k_BT$.  This  Gibbs  distribution  arises
naturally from the maximum entropy principle: maximizing the Shannon entropy $H[P] = -\sum_x P(x)\ln
P(x)$ subject to a fixed mean energy $\langle E\rangle$ yields $P(x)\propto e^{-\beta E(x)}$ . In other
words,  the  probability  of  a  microstate  is  an  exponential  function  of  its  energy,  exactly  as  in  Boltzmann’s
distribution .
-  Grand canonical ensemble: $P(x)\propto \exp[-\beta(E(x)-\mu N(x))]$ when particle number can vary (with
chemical potential $\mu$). This too is encompassed by the maximum entropy principle with constraints on
both energy and particle number (conserving average energy and average number). 

Quantum  Ensembles: In  the  quantum  regime,  the  state  is  described  by  a  density  operator (density
matrix) $\rho$ on a Hilbert space. SPM treats classical ensembles as a special case of quantum ones (where
$\rho$ happens to commute with all observables, i.e. is diagonal in some basis). The model aligns with all
standard quantum statistical ensembles:
-  Microcanonical (quantum): $\rho$ is proportional to the identity on the subspace of Hilbert space with a
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fixed energy $E$, representing equal a priori probability for all quantum states at that energy.
- Canonical (quantum): $\displaystyle \rho = \frac{e^{-\beta \hat{H}}}{Z}$, where $\hat{H}$ is the Hamiltonian
and $Z=\mathrm{Tr}(e^{-\beta \hat{H}})$ is the partition function. This Gibbs state is the quantum analog of
the Boltzmann distribution and maximizes the von Neumann entropy $S(\rho)=-\mathrm{Tr}(\rho\ln\rho)
$ given the energy constraint . In fact, a system in thermal equilibrium at temperature $T$ is in the
Gibbs state $\rho_\beta = e^{-\beta \hat{H}}/Z$, which minimizes free energy and thereby maximizes the
entropy for the given average energy .
- Grand canonical (quantum): $\displaystyle \rho = \frac{\exp[-\beta(\hat{H}-\mu \hat{N})]}{Z}$, incorporating
both energy and particle number (with $\hat{N}$ the number operator). 

Hybrid  Regime: Crucially,  the  SPM  supports  a  hybrid  classical–quantum  regime that  bridges  these  two
worlds. In this regime, some degrees of freedom may be treated classically (with probability distributions)
while others are quantum (with density matrices). The model provides a unified description such that in the
appropriate limits it reduces to the pure classical or pure quantum cases. For example, one can define a
hybrid state that combines a probability distribution over classical variables with a density operator for
quantum variables.  A rigorous way to do this  is  by defining a joint  entropy that  generalizes the Gibbs
(classical) and von Neumann (quantum) entropies. Recent work shows that it is indeed possible to construct
a hybrid entropy function $S_{\text{hybrid}}$ which reproduces Shannon entropy for classical subsystems
and von Neumann entropy for quantum subsystems as special cases . Maximizing this hybrid entropy
subject to appropriate constraints yields a  hybrid canonical ensemble that consistently reduces to the
standard classical or quantum canonical ensemble in the respective limits . In this way, the SPM can
handle systems that are partly classical and partly quantum, or that gradually transition from quantum
behavior to classical behavior (e.g. via decoherence). 

Decoherence and Classical Limit: The model accounts for  decoherence as the mechanism by which a
quantum ensemble effectively becomes a classical probability distribution. When quantum coherence is lost
(due  to  interaction  with  an  environment  or  emergent  collective  behavior),  the  density  matrix  $\rho$
becomes approximately  diagonal  in  some pointer  basis.  SPM can describe this  decoherence-weighted
distribution as  the  diagonal  elements  ${p_i}$  of  $\rho$,  which  act  like  classical  probabilities  for  the
outcomes (the off-diagonal terms, encoding quantum interference, are suppressed). In the fully decohered
limit  the  informing  state  is  essentially  classical,  and  the  SPM  seamlessly  recovers  classical  statistics.
Conversely, in the absence of decoherence the model respects quantum superpositions and interference as
encoded in $\rho$.  This  compatibility  ensures the SPM can interpolate between quantum and classical
descriptions, enabling a  novel hybrid regime where, for example, some observables are treated quantum-
mechanically while others (perhaps emergent, coarse-grained variables) behave classically.

Probabilistic Framework for State Projection

At the heart of SPM is a formal probabilistic framework describing how an  informing state evolves or
collapses into  a  projected  state.  The  informing  state represents  the  system’s  statistical  state  before a
projection (i.e. prior to a “rendering” event), and the projected state is the outcome after the projection. This
process is defined in a way that generalizes classical probabilistic evolution (dynamics or measurement) and
quantum state collapse / unitary evolution, under a common umbrella:

State Representation: Let $\Omega$ denote the space of all possible states (configurations) of the
system.  In  a  classical  context,  an  informing  state  is  represented  by  a  probability  distribution
$P_{\text{inf}}(x)$ over $\Omega$. In a quantum context,  it  is  represented by a density matrix $
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\rho_{\text{inf}}$ acting on the Hilbert space $\mathcal{H}$ of the system. In a hybrid context, one
might  have  a  composite  representation  (e.g.  a  density  matrix  on  $\mathcal{H}$  coupled  with  a
distribution over some classical variables), but for generality we denote it abstractly as $\mathcal{S}
{\text{inf}}$ (the informing state, which could be $P$ as appropriate).}}$ or $\rho_{\text{inf}

Projection Operation: The projection is the act of obtaining a specific outcome or realization from
the informing state’s possibilities. Formally, one can define a set of  outcome events or  projectors $
{ \Pi_i }$ that partition the state space. In classical terms, $\Pi_i$ might correspond to an event like
“the system is in region $i$ of state space” or simply the event ${x=x_i}$ of a particular microstate (if
we consider a sharp projection to one microstate). In quantum terms, ${\Pi_i}$ could be a set of
orthogonal  projection operators (if  a  projective measurement is  performed) or more generally  a
Positive Operator-Valued Measure (POVM) describing a measurement or decoherence outcome. The
Projection Rendering Theorem (PRT) presumably provides the theoretical conditions under which
such a projection yields a consistent outcome; within SPM we assume that a well-defined probability
can be assigned to each outcome $\Pi_i$ based on the informing state.

Outcome Probabilities: The probability that the projection yields outcome $i$ (i.e. that the system
collapses into projected state $\Pi_i$) is given by the appropriate ensemble rule. Classically, if $\Pi_i$
corresponds to a subset of $\Omega$, $P(i) = \sum_{x \in \Pi_i} P_{\text{inf}}(x)$ (and in the special
case  of  a  fine-grained  microstate  outcome  $x_i$,  $P(x_i)  =  P_{\text{inf}}(x_i)$).  Quantum-
mechanically, if $\Pi_i$ is a projector (measurement operator) corresponding to outcome $i$, the
probability is given by the Born rule: $P(i)  = \mathrm{Tr}(\Pi_i\,  \rho_{\text{inf}})$ for a projective
measurement.  More  generally  for  a  POVM  with  elements  $E_i$,  $P(i)  =  \mathrm{Tr}(E_i\,
\rho_{\text{inf}})$.

Collapse / State Update: Once an outcome $i$ is realized (the system is rendered into a specific
projected state), the statistical description must be updated to reflect this. The  projected state $
\mathcal{S}{\text{proj}}$ is essentially the state of the system conditioned on outcome $i$. In a classical
context, if the outcome is a definite microstate $x_i$, one might represent the projected state as a delta-
distribution concentrated at $x_i$ (complete collapse to a definite state). If the outcome is less specific (e.g.
an event grouping many microstates), then $P(x \mid x\in \Pi_i)$ which is the conditional distribution on
that event (this is standard }}(x) = P_{\text{inf}Bayesian conditioning of the probability distribution
on the observed event). In a quantum context, the post-measurement state (assuming outcome $i$
occurred) is given by the Lüders rule: $\displaystyle \rho_{\text{proj},i} = \frac{\Pi_i\, \rho_{\text{inf}}
\,  \Pi_i}{\mathrm{Tr}(\Pi_i\,\rho_{\text{inf}}\,\Pi_i)}$.  This  is  a  “collapsed”  density  matrix,  now
reflecting the knowledge that the system is in the subspace associated with $i$. More generally, for a
POVM  with  Kraus  operators  $D_i$  (where  $E_i  =  D_i^\dagger  D_i$),  the  post-update  state  is  $
\displaystyle  \rho_{\text{proj},i}  =  \frac{D_i\,\rho_{\text{inf}}\,D_i^\dagger}{\mathrm{Tr}(D_i\,
\rho_{\text{inf}}\,D_i^\dagger)}$ .  Notably,  this  quantum  update  rule  is  directly  analogous  to
Bayesian  updating  of  probabilities :  the  prior  state  $\rho_{\text{inf}}$  is  updated  by  the
“conditional  likelihood”  $D_i$  and  renormalized  by  the  probability  of  the  outcome  $i$,  exactly
mirroring how a classical prior $P_{\text{inf}}(x)$ is updated to a posterior $P_{\text{proj}}(x) \propto
P_{\text{inf}}(x) P(\text{outcome }i \mid x)$ in Bayes’ rule. In this way, the SPM formalism treats the
collapse of the wavefunction not as an ad hoc process but as a logically consistent inference update –
the informing state evolves into the projected state by conditioning on new information (the occurrence
of outcome $i$).
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Time Evolution Between Projections: The SPM also allows for continuous or discrete evolution of
the informing state  when no projection is occurring. Between measurement or collapse events, the
informing state can evolve by the usual  dynamics:  classically  by Liouville’s  equation or a master
equation (depending on deterministic or stochastic dynamics),  and quantum-mechanically by the
von Neumann equation ($\dot{\rho} = -\frac{i}{\hbar}[H,\rho]$) or a suitable open-system master
equation if environment is present . This ensures that SPM is compatible with standard dynamical
laws (Hamiltonian evolution, etc.) in between the probabilistic projection events. When a projection
event occurs, the above rules for outcome probabilities and state update are applied.

Overall,  this  probabilistic  framework  defines  how  an  informing  state  yields  a  particular  projected
outcome state in a mathematically rigorous way. It is essentially a probabilistic mapping $\mathcal{S}
{\text{inf}}  \xrightarrow{\text{projection}}  (\mathcal{S}$  follows  the  appropriate  conditioning  rule.  By
construction,  this  framework  is  fully  consistent  with  both  classical  probability  theory  and  quantum
measurement  theory.  It  provides  a  foundation  for  the  Projection  Rendering  Theorem  by  formally
describing  },i},  i)$,  where  $i$  is  realized  with  probability  $P(i)$  and  the  state  update  $\mathcal{S}
_{\text{proj},icollapse as a statistical projection. 

Entropy, Information, and Distinguishability Measures

A cornerstone of the SPM is the inclusion of key  information-theoretic quantities that characterize the
uncertainty, information content, and distinguishability of states. These quantities provide insight into the
projection process (e.g. how much information is gained when an informing state collapses to a projected
state,  or  how  distinguishable  different  outcomes  are)  and  also  ensure  the  model  is  compatible  with
thermodynamic and information-theoretic principles.

Entropy Measures:
-  Shannon Entropy: For a classical informing state given by a probability distribution $P(x)$, the Shannon
entropy is $H[P] = -\sum_x P(x)\ln P(x)$ (assuming natural log, units of nats, or use $\log_2$ for bits). $H$
quantifies the uncertainty or disorder in the state. Higher entropy means a more spread-out distribution
(greater uncertainty about the system’s actual state), whereas lower entropy means more certainty. In the
SPM,  $H$  plays  multiple  roles:  it  is  used  in  deriving  equilibrium ensembles  via  maximum entropy  (as
discussed,  yielding  Boltzmann  distributions ),  and  it  can  track  how  uncertainty  changes  during
projection. For instance, if a projection selects a definite outcome, the entropy  from the perspective of an
observer who knows the outcome typically drops (since now the state is known more precisely). However, if
the outcome is not observed (tracing over it, or for an outside observer who only knows that “a projection
happened but not which outcome”), the entropy can increase due to lost information (this relates to the
phenomenon  that  performing  a  measurement  and  forgetting  the  result  increases  entropy ).  SPM
carefully  distinguishes  these  situations  by  accounting  for  conditioning  on  known  outcomes  versus
averaging over unknown outcomes. 

Von Neumann Entropy: For a quantum informing state $\rho$, the entropy is $S(\rho) = -\mathrm{Tr}
(\rho \ln \rho)$, the von Neumann entropy. This is the quantum generalization of Shannon entropy
and coincides with Shannon entropy when $\rho$ is diagonal (i.e. a classical mixture of orthogonal
states).  Notably,  if  $\rho$  has  eigenvalues  $\lambda_i$  (the  probabilities  of  each  pure-state
component  in  an  optimal  basis),  then $S(\rho)  =  -\sum_i  \lambda_i  \ln  \lambda_i$ .  The  SPM
ensures that in the classical limit (ρ diagonal in some basis) $S(\rho)$ reduces to $H[P]`, and in the
quantum case it  reflects  the amount  of  quantum uncertainty.  Like  its  classical  counterpart,  von

• 

6

1

7

• 

8

4

https://en.wikipedia.org/wiki/Density_matrix#:~:text=Just%20as%20the%20Schr%C3%B6dinger%20equation,22
https://www.mdpi.com/1099-4300/22/2/179#:~:text=A%20different%20approach%20is%20provided,energy%20is%20not%20necessarily%20constant
https://en.wikipedia.org/wiki/Density_matrix#:~:text=Given%20a%20density%20operator%20Image%3A,defined%20by%20the%20convex%20combination
https://en.wikipedia.org/wiki/Density_matrix#:~:text=Then%20the%20entropy%20of%20a,displaystyle%20%5Crho%20%7D%20is


Neumann entropy is central to equilibrium (maximizing $S$ with constraints gives the Gibbs state as
noted) and to information gain in measurements. For example, if a pure state (entropy 0) becomes a
mixed state due to an unobserved projection, $S$ increases, whereas an observed measurement
collapsing $\rho$ to an eigenstate will yield a post-measurement entropy of 0 for that subsystem
(reflecting gained knowledge). The SPM explicitly keeps track of entropy changes in the projection
process,  which  is  crucial  for  thermodynamic  consistency (entropy  production  must  be  non-
negative for isolated processes unless information is gained by an observer, see later sections).

Mutual Information: Mutual information $I(A;B)$ measures the amount of information (in bits or
nats) that one random variable (or subsystem) $A$ contains about another $B$. In a classical setting
with  a  joint  distribution  $P(a,b)$,  it  is  defined  as  $I(A;B)  =  H[P_A]  +  H[P_B]  -  H[P_{A,B}]$,  or
equivalently  $I(A;B)  =  D_{\text{KL}}!\big(P(a,b)\,\Vert\,P(a)P(b)\big)$  –  i.e.  the  Kullback–Leibler
divergence between the joint distribution and the product of marginals. In SPM, mutual information
can quantify: (a)  Correlation between subsystems – e.g., between different parts of a system (or
system  vs.  environment)  in  the  informing  state  or  projected  state;  (b)  Information  gain  in
projection – e.g., the mutual information between the outcome $i$ and the prior state can measure
how much the knowledge of $i$ reduces uncertainty about the system. In quantum theory, mutual
information generalizes to $I(\text{A:B}) = S(\rho_A) + S(\rho_B) - S(\rho_{AB})$ for a bipartite state $
\rho_{AB}$, capturing total correlations (including quantum entanglement). The SPM incorporates
mutual  information  to  analyze  how  emergent  structures  (treated  as  subsystem  $B$  perhaps)
become correlated with microstates ($A$), and how feedback updates can carry information (see
next section). If an emergent structure is strongly correlated with certain microstates, the mutual
information is high, indicating that observing that structure provides a lot of information about the
underlying state.

Transition Probabilities and Dynamics:
The SPM is  meant  to  be used in  simulations  and analytic  studies  of  system evolution.  Thus it  defines
transition probabilities for moving from one state to another under various processes: - Between Inferring
States: If the system evolves stochastically (even without a “collapse” event), one can describe the probability
$W(\mathcal{S}{\text{inf}} \to \mathcal{S}'; \Delta t)$ of transitioning from one ensemble (informing state) to
another in time $\Delta t$. For example, a master equation or a Fokker-Planck equation might define these
transitions. In deterministic Hamiltonian evolution, this is trivial (the ensemble moves continuously in phase
space or  state space following Liouville’s  theorem or  the von Neumann unitary  evolution).  -  }Projection
Transitions: The probability of an informing state transitioning to a particular projected state via a projection
event  is  exactly  the outcome probability  defined earlier  ($P(i)$  etc.).  We can think of  a  projection as  a
random  jump:  $\mathcal{S}{\text{inf}}$  “jumps”  to  $\mathcal{S}$  with  probability  $P(i)$.  These  jump
probabilities are well-defined by the ensemble. This can be integrated into a larger simulation where at
random times (or when certain criteria are met) a projection happens and the system randomly picks a new
state according to these probabilities.},i

Distinguishability Measures (Kullback–Leibler and Relative Entropy):
To quantify how different two statistical states are – e.g. how much the informing state changes after a
projection, or how a new emergent distribution differs from a prior expected distribution – SPM employs
divergence measures: -  Kullback–Leibler (KL) Divergence: The KL divergence $D_{\text{KL}}(P \parallel Q) =
\sum_x  P(x)\ln\frac{P(x)}{Q(x)}$  measures  how  one  probability  distribution  $P$  differs  from  another
reference distribution $Q$. In SPM, we use KL divergence in several ways. For example, if  $\mathcal{S}
{\text{inf}}$ has distribution $P$ and after some projection or update the distribution becomes $P'$, then $D(P'

• 

9

5

https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence#:~:text=match%20at%20L1054%20The%20mutual,information


\parallel  P)$ quantifies the information update “distance” – essentially  how surprised one would be,  on
average, if they expected $P$ but got $P'$. It is a nonnegative measure of }statistical distinguishability or
information gain. KL divergence also underpins the principle of minimum discrimination information (also
known as the principle of minimum relative entropy), which states that when updating a distribution with
new constraints, one should choose the new distribution that minimally diverges from the old (i.e. keep as
much of the prior info as possible) . This principle is related to maximum entropy and Bayesian updating
and is  naturally  respected in SPM’s update rules.  -  Quantum Relative  Entropy: In the quantum case,  the
analogous measure is the quantum relative entropy $S(\rho \parallel \sigma) = \mathrm{Tr}[\rho(\ln \rho -
\ln  \sigma)]$.  It  generalizes  the  KL  divergence  to  density  matrices  and  has  similar  properties:  it’s
nonnegative and zero iff $\rho=\sigma$. SPM uses quantum relative entropy to gauge differences between
quantum states (say, before and after a projection, or between an actual system state and some reference
state).  Importantly,  $S(\rho\parallel\sigma)$ reduces to  $D_{\text{KL}}(P\parallel  Q)$  when $\rho$ and $
\sigma$ are diagonal  in the same basis with eigenvalues $P_i,  Q_i$ .  This measure also connects to
thermodynamics; for example, the relative entropy between an arbitrary state $\rho$ and the equilibrium
state  $\rho_{\text{eq}}$  can  be  interpreted  as  the  free  energy  difference in  units  of  $k_B  T$  (since
minimizing  free  energy  is  equivalent  to  minimizing  $S(\rho\parallel  \rho_{\text{eq}})$).  In  SPM,  if  the
system’s  informing  state  deviates  from  thermal  equilibrium,  the  relative  entropy  to  the  Gibbs  state
quantifies how far from equilibrium it is – a valuable piece of information in the Thermodynamic Constraints
context. Additionally, quantum relative entropy is used in defining mutual information and entanglement
measures (e.g. the entropy of entanglement, coherent information, etc.), ensuring SPM can capture those
aspects if needed.

Collectively, these entropy and divergence measures give the SPM a probabilistic geometry – they define
distances  and  divergences  in  the  space  of  states.  One  can  discuss  the  “distance”  between  states,  the
“information loss” in a projection (often calculated as entropy change or KL divergence), or the “information
gain”  of  an  observer  (related  to  reduction  in  entropy  or  the  mutual  information  acquired).  These
quantitative measures make the model analytically rigorous and allow one to impose or check consistency
with laws like the Second Law of Thermodynamics (entropy can increase in spontaneous processes) and
information conservation in closed-loop updates (any decrease in entropy for a system corresponds to
information gained by something else,  preserving overall  entropy balance when including all  feedback
agents).

Conditioning, Feedback, and Recursive Updates

A distinguishing feature of the SPM is its ability to incorporate statistical conditioning and feedback from
emergent structures.  Real systems often exhibit  closed-loop dynamics where the outcome of one stage
influences the next stage’s  conditions.  The SPM formalizes this  via Bayesian conditioning and recursive
update mechanics:

Bayesian  Conditioning  (One-Step  Update): As  described,  once  a  projection  yields  outcome  $i$,  the
projected state is  the prior  informing state conditioned on that  outcome.  This  is  Bayesian updating in
essence. The model explicitly supports this by treating the projected state not just as an endpoint, but as
the starting point for subsequent evolution. For instance, if at time $t$ the informing state $\mathcal{S}(t)$
produces an outcome $i$,  the next  informing state at  time $t^+$ (just  after  the event)  is  $\mathcal{S}
_{\text{proj},i}(t)$ (the posterior). This state can then undergo further dynamical evolution and perhaps later
another  projection.  The  recursive  nature of  this  is  natural  in  SPM:  it  provides  a  way  to  “daisy-chain”
probabilistic events over time, continually conditioning on new information.

10

11

6

https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence#:~:text=Just%20as%20relative%20entropy%20of,model%20has%20yet%20to%20learn
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence#:~:text=For%20density%20matrices%20%20P,P%20is%20defined%20to%20be


Feedback from Emergent Structures: By emergent structure, we mean any larger-scale pattern, aggregate,
or observed property that “emerges” from the underlying microstates (examples: an organized convection
roll forming in a fluid, a biological structure like a cell emerging from biochemical interactions, or even an
observer/agent in the system gaining knowledge – which is an emergent informational structure). The SPM
allows such emergent outcomes to  feed back and alter subsequent dynamics or probabilities. Practically,
this  is  implemented  as  conditional  probability  adjustments or  additional  constraints  introduced  after  an
outcome:

Suppose an emergent structure $E$ is detected as the result of a projection (for example, the system
transitioned  into  a  new  macro-state).  This  new  structure  can  impose  constraints on  the  next
informing state. In SPM, we would incorporate $E$ as  new information that updates our state of
knowledge. Concretely, if $E$ corresponds to some condition on microstates (say, a certain range of
values for some order parameter), then the next informing distribution $P_{\text{inf}}^{\text{new}}
(x)$ should be the old distribution conditioned on $E$. This can be treated exactly like a Bayesian
update:  $P_{\text{inf}}^{\text{new}}(x)  =  P_{\text{proj}}(x  \mid  E)$,  which  by  Bayes  is  $\propto
P_{\text{proj}}(x)  \mathbb{1}_E(x)$  (i.e.  restrict  to  states  consistent  with  $E$).  The  distribution  is
thereby narrowed or  reweighted by the presence of  the structure.  In  a  quantum setting,  if  $E$
corresponds to a subspace or a projector $\Pi_E$, one could similarly condition $\rho$ to $\Pi_E \rho
\Pi_E  /  \mathrm{Tr}(\Pi_E  \rho)$  if  $E$  is  known  to  have  occurred.  This  represents  feedback
conditioning.

Additionally, emergent structures might influence system parameters. For instance, the formation of
a large-scale structure could effectively change certain potential energy landscapes or constraints
(think of how magnetization emerging in a material provides a field that affects individual spins). The
SPM can handle this by updating the Hamiltonian or constraint set based on outcomes. Formally,
one can imagine that after outcome $i$, the model introduces new parameters $\lambda_i$ into the
distribution (e.g. changing $\beta$ or adding a new term to the energy functional) to reflect the
structure’s influence. The next ensemble might then be a conditional ensemble $P(x;\lambda_i)$ or $
\rho(\lambda_i)$ that differs from the original by the presence of $\lambda_i$ (which encodes the
feedback of outcome $i$).  This is akin to a  parameter learning or self-organization step – the
system updates its own parameters based on what has emerged.

Iterative and Recursive Projection: By repeatedly applying the projection update rules and subsequent
conditioning, the SPM supports recursive projection processes. One can model a sequence of events $i_1, i_2,
i_3,\dots$ with each event potentially at a different level or involving different observables, and each time
the statistical state is updated. This is critical for capturing adaptive or evolving systems. For example, in a
simulation engine, one might at each timestep: (1) calculate the current distribution $\mathcal{S}{\text{inf}}
(t)$, (2) stochastically “render” a particular outcome (which could be a microstate realization or a macro-event), (3)
apply that outcome’s feedback to get $\mathcal{S}(t+\Delta t)$, then repeat. The SPM ensures that this loop is
grounded in solid probability theory (Bayesian conditioning) and can include memory of past outcomes if
needed (through the state update carrying information forward).}

Mutual Information and Feedback Efficacy: The effectiveness of feedback from emergent structures can
be  quantified  by  mutual  information  or  entropy  reduction.  If  an  emergent  structure  conveys  a  lot  of
information about the system’s state, then conditioning on it will significantly reduce the entropy of the
distribution  (large  information  update).  The  SPM  provides  the  language  to  calculate  this:  the  drop  in
entropy  $H_{\text{new}}  =  H_{\text{old}}  -  I(\text{micro};  E)$,  where  $I(\text{micro};  E)$  is  the  mutual
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information  between  the  microstate  and  the  emergent  event  $E$.  A  large  $I$  means  the  emergent
structure strongly constrains the microstate (feedback is strong). By including such calculations, one can
ensure consistency: e.g. if an emergent structure is claimed to have causal influence, it must carry sufficient
mutual information to actually affect probabilities.

Decoherence and Classical Feedback: In quantum scenarios, feedback may involve decoherence. If an
emergent structure is effectively a classical observer or apparatus, its interaction can cause the system’s
state to decohere in the basis of the observable. SPM would describe this as the system’s density matrix
evolving under a non-unitary (open system) process that (partially) diagonalizes it in the measured basis,
followed by a conditioning if  the outcome is  actually  known. This  is  consistent with standard quantum
measurement theory but cast in a statistical inference framework.

In summary, the SPM’s conditioning and feedback mechanisms allow the model to represent interactive,
adaptive processes where each projection not only yields an outcome but updates the rules for the future.
This recursive self-update capability is essential for modeling complex systems where new structures (or
new information) alter the system’s subsequent behavior – for example, in emergent phenomena, life-like
systems, or any scenario where microstate distributions adapt based on history.

Generalization to Novel Phenomena and Probabilistic Geometry

A powerful aspect of the SPM is its ability to generalize beyond conventional equilibrium mechanics and
incorporate  novel phenomena or observables that were not part of the initial model, by using flexible
probabilistic  structures  such  as  multi-modal  distributions  and  probabilistic  geometric  frameworks.  This
ensures the model is not limited to simple cases but can describe complex, out-of-equilibrium, or multi-
scale phenomena.

Multi-Modal  and  Non-Equilibrium  Distributions: Traditional  statistical  mechanics  often  deals  with
unimodal distributions (e.g., a single-peaked Maxwell-Boltzmann distribution for particle speeds). However,
complex  systems  can  exhibit  multi-modal  distributions –  multiple  peaks  corresponding  to  different
favored  states  (for  instance,  a  system  that  can  be  either  in  phase  A  or  phase  B,  each  with  its  own
distribution).  The SPM is  built  to  handle  arbitrary  distributions,  including multi-modal  ones.  It  does  not
assume Gaussian or single-exponential forms; instead, it can accommodate  mixtures of distributions or
heavy-tailed distributions as needed. 

One formalism that  SPM can leverage is  superstatistics .  Superstatistics  is  an approach where one
considers a distribution of an intensive parameter (like temperature or energy dissipation rate) across the
system; effectively, the system is viewed as a mixture of local Gibbs distributions with different parameters.
This yields an overall distribution that is a superposition (e.g., an integral over Boltzmann factors with a
distribution of temperatures). For example: if the inverse temperature $\beta$ itself is distributed according
to some density $f(\beta)$ (due to environmental or temporal fluctuations), then the marginal distribution
of states is $P(x) = \int d\beta\, f(\beta)\,\frac{1}{Z(\beta)}e^{-\beta E(x)}$. Such a $P(x)$ can display non-
standard features like power-law tails. The SPM framework can incorporate this by treating the uncertainty
in  $\beta$  as  part  of  the  informing  state  (effectively  adding  an  extra  “hyper-parameter”  layer  to  the
probability model). The  probabilistic geometry here is richer: instead of a single fixed Boltzmann factor
geometry,  we have a  mixture,  which can be studied with tools  of  information theory (e.g.,  conditional
entropies, as noted by Abe et al. ). The SPM thereby is capable of hierarchical modeling – a probability
distribution  of probability distributions (or of ensemble parameters),  aligning with Bayesian hierarchical
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inference.  This  flexibility  means new phenomena (like anomalous fluctuations,  intermittent  behavior,  or
other heavy-tailed observables) can be captured by choosing the appropriate form of the informing state.

Probabilistic Geometry and Information Manifolds: The space of possible states (distributions or density
matrices) can be thought of as a geometric object – for example, the set of all  probability distributions
forms a simplex, and one can define a Riemannian metric on it  (the Fisher information metric).  SPM is
amenable to analysis in terms of information geometry: each informing state corresponds to a point on a
statistical manifold, and measures like KL divergence induce a sort of distance (though not symmetric) on
this manifold. By considering small changes in the state, one can use geometric concepts to talk about
trajectories in distribution space, geodesics (e.g. the path of least information gain), curvature (indicating
interactions between parameters), etc. 

Why is this useful? It allows generalization in a systematic way: constraints and phenomena can be described
as geometric structures. For instance, an emergent constraint might restrict the state to a submanifold (like
an embedded surface of lower dimension in the space of all distributions). New observables correspond to
new coordinates on the manifold (extending the space). If a phenomenon was not captured by the original
state space, we introduce a new axis for it and embed the old space into a bigger one. The mathematics of
this is rigorous: one can extend the entropy or divergence definitions to the new variables and ensure
continuity. SPM’s design anticipates this by not hard-coding a fixed set of observables – instead, the state is
defined in a general way so that adding an observable means extending $x$ (for classical) or extending the
Hilbert space (for quantum) and correspondingly extending $\rho$ or $P$. The probability rules (sums,
traces) naturally extend.

Example – Introducing a New Observable: Suppose conventional mechanics did not include an order
parameter  $M$  which  suddenly  becomes  relevant  (say  magnetization  in  a  system  that  just  entered  a
ferromagnetic phase). To capture this, the SPM can enlarge the state description from just microstates $x$
to pairs $(x,M)$. Initially, $M$ was not relevant (or had a flat prior), but now as the system enters a new
regime, $M$ has a distribution (e.g. bimodal for $M\approx \pm M_0$).  We integrate this by specifying
$P_{\text{new}}(x,M)$. Marginalizing gives $P(M)$ which might be bi-modal, and conditional $P(x|M)$ for
microstates given each macro-state.  All  the previous definitions (entropy,  mutual  info between $x$ and
$M$,  etc.)  apply.  One can quantify,  for  example,  the  superstatistical view:  maybe each mode of  $M$
corresponds to a different “temperature” for microstates. SPM can then say the overall  distribution is a
mixture of two Gibbs distributions (one for each $M$ phase). The  generalization is achieved simply by
allowing a more complex probability landscape, which SPM was built to do from the start.

Incorporating  such  novel  observables  often  requires  maximum  entropy  generalization as  well.  For
instance, one can use the MaxEnt principle to infer the least biased distribution $P(x,M)$ that reproduces
some observed new phenomena (e.g. a given $\langle M \rangle$ or $\langle M^2 \rangle$). The formalism
is  identical:  maximize  $-  \sum_{x,M}  P(x,M)\ln  P(x,M)$  subject  to  constraints  (including  possibly  ones
coupling  $x$  and  $M$),  yielding  distributions  that  naturally  include  the  new  terms  (like  an  effective
Hamiltonian acquires a term $\lambda M$ as a Lagrange multiplier). This is akin to how superstatistics was
formulated: conditional entropies and multi-tier maximization can be used to derive distributions when there
are fluctuations in intensive parameters .

Beyond Conventional Mechanics: Conventional  mechanics might fail  to capture phenomena like long-
range correlations, non-Markovian dynamics, or quantum coherence in macroscopic variables. SPM, being
fundamentally an information-based model, can accommodate these by expanding the state representation
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or the update rules. For example, non-Markovian effects can be modeled by including history variables in the
state  (so  that  the  Markov  process  in  an  extended  space  produces  effective  memory  in  the  original
variables).  Long-range  correlations  are  naturally  represented  by  having  joint  distributions  that  don’t
factorize even if subsystems are far apart – SPM does not demand independence unless justified, so it can
keep those correlations. Quantum coherence in an emergent variable could be handled by promoting that
variable to a quantum operator in an enlarged Hilbert space (thus $\rho$ would include off-diagonals in the
basis of that variable).

In summary, the SPM is extensible. Its use of probabilistic and information-theoretic constructs means one
can  generalize  it  to  new  domains  by  adding  new  random  variables,  new  constraints,  or  new  mixture
components. The concept of a “probabilistic geometry” underscores that these additions can be done in a
structured  way  (e.g.,  preserving  continuity  and  differentiability  on  the  manifold  of  states),  which  is
important for ensuring mathematical rigor when exploring beyond known physics. Thus, the model is well-
suited  to  tackle  new  phenomena  or  observables  that  lie  outside  traditional  mechanics,  such  as  complex
adaptive systems, multi-scale interactions, or novel quantum-classical interplay, using a unified statistical
language.

Integration with Thermodynamic and Temporal Frameworks

The SPM has been constructed to be fully compatible with the Thermodynamic Constraints Model (TCM)
and the  Temporal Emergence Model (TEM),  ensuring that when it  is  integrated into larger theoretical
frameworks,  it  respects fundamental  thermodynamic laws and properly accounts for the emergence of
temporal  structures.  It  also  serves  as  the  statistical  cornerstone  of  the  overall  Projection  Rendering
Engine,  which  will  use  SPM  to  drive  simulations  or  analytical  computations.  Below  we  detail  these
compatibilities and bridging aspects:

Thermodynamic Consistency and Constraints (TCM Alignment): The Thermodynamic Constraints Model
presumably imposes principles such as energy conservation, the Second Law of Thermodynamics (entropy
non-decrease  in  isolated  systems),  and  perhaps  other  constraints  like  free  energy  minimization  in
equilibrium or bounds on fluctuations. SPM is intrinsically aligned with these: - Energy and Other Conserved
Quantities: By using ensembles that honor constraints (microcanonical fixes energy exactly; canonical fixes
average energy;  grand-canonical  fixes average particle  number etc.),  SPM ensures that  thermodynamic
constraints are input into the statistical state. If the TCM requires that certain quantities remain conserved
or change predictably, we incorporate that as constraints on the probability distribution or as deterministic
evolution between projections. For example, during a projection, if energy is conserved in the process (say
the projection is an adiabatic measurement), then the outcome probabilities and post-state must reflect
that no net energy was lost/gained – SPM can enforce this by only considering outcome sets ${\Pi_i}$ that
redistribute energy internally but keep total energy the same. If the projection involves coupling to a heat
bath (non-adiabatic), then SPM can track the probability distribution of energy exchanged and ensure the
expected  energy  change  follows  the  thermodynamic  expectation  (like  obeying  detailed  balance  in
equilibrium). These considerations mean SPM can be constrained to not violate the First Law (energy) or
other conservation laws, as required by TCM.

Second Law and Entropy: As discussed, SPM carefully tracks entropy and information. In an isolated
system with no observer  gaining information,  any spontaneous projection (like  an uncontrolled,
natural “event”) will result in an entropy increase or at least no decrease, in line with the Second Law.
This is because either the state was already at equilibrium (then typically nothing changes) or the
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projection introduces additional uncertainty (e.g., if an event happens and the outcome isn’t known
to some parts of the system, their entropy rises). In cases where an observer or agent  does gain
information  (which  could  locally  reduce  entropy),  the  overall  entropy  including  the  observer’s
knowledge still  does not decrease – the SPM accounts for this by including the information gain
term. Essentially, SPM provides a quantitative measure of entropy flow: if $S_{\text{sys}}$ decreases,
some entropy (information) is transferred to the observer or environment, keeping $S_{\text{total}}$
≥  constant.  This  matches  the  thermodynamic  requirement  that  you cannot  globally  violate  the
Second Law, and it also aligns with the idea of thermodynamic entropy = information entropy in
many contexts . In integration with TCM, one would likely impose that any allowed projection
must satisfy $\Delta S_{\text{total}} \ge 0$ (unless explicitly a controlled operation by some engine).
SPM can check this via its entropy bookkeeping.

Thermodynamic Potentials  and Equilibria: The SPM can incorporate the principle of  minimum free
energy  (or  maximum  entropy)  as  an  attractor.  If  the  TCM  posits  that  systems  evolve  towards
thermodynamic equilibrium (minimum $F = U-TS$ for given $T$, etc.), SPM’s dynamics (if we include
an  environment  or  thermalization  process  between  projections)  can  be  shown  to  drive  the
distribution towards the Gibbs ensemble. Indeed, as mentioned, relative entropy to the equilibrium
state is like a Lyapunov function (always decreasing in a relaxation process). By using $D_{\text{KL}}
(P_t  \parallel  P_{\text{eq}})$  as  a  measure  of  “distance”  to  equilibrium,  one  can  integrate  SPM’s
equations  to  confirm  they  shrink  that  distance  over  time,  respecting  TCM’s  expectations.
Additionally,  constraints  from  TCM  such  as  maximum  entropy  production  principles  or  other
nonequilibrium  thermodynamic  constraints  could  be  integrated  by  choosing  the  projection
probabilities or frequencies to maximize entropy production consistent with known formulas. Since
SPM is very general, these are implementation choices rather than limitations.

Temporal Emergence (TEM Alignment): The Temporal Emergence Model likely addresses how an arrow of
time or temporal order arises from underlying physics, possibly through entropy increase or through the
accumulation of changes (emergence of history, memory, etc.). SPM contributes to this understanding in
the  following  ways:  -  Sequential  Structure  and  Arrow  of  Time: The  iterative  projection  process  in  SPM
inherently creates a sequence of states with increasing “record” of what happened. Because each projection
can be considered an irreversible act (information is either gained by an observer or entropy is produced if
not observed), it installs a directionality to time – before projection vs after projection are distinguishable by
different entropy and information content. This aligns with the idea that the arrow of time is tied to entropy
production (the past has lower entropy than the future in a typical process). In SPM simulations, one will see
entropy  either  monotonically  increasing  or,  if  decreasing  locally,  balanced  by  gains  of  information
elsewhere. This monotonic tendency can serve as a clock: it’s a measure of progress in one direction. Thus,
the model  naturally  implements  a  temporal  asymmetry akin  to  the second law arrow of  time,  which
should be consistent with TEM’s description of time’s emergence.

Emergent  Temporal  Patterns: If  TEM deals  with how regularities  or  structures in  time (like cycles,
oscillations,  temporal  correlations)  emerge,  SPM can accommodate those by including  time as  a
variable in the state.  For instance, if  a periodic structure emerges (like a limit  cycle in a system’s
dynamics), the model can capture it as a high probability trajectory in the sequence of states. SPM
can also incorporate time correlations: through mutual information across time steps (e.g. mutual
information between state at time $t$ and at time $t+\tau$ can quantify temporal memory). When
integrating with TEM, one might use SPM to calculate how much past states influence future states
(via the feedback mechanism and conditioning), thereby formalizing the idea of  history-dependent
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emergence. The presence of nonzero mutual information between non-adjacent time steps indicates
the system has a memory or coherent temporal structure, an emergent property beyond Markov
processes. SPM’s formalism allows calculating and maximizing/minimizing such quantities if needed
(for  example,  maybe  TEM  posits  that  time  emerges  when  there’s  a  sufficiently  rich  mutual
information structure over sequences – SPM can test scenarios for that).

Multiple Time Scales: In complex systems, different processes occur at different rates, contributing to
a  layered  experience  of  time.  SPM  can  handle  multi-time-scale  modeling  by  using  different
projection frequencies for different observables. For example, micro projections might happen very
frequently (fast fluctuations), while macro projections (big structural changes) happen rarely. This
naturally yields a separation of time scales in the simulation. The Temporal Emergence Model might
assert that stable long-lived structures give a sense of slow time evolution (because they change
slowly),  whereas microscopic chaos gives fast time. By allowing projections at various scales and
tracking them, SPM can be tuned to replicate this behavior. Essentially, it provides the  statistics of
event timing (e.g., one could model the distribution of waiting times between projections of a certain
type). If TEM includes something like an emergent clock from regular events, SPM could incorporate
a rule or constraint that a certain sequence of projections has periodic properties. All this can be
done while maintaining rigorous probability laws (e.g., using a renewal process for event times or a
hazard function that might depend on state).

Bridge  to  the  Projection  Rendering  Engine: The  Projection  Rendering  Engine  is  the  computational
component that uses the theoretical rules to actually simulate and render the system’s behavior (perhaps
visually or in data). The SPM is explicitly designed to feed into this engine: -  Formal Specification: The SPM
provides equations and algorithms that the engine can implement. For example, given an informing state $
\mathcal{S}{\text{inf}}$ (maybe represented in code as a data structure containing a list  of  microstates with
probabilities, or a set of samples, or a density matrix), the engine can use the SPM rules to (1) draw a random
outcome $i$ according to the distribution (this could be done with a random number generator weighted by $P(i)$
or via collapse of the wavefunction algorithmically), (2) update the state to $\mathcal{S}$ using the formulas
(like zeroing out other possibilities, or applying the density matrix projection formula), and (3) optionally
apply  any  feedback  (adjust  parameters,  constraints,  etc.,  as  per  the  model).  Because  the  SPM
is },imathematically rigorous, each of these steps is unambiguous and can be coded without arbitrariness.
This is vital for the engine to produce reproducible and correct results.

Analytical  Solutions  and  Simulation  Checks: In  some  cases,  the  SPM  equations  might  be  solvable
analytically (for instance, one might derive an analytical expression for the distribution at time $t$
for a simple model). Where possible, the engine can use these solutions for efficiency or validation.
Where not, it runs Monte Carlo or numerical integration guided by SPM. The engine can also use the
information measures from SPM to adapt its simulation strategy – for example, if the KL divergence
between successive states is very small, the engine knows the system is near steady-state and might
increase time-step size for efficiency. Or if  mutual information between parts is high, the engine
might ensure to simulate those parts with a coupled algorithm rather than independent ones. Thus,
the SPM not only feeds the engine raw rules but also meta-information about the state that can
optimize simulation.

Interfacing with TCM and TEM Modules: If the Projection Rendering Engine has modules for enforcing
thermodynamic constraints (TCM) or for monitoring temporal emergence (TEM), the SPM’s data can
be directly used by those. For instance, the engine can continuously compute the entropy of the
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system from SPM’s state and hand it to the TCM module to verify no violations. Or it can log the
sequence of states to the TEM module which analyzes patterns. Because SPM speaks in terms of
probabilities and entropies, it’s already in the language needed for thermodynamic and temporal
analysis.  This  common  language  ensures  a  smooth  integration:  e.g.,  the  “Thermodynamic
Constraints Model” might demand that $\frac{dS_{\text{total}}}{dt} \ge 0$; the engine, using SPM,
can compute $dS_{\text{sys}}/dt$ and also account for entropy flow to environment or observer, then
confirm  the  inequality.  If  a  violation  occurs,  that  indicates  either  a  simulation  error  or  that  an
external intervention (like a Maxwell’s demon in the loop) must be accounted for, which TCM would
handle by adding the demon’s  entropy ledger (again possible because SPM can incorporate the
demon as an emergent structure with information gain).

Mathematical Rigor and Implementability: Finally, we emphasize that throughout its construction, the
SPM is framed in rigorous mathematical terms. The state space $\Omega$ and Hilbert space $\mathcal{H}$
are well-defined; probabilities are normalized and follow the Kolmogorov axioms in classical cases and the
analogous trace conditions in quantum cases. The update rules (Bayesian conditioning, Lüders rule) are
rooted in measure theory and linear algebra respectively, ensuring no ambiguity. Entropy and divergence
measures  are  standard  from  information  theory,  with  known  theorems  (e.g.,  non-negativity,  data
processing inequality for mutual information which guarantees that processing data – like coarse-graining
in a projection – cannot increase mutual information). These give confidence that the model won’t produce
unphysical results if applied correctly – it respects the known inequalities and bounds.

For simulation, the model is constructive: one can implement it step by step. Pseudocode might look like: 

state = initial_state_distribution_or_density_matrix

for each time step or event:

    evolve state under dynamics for delta_t (if any dynamics)

    if projection_event_occurs:

        sample outcome i with probability Tr(E_i state) or 

state.sum_over_region_i

        state = (operator_or_condition_for_i applied to state) / 

probability(i)   # normalized update

        record outcome, update any emergent variables

    compute observables, entropy, etc., for analysis or rendering

end

This algorithmic view shows that the SPM can be directly integrated into a simulation loop. Each piece has a
clear mathematical definition provided by the model. Moreover, because the model is probabilistic, one can
run many simulations (Monte Carlo runs) to gather statistics, and use the derived theoretical quantities (like
expected entropy change) to verify the simulations.

In conclusion, the Statistical Projection Model stands as a robust, unifying framework that ties together
classical  and  quantum  statistics,  information  theory,  thermodynamics,  and  dynamical  evolution.  It  is
formulated  with  the  precision  needed  for  analytical  reasoning  and  the  structural  clarity  needed  for
implementation. By incorporating entropy, information measures, and feedback, it ensures consistency with
fundamental laws and adaptability to new phenomena. In integration with the Thermodynamic Constraints
Model  and Temporal  Emergence Model,  it  provides the statistical  backbone that  ensures any rendered
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projection is thermodynamically sound and contributes appropriately to the emergent temporal narrative
of the system. As part of the Projection Rendering Engine, it offers a blueprint for simulating rich physical
systems where probabilities and information flow are first-class citizens. The SPM thus paves the way for
formally developing and simulating systems at the nexus of classical  physics,  quantum mechanics,  and
complex emergent behavior, fulfilling all the specified requirements in a single coherent model. 

Sources: The  concepts  and  formalisms  presented  are  grounded in  established  literature,  for  example:
maximum  entropy  inference  yielding  Gibbs  ensembles ,  unified  classical-quantum  entropy
frameworks ,  Bayesian  updating  for  quantum states ,  definitions  of  entropy  and  information
measures , and advanced ideas like superstatistics for multi-modal distributions , all of which
reinforce the rigorous foundation of the SPM. The integration with thermodynamics and time emergence is
built on these principles to ensure consistency with fundamental physics . The model is ready for formal
scientific development and deployment in simulation systems as described. 
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