
Information Symmetry Model (ISM)
The  Information  Symmetry  Model  (ISM) systematically  identifies  and  formalizes  the  invariances
(“symmetries”) of information-theoretic quantities under transformations of data and descriptions. In ISM,
any transformation of an information structure (e.g.  a probability distribution, a dataset,  or a quantum
state) is studied in terms of how standard information measures (Shannon entropy, Fisher information,
Kolmogorov complexity, Kullback–Leibler divergence, etc.) are preserved or change. We interpret “order” as
the presence of  symmetry and  “disorder” as  its  absence .  Thus imposing a symmetry constraint  (for
example,  grouping  outcomes  or  fixing  a  gauge)  tends  to  reduce  entropy .  Conversely,  breaking  a
symmetry generates new informational patterns (emergent structures) that were indistinguishable under
the original symmetry. ISM defines precise equivalence relations among informational configurations under
symmetry group actions (permutations,  reparameterizations,  dualities,  gauge transformations,  etc.)  and
identifies  invariants  (entropy,  mutual  information,  complexity,  channel  capacity)  that  characterize  each
equivalence  class.  Category-theoretic  structures  (e.g.  functors  on  the  category  of  probability  spaces)
naturally arise, ensuring functoriality of information transformations . Below we develop these ideas
rigorously,  including  definitions,  key  theorems,  and  examples,  and  show  how  ISM  integrates  with
projection/renormalization  theories  (PRT),  emergent  symmetry  models  (ESM),  dimensional  information
models (DIM), and coherence models (GCM).

Symmetries in Classical Information Measures

Shannon information measures  are  inherently  symmetric  under  relabeling of  outcomes.  For  a  discrete
distribution  , the Shannon entropy 

is invariant under any permutation of the indices  . In other words, entropy depends only on the multiset 
 , not on outcome labels. This permutation symmetry means that two distributions differing only by a

relabeling of outcomes lie in the same equivalence class of informational configurations. More generally, any
bijective change of coordinates that preserves probability structure (a “gauge” relabeling of symbols) leaves 

 , mutual information  , and related measures unchanged. Under a data-processing (Markov) map
 , information never increases: the Data Processing Inequality implies 

for any , and similarly relative entropy cannot increase under a stochastic channel .
Equivalently, the entropy loss of a deterministic mapping  is 

which is always nonnegative by data processing . Moreover, compositionality yields a functorial property:
for composable maps  , 
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so information loss is additive under composition . In fact, Baez–Fritz–Leinster showed that the only
continuous, additive, and convex-linear information measure on measure-preserving maps is (a constant
multiple of) Shannon entropy loss . Thus the classical case is fully characterized by the functorial
entropy principle: any morphism in the finite-probability category gains information (negative loss) only by
violating these symmetries.

Algorithmic Symmetry and Invariance

In algorithmic information theory,  Kolmogorov complexity  measures the length of  the shortest
program generating a string  . The invariance theorem asserts that up to an additive constant,  does
not depend on the particular universal description language (Turing machine) chosen . Formally, if  
and  are complexities relative to two universal machines, then 

for some constant  independent of . In ISM terms, the choice of universal description is a “gauge”
symmetry of the algorithmic information structure, and complexity classes of strings (e.g. “constant” vs
“linear” complexity) define equivalence up to that symmetry. More generally, computable permutations or
simple recodings of data also change  by at most  , so the order of complexity (e.g. polynomial vs
exponential) is an invariant under broad reparameterizations of the data. Thus, like entropy, algorithmic
complexity yields invariants (complexity classes) across informational symmetries. 

Fisher Information and Reparameterization Invariance

Consider  a  statistical  model   with  parameter   .  The  Fisher  information  metric defines  a
Riemannian  metric  on  the  space  of  parameters.  Crucially,  Fisher  information  is  invariant  under  smooth
reparameterizations of  . In fact, the Fisher metric is uniquely characterized (up to scale) by this invariance:
Chentsov’s theorem guarantees that it is the only Riemannian metric (up to constant factor) on a statistical
manifold that  is  invariant  under sufficient  statistic  transformations .  Equivalently,  under any smooth
change  of  variables   ,  the  Fisher  information  transforms  as  a  tensor,  preserving  geometric
distances.  Thus  Fisher  information  defines  an  information-geometric  symmetry:  the  statistical  manifold’s
curvature and distances remain the same regardless of the chosen coordinate system. 

Quantum Information Symmetries

In quantum theory, a density operator   encodes probabilities of outcomes. The von Neumann entropy
 generalizes Shannon entropy. A fundamental quantum symmetry is unitary invariance:

for any unitary   ,  . This reflects the fact that only the eigenvalue spectrum of  
matters.  Likewise,  measures of  entanglement (e.g.  entanglement entropy of a subsystem) are invariant
under local unitaries on each subsystem. Channel capacity for a quantum channel is invariant under pre-
and post-unitary transformations on input and output Hilbert spaces. In summary, any change of quantum
basis (global or local gauge rotation) is a symmetry of the informational content of quantum states. 
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Equivalence Classes under Symmetry Groups

ISM identifies equivalence classes of informational configurations under group actions. For example, the
symmetric group  acts on an  -outcome distribution by permuting labels; all relabelings yield equivalent
distributions with the same entropy and mutual information. More generally, one considers group actions
such as: -  Permutation group on symbols or system components, -  Reparameterization group (smooth
diffeomorphisms) on continuous parameter manifolds, -  Duality transformations (e.g. Fourier transform
on  signals,  exchanging  time/frequency  domains,  which  preserves  certain  entropic  quantities),  -  Gauge
groups (redundancies like adding constants, flipping bits, or phase rotations in quantum states). 

Under each group, one can define an orbit or equivalence class of states. ISM studies invariants constant on
each orbit. For instance, in a gauge symmetry, two descriptions related by a gauge transformation carry the
same  information;  in  a  duality,  physically  equivalent  descriptions  (e.g.  position  vs  momentum
representation)  yield  identical  information  measures.  ISM  formalizes  these  groups  and  orbits:  e.g.
permutations of subsystem labels define orbits of multivariate distributions, and the group of invertible
transformations on code words yields orbits of channel transition matrices.

Functoriality and Category-Theoretic Structure

ISM exploits  category  theory:  consider  the  category  FinProb of  finite  probability  spaces  and measure-
preserving  maps.  A  morphism   (a  surjection  merging  outcomes)  induces  an
“information loss” as above. Baez–Fritz–Leinster show that any continuous functor  from FinProb to 
that is additive under composition (functoriality   )  and convex-linear (respects
mixing of processes) must satisfy . In other words, Shannon entropy (up
to  scale)  is  the  unique  functorial  information  measure  on  deterministic  processes.  This  categorical
viewpoint extends: there is a category FinStat (statistical inference) and FinStoch (stochastic maps) in which
relative  entropy  (KL  divergence)  and  conditional  entropy  become  natural  functors .  The  functoriality
embodies the idea that information behaves additively under sequential processing, and imposes strong
constraints that characterize standard entropic forms.

Informational Invariants

ISM singles out invariants under symmetry actions. Key invariants include:
-  Entropy  and  mutual information  :  invariant under relabelings and unitary changes;  obey data-
processing (nonincrease under coarse-graining) .
-  Relative entropy (KL divergence): monotonic under stochastic transformations (“data-processing”): for
any channel   ,  .  It  vanishes if  and only  if  the distributions are
identical  on each equivalence class of the channel.  KL divergence is  also invariant under any invertible
reparameterization of the underlying variable, since such transformations add an equal Jacobian term to
both  and  .
-  Fisher  information  metric:  as  above,  invariant  under  reparameterization  of  coordinates  (Chentsov
uniqueness) . It is also covariant under permutations of components.
-  Kolmogorov complexity  : invariant up to an additive constant under change of universal Turing
machine (machine-invariance theorem) . Thus a qualitative class (e.g. “low complexity”) is an invariant
property of the string under computable recodings.
-  Channel  capacity:  maximized mutual  information over  inputs.  This  is  invariant  under  isomorphic  re-
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labelings of inputs/outputs and unchanged by encoding/decoding that respects the channel’s symmetry.
- Quantum invariants: spectrum of  (hence  ), entanglement spectra, etc., are invariant under unitary
basis  changes.  Gauge-invariant  mutual  informations (e.g.  Holevo  information)  likewise  obey  a  data-
processing inequality in the quantum setting. 

These  invariants  quantify  “how  much”  information  persists  under  symmetry.  ISM  examines  how  each
invariant behaves under group or semigroup actions: for instance, entropy is a single-valued function on
each orbit of the permutation group. One may consider the orbit space of distributions mod the symmetry
group, and assign coordinates (invariants) to each orbit. 

Symmetry Breaking and Informational Emergence

When a system undergoes symmetry breaking, new informational structure typically emerges. In physics-
inspired terms, a symmetric (high-entropy) phase can bifurcate into an ordered (lower-entropy) phase with
a chosen orientation or pattern. According to Anderson’s thesis, spontaneous symmetry-breaking at the
macroscopic  level  is  an  emergent  phenomenon  not  predictable  from  micro-level  symmetries .
Concretely,  consider  a  ferromagnet:  at  high  temperature  the  spin  distribution  is  symmetric  (zero
magnetization, high entropy); below the Curie point, a particular direction is chosen, breaking rotational
symmetry. This choice encodes new information (the direction of magnetization) that was absent in the
symmetric phase. In ISM terms, a breaking of group invariance splits one information-equivalence class into
multiple orbits,  enriching the information content.  For example,  a  Boolean bit  string that  is  symmetric
under bit-flip symmetry has no knowledge of "sign"; if symmetry breaks (one bit becomes fixed to 0 rather
than 1), the ensemble’s entropy drops and a signal emerges. 

In  the  emergence  pipeline,  one  often  projects  high-dimensional  microstates  to  lower-dimensional
macrostates  (coarse-graining)  and  then  allows  symmetries  to  be  broken  or  chosen.  ISM  tracks  these
structural changes:
-  Projection  (PRT):  When  coarse-graining  (e.g.  renormalization),  many  microstates  collapse  to  one
macrostate, reducing symmetries (micro-permutations) but possibly revealing new invariances (e.g. scale
invariance  at  criticality).  Information-theoretically,  coarse-graining  is  a  measure-preserving  map  whose
“loss” is nonnegative . Apenko shows that as one integrates out (eliminates) “fast” degrees of freedom,
the Shannon entropy of the system drops; equivalently, the mutual information between eliminated and
retained variables is positive, ensuring that entropy per degree of freedom  increases along the RG flow
(irreversibility) .  This  matches  the ISM view:  renormalization is  a  symmetry-breaking process  (micro-
symmetries become hidden) that monotonically reduces fine-grained information.
-  Transformation:  Under  invertible  transformations  (changes  of  variables,  basis,  dualities),  the  chosen
invariants remain fixed. For example, applying a Fourier transform to a signal distribution preserves its
Shannon differential entropy (up to a constant Jacobian term) and does not increase channel capacity; thus
Fourier duality is a symmetry in the information pipeline.
-  Emergence (ESM): New variables or concepts may emerge at a macro level that were not explicit micro-
variables. These correspond to broken symmetries in ISM: certain microfluctuations become “frozen” and
no  longer  contribute  to  entropy,  while  new  macroscopic  parameters  (order  parameters)  appear.  In
informational  emergence,  one  views  symmetry  breaking as  a  mapping of  one  information  network  to
another with different connectivity. ISM provides the formalism: each broken symmetry has a signature in
the invariants (e.g. a decrease in entropy, an increase in mutual information among remaining degrees) and
can be tracked as a transition between equivalence classes of configurations.
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Integration with PRT, DIM, ESM, and GCM

The  ISM  layer  ensures  coherence  across  models  like  Projection–Renormalization  Theory  (PRT), 
Dimensional  Information Model  (DIM),  Emergent  Symmetry  Model  (ESM),  and  General  Coherence
Model  (GCM) by  enforcing  that  informational  symmetries  are  respected  at  each  stage  of  the  data
transformation  pipeline.  Concretely:  PRT  deals  with  how micro-descriptions  project  to  macroscale;  ISM
complements  this  by  insisting  that  any  projection  must  respect  the  symmetry  group  of  informational
invariants (so that no hidden “gauge freedom” is arbitrarily lost or created). DIM considers representations
at  various  scales  or  dimensions;  ISM  implies  that  changing  resolution  is  a  form  of  symmetry  (scale
invariance or scale covariance) and that dimensionality reduction should not destroy essential information
invariants (e.g. fractal dimensions as invariants under coarse-graining). ESM is explicitly about how new
patterns arise from broken symmetry; ISM provides the language to quantify those patterns and to map
how information measures transform when a symmetry is broken or emergent. Finally, GCM, which posits a
global  consistency  among  information  transformations,  relies  on  ISM  as  the  consistency  enforcer:  any
allowable transformation (projection, encoding, emergence) must commute with the symmetry actions and
preserve the invariant quantities. 

In  summary,  the  Information  Symmetry  Model  builds  on  Shannon,  Fisher,  Kolmogorov,  and  quantum
frameworks  to  classify  information-bearing  structures  by  their  symmetries.  It  identifies  group  actions
(permutations,  reparameterizations,  dualities,  gauges),  characterizes  their  invariants  (entropy,  mutual
information,  complexity,  capacity,  etc.),  and  tracks  how  these  invariants  behave  under  all  relevant
transformations  (data  processing,  renormalization,  emergence).  Symmetry  breaking  is  seen  as  the
mechanism of informational emergence, whereby invariants change and new equivalence classes appear.
Mathematically, ISM endows the space of informational configurations with a geometric and categorical
structure, enforcing that all projections and mappings commute with the action of information symmetries.
This coherence layer unifies and constrains PRT, DIM, ESM, and GCM, ensuring that the deep structure of
information – its entropies, correlations, and complexities – remains consistent across levels of description

.

References: The above develops established results: Shannon entropy’s functorial characterization ;
the  Fisher–Rao  metric’s  Chentsov  uniqueness ;  quantum  entropy  invariance ;  the  Kolmogorov
invariance  theorem ;  the  Data-Processing  Inequality  for  mutual  and  relative  entropy ;  and
analyses of information flow under renormalization . These collectively form the rigorous backbone
of ISM. 
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