

Tree of Life Tutoring - Emily Rose

Table of Contents

01 Modern cell theory

Biological molecules

Macromolecules and energy

Cell structure and function

What is a cell and how do they work?

Table of Contents

Bacteria

Cellular structure of a bacterium

Basic viral structure

04

What is a protein?

Proteins, right down to the subunit level

Table of Contents

08

How are proteins made?

A brief overview of transcription and translation

Intro to the periodic table

How to read trends in the periodic table

Redox reactions

How they work & what is involved

Modern Cell Theory

02

All living things are composed of one or more cells Cells contain hereditary information that is passed along from cell division 03

Biochemical reactions ensures that energy flow is maintained within cells

04

Cells depend on their intracellular components to carry out life functions

Macromolecules

Carbohydrates

- Composed of carbon, hydrogen & oxygen
- Monosaccharide,
 Disaccharide,
 Oligosaccharide,
 Polysaccharide

X

Lipids

- Composed of hydrocarbon chains with a carboxyl group
- Saturated or unsaturated

Nucleic acids

- Composed of Nitrogenous bases, ribose or deoxyribose sugar, and a phosphate

0 14 0 1 1 10

Proteins

- Composed of amino acids
 - Primary, secondary, tertiary, and quaternary structure

ATP, the universal energy source

https://www.lecturio.com/magazine/adenosine-triphosphate-atp/

https://www.biologyonline.com/tutorials/biological-energy-adp-at

Functions of the Cell Components

	Cell Structure	Function (Job)	Cell Structure	Function (Job)	
	Nucleus	Houses the cell's genetic material	Vesicles	Important for endocytosis and exocytosis	
	Cytoplasm	Aqueous medium in which organelles and cellular material	Endoplasmic Reticulum	Protein synthesis and sorting	
	Cell Surface membrane	Composed of a lipid bilayer	Golgi body	Protein sorting and packaging into vesicles	
	Mitochondria	Main site of cellular respiration	C. C		

Organelles Found in the Cytoplasm

Ribosomes

Site of translation

Lysosomes

Important for degradation

Vacuoles

Important for maintaining solute concentrations

Peroxisomes

Important for cell metabolism

Structure of a multipolar neuron

https://askabiologist.asu.edu/neuron-anatomy

What is an action potential?

X

e. hose/21

Bacteria

- ★ Prokaryotic
- ★ Single-celled
- ★ Smaller than eukaryotic cells
- ★ Classified based on physical characteristics (shape, grouping, etc)
 - Ex: Staphylococcus aureus
 - Cocci = round & Staphylococci = grouped & round

https://biologydictionary.net/prokaryotic-cell/

Fig. 1.9. Fungi. Fine structure of a hypha near the growing tip of Mucor based on an electron micrograph.

Fig. 1.8. Fungi. Fine structure of Torula Yeast cell based on an electron micrograph.

https://www.biologydiscussion.com/fungi/structure-of-fungal-cell-with-diagram-fungi/63013

Differences between:

Eukaryotic cells

- Contain membrane-bound organelles
- Genetic material found in nucleus
- Endomembrane system
- Replicates by cell division (mitosis or meiosis)

Prokaryotic cells

- No inner membranes
 (e.g., nuclear envelope)
- Biochemical reactions take place within the cytoplasm of the cell
- Replicates by binary fission

https://www.researchgate.net/figure/Structur e-of-a-Virus_fig1_260683286

- Non-living → need a host to replicate genetic material
- Not composed of cells

 → Not eukaryotic or
 prokaryotic
- Highly adaptable to their environment

https://www.nature.com/articles/s41565-020-0732-3

What is a protein?

- The major structural component of cells
- Macromolecules composed of chains of amino acids
- There are 2 classes of amino acids: essential and non essential
 - Essential = cannot be made by the body
 - Non essential = can be made by the body

Amino Acids

- 20 amino acids are found in humans → differentiated by their side chain (R)
- Composed of an N-terminus head and a C-terminus tail
- Joined together by a **peptide bond** to form proteins

Types of Amino Acids

AMINO ACID			SIDE CHAIN	AMINO ACID			SIDE CHAIN
Aspartic acid	Asp	D	negatively charged	Alanine	Ala	А	nonpolar
Glutamic acid	Glu	Е	negatively charged	Glycine	Gly	G	nonpolar
Arginine	Arg	R	positively charged	Valine	Val	v	nonpolar
Lysine	Lys	к	positively charged	Leucine	Leu	L	nonpolar
Histidine	His	н	positively charged	Isoleucine	lle	1	nonpolar
Asparagine	Asn	Ν	uncharged polar	Proline	Pro	Ρ	nonpolar
Glutamine	Gln	Q	uncharged polar	Phenylalanine	Phe	F	nonpolar
Serine	Ser	S	uncharged polar	Methionine	Met	м	nonpolar
Threonine	Thr	т	uncharged polar	Tryptophan	Trp	w	nonpolar
Tyrosine	Tyr	Y	uncharged polar	Cysteine	Cys	с	nonpolar

POLAR AMINO ACIDS

Figure 4-3 Essential Cell Biology, 4th ed. (© Garland Science 2014)

NONPOLAR AMINO ACIDS -

Transcription

GTAACT

Holypeptide

form the peptide

acids.

bonds between aming

Sequence; ribasomes

->DNA

*step1 of protein synthesis:

makes

Sorna polymerase

* Step 2 of protein Synthesis: Translation Ribosome

+RNA anticodon

site

> mRNA COPY muclear pore complex (pre-menal

Re-mRNA is converted to mNRP (messanger ribonuckoprotein) and are transported out of the cell through nuclear pore complexes.

codon triplets on the mRNA template are translated into amino acide. tRNA carry the Pepfide anticodons that are complementary to the mRNA template. Ribosomes more across the mRNA tomplate. carrying tRNA and building the polypeptide sequence.

Basic Terminology

- Atom = fundamental unit of a chemical substance
- Atoms combine to form molecules
- An **element** is a pure substance composed of only **one atom**
- A compound is composed of two or more elements
- An **electron** = a subatomic particle with a negative charge
 - Found in orbitals surrounding an atom's nucleus
 - Valence electrons are those found in the outermost orbital
- A proton = a subatomic particle with a positive charge
 - Found in the atom's nucleus

The Periodic Table of Elements

American Chemical Society

NAME OF STREET, STREET

www.acs.org/outreach

How do I navigate the periodic table?

- The periodic table is composed of elements
 - elements are arranged based on their shared properties (physical or chemical)
- Rows = periods

nas

- Columns = groups
 - Elements within a **group** tend to have similar properties
- Some groups have specific names
 - Group 1 = Alkali Metals
 - Group 2 = Alkaline Earth Metals
 - Group 7 = Halogens
 - Group 8 = Noble Gases

Group number corresponds to the number of valence electrons an atom

How do I navigate the periodic table?

- Each elements has a(n):
 - Atomic number
 - Symbol
 - Name
 - Average Atomic Mass (Molar Mass)
- The atomic number indicates how many **protons** the element has

https://nool.ontariotechu.ca/science/chemistry/periodic-table.php

- A **neutral** element will have an **equal** number of protons and electrons
- A **charged** element will have an **unequal** number of protons and electrons
 - A charged element is also known as an **ion**
- Elements become charged by either gaining or losing **electrons**
 - Positive charge = more protons than electrons = one or more electron(s) were lost
 - Negative charge = more electrons than protons = one or more electron(s) were gained

Chemical Bonds

- **chemical bond** = an attractive force between 2 atoms
- The **octet rule** states that elements tend to bond in a way such that each element has 8 electrons in its outermost shell (valence shell)
 - Exceptions are Hydrogen and Helium, which can both only accommodate 2 valence electrons

Types of Chemical Bonds

- There are 2 types of chemical bonds
- lonic
 - Occurs between a metal and a nonmetal
 - Involves the transfer of electrons from the metal to the nonmetal so that each element has 8 valence electrons (making the bond stable)

• Covalent

- Occurs between two nonmetals
- Involves the sharing of atoms between two elements (both atoms end up having a stable octet meaning 8 valence electrons)

Chemical Forces

• Intramolecular Forces

- Include ionic and covalent bonds
- Attractive forces between atoms and ions within a molecule

• Intermolecular Forces

- Attractive forces between molecules
- Includes London Dispersion Forces, Dipole-Dipole, and Hydrogen bonding

Intro to Organic Chemistry

- The most important elements are carbon and hydrogen!
- Carbon based compound = organic

Chemical Reactions

- A process in which chemical bonds are broken or formed in order to convert one set of chemical substances into another
- Reactant = substance that undergoes a chemical reaction
- Product = substance that is created as a result of the chemical reaction

Redox Reactions

- Short form for an **oxidation-reduction reaction**
- Oxidation = **loss** of electrons
- Reduction = gain of election
- Acronym to remember: OIL RIG (oxidation is loss of electron, reduction is gain of electrons) OR LEO the lion says GER (lose electrons oxidize, gain electrons reduce)

Redox Reactions

- **Reducing agent** = donates electrons
- **Oxidizing agent** = accepts electrons from the reducing agent

Figure 10.2 In a redox reaction, the reducing agent is oxidized, and the oxidizing agent is reduced. Note that the oxidizing agent *does not* undergo oxidation, and that the reducing agent *does not* undergo reduction.

Mustoe, F. (2002). McGraw-Hill Ryerson chemistry 12. Toronto : McGraw-Hill Ryerson

Thanks!

Please feel free to email me if you have any questions!

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik

Please keep this slide for attribution

