



## **Table of Contents**



\*

### Topic 5

Atomic energies & periodicity



Theories of chemical bonding











Atomic energy









## **Types of orbitals**

 $\begin{array}{l} \begin{array}{l} Quantum \ \# \ rules \\ n \geq 1 \\ 0 \leq l \leq n-1 \\ -l \leq m_l \leq l \\ m_{s\,=}\,+1/2 \ or \,-1/2 \end{array}$ 

<u>Kinds of orbitals</u> 1 type of s orbital 3 types of p orbital 5 types of d orbital 7 types of f orbital <u>Maximum number of e</u> 2e<sup>-</sup> in an s orbital 6e<sup>-</sup> in an p orbital 10e<sup>-</sup> in an d orbital 14e<sup>-</sup> in an f orbital







## **Types of orbitals**

- → Pauli exclusion principle:
  - No 2 e- in an atom can can have the same 4 quantum numbers
- → Aufbau principle:
  - E- fill lower energy levels first before filling higher ones
    - E.g., 1S is filled before 2S
  - Helps determine the configurations of e-
  - Sometimes not the case! E.g., e- configuration of Silver [Ag]
- → Hund's rule

0

- Each orbital must be occupied with one e- before it can be occupied by 2 e-
  - All single e- that occupy orbitals in a subshell have the same spin
  - No two e- occupying the same orbital can have the same spin



## **Orbital filling order**









## Periodicity

- $\rightarrow$  What is periodicity?
  - Predictable changes of physical properties of atoms going across a period or down a group
- → E.g., atomic radius

Increases going down a group

Decreases going L to R across a period





0





- $\rightarrow$  Anions are larger than electrically neutral atoms
  - Adding e- to the same shell
- → Cations are smaller than electrically neutral atoms
  - Loss of e-









- → Formed from a metallic cation and a non-metallic anion
  - E.g., Na + Cl  $\rightarrow$  Na+(aq) + Cl- (aq)
  - NaCl  $\rightarrow$  Na loses an e- to Cl
- → Lewis dot structure:

E.g., NaCl







## Lattice energy

- → Lattice energy (U) is the energy that is required for salt existing in a solid state to transition into an ionic gas
  - E.g., NaCl (s)  $\rightarrow$  Na+(g) + Cl- (g)
    - U = +786 kJ/mol
- → Properties of ionic solids
  - High lattice energy = high melting temperature
    - Strong interactions between atoms in solid









Overview of bonding









- → Ionization energy
  - The minimum amount of energy that is needed to remove the most weakly bonded e- in an outer orbital
    - E.g.,  $Na \rightarrow Na++e-$
- → E- affinity
  - The amount of energy that is released when a neutral molecule gains an e- and becomes an anion
  - $\bullet \quad \mathsf{Cl} + \mathsf{e} \mathsf{-} \to \mathsf{Cl} \mathsf{-}$
  - Electronegativity (x)
    - Refers to the capability of an element to attract bonded e-
    - Differences in electronegativity can cause unequal sharing of e-
      - E.g., HF (fluorine is the most electronegative atom and therefore commands the attraction of Hydrogen's e-



.

0



## Electronegativity

| 1A     |                     |      |           |       |         |            |       |         |             |           |            |            |      |              |               |     |
|--------|---------------------|------|-----------|-------|---------|------------|-------|---------|-------------|-----------|------------|------------|------|--------------|---------------|-----|
| H      | h.,                 |      |           | b     | elow    | 1.0        |       | 2.      | 0-2.4       | ļ.        |            |            |      |              |               |     |
| 2.1 2A |                     |      |           | 10.14 |         |            | 25.20 |         |             | 3A        | <b>4</b> A | 5A         | 6A   | 7 <b>A</b>   |               |     |
| Li     | Li Be 1.0-1.4       |      |           |       | 2.3-2.9 |            |       |         | B           | C         | N          | 0          | F    |              |               |     |
| 1.0    | 1.5                 | 1000 | 1.5-1.9   |       |         |            |       | 3.0-4.0 |             |           | 2.0        | 2.5        | 3.0  | 3.5          | 4.0           |     |
| Na     | Mg                  |      |           |       |         |            |       |         |             |           |            | Al         | Si   | P            | S             | CI  |
| 0.9    | 1.2                 | 3B   | <b>4B</b> | 5B    | 6B      | 7B         |       | -8B-    |             | <b>1B</b> | <b>2B</b>  | 1.5        | 1.8  | 21           | -             | 3.0 |
| K      | Ca                  | Sc   | Ti        | V     | Cr      | Mn         | Fe    | Co      | Ni          | Cu        | Zn         | Ga         | ae   | As           | Se            | Br  |
| 0.8    | 1.0                 | 1.3  | 1.5       | 1.6   | 1.6     | 1.5        | 1.8   | 1.8     | 1.8         | 1.9       | 1          | 1.6        | 1.8  | 2.0          | 2.4           | 2.8 |
| Rb     | Sr                  | Y    | Zr        | Nb    | Mo      | Te         | Ru    | Rh      | P           | ag        | Cd         | In         | Sn   | Sb           | Te            | I   |
| 0.8    | 1.0                 | 1.2  | 1.4       | 1.6   | 1.8     | 1.9        | 2.2   | -14     | 2.2         | 1.9       | 1.7        | 1.7        | 1.8  | 1.9          | 2.1           | 2.5 |
| Cs     | Ba                  | La*  | Hf        | Ta    | W       | P          | Os    | Ir      | Pt          | Au        | Hg         | TI         | Pb   | Bi           | Po            | At  |
| 0.7    | 0.9                 | 1.1  | 1.3       | 15    | 1.1     | 1.9        | 2.2   | 2.2     | 2.2         | 2.4       | 1.9        | 1.8        | 1.8  | 1.9          | 2.0           | 2.2 |
| Fr     | Ra                  | Ant  |           |       |         | all barres |       | 100000  | and a start |           | all sales  | Stat Angel | 1000 | Constant and | and a starter |     |
| 0.7_   | 0                   | 1.1  | *L        | antha | nide    | s: 1.1     | -1.3  |         |             |           |            |            |      |              |               |     |
|        | *Actinides: 1.3–1.5 |      |           |       |         |            |       |         |             |           |            |            |      |              |               |     |





 $\rightarrow$  Electronegativity (x)

X determines the type of bond shared between atoms







HCl



- $\rightarrow$  E.g., Determine  $\triangle X$  for the following molecules and list the type of bond :
  - NaCl N2 Η He 2.1 \_\_\_\_ В С Ν 0 F Ne Li Be 3.0 2.5 3.5 4.0 1.5 2.0 1.0 ---Na Mg 1.2 Al Si Ρ S C1Ar 2.5 1.8 2.2 3.0 0.9 1.5 ---Κ Ca Sc Ti Ni V Cr Fe Co Cu Ga Ge Se Mn Zn As Br Kr 0.8 1.0 1.3 1.5 1.6 1.6 1.8 1.8 1.8 1.9 1.6 1.8 2.0 2.8 1.5 1.6 2.4 3.0 Rb Sr Y Zr Tc Rh Pd Ag 1.9 Cd In Sn Sb Te Nb Mo Ru Ι Xe 1.7 1.2 1.4 2.2 1.8 1.9 2.5 0.8 1.0 1.6 1.9 2.2 2.2 1.7 2.1 1.8 2.6 Hf W Hg 1.9 At Cs Ba La-Lu Ta Re Ir Pt Tl Pb Bi Po Rn Os Au 0.7 0.9 1.3 1.5 1.7 1.9 2.2 1.1-1.2 1.9 2.2 2.2 2.2 2.4 1.8 1.8 2.0 ---Fr Ra Ac-No 0.7 0.9 1.1-1.7

E



 $\bigcirc$ 



## Electronegativity

- → E.g., Determine △X for the following molecules and list the type of bond :
  ◆ HCl

  - Polar covalent
  - NaCl
    - $\triangle X = 3.0 0.9 = 2.1$
    - Ionic
  - N2

    - Covalent





## Drawing lewis diagrams

→ Determine the # of valence e-

• CCl4  $\rightarrow$  (4x 7) + 4 = 32 e-

- $\rightarrow$  Write out skeletal structure
  - Least electronegative atom in the centre
- → Complete octets for each terminal atom
- → Assign any additional e- as lone pairs on central atom
- → Make multiple bonds where necessary to complete octets

0

쑸







## **Formal charge**

→ Formal charge = (# of valence e- in neutral atom) - (# assigned to lewis struct.)



|   | -       | -   |
|---|---------|-----|
| • | C = S = | -6. |
| • | 0-0-    | -0. |

|                    | С  | S  | S |
|--------------------|----|----|---|
| Valence electrons  | 4  | 6  | 6 |
| Electrons assigned | 6  | 4  | 6 |
| Formal Charge      | -2 | -2 | 0 |

|                    | S        | С | S |
|--------------------|----------|---|---|
| Valence electrons  | 6        | 4 | 6 |
| Electrons assigned | 6        | 4 | 6 |
| Formal Charge      | 0        | 0 | 0 |
|                    | <b>0</b> | 7 | F |

:S=C=S:



### **VSEPR**

- → VSEPR theory
  - Valence Shell Electron Pair Repulsion
    - E- clouds repel
    - Follow guidelines of predictable geometry rules
    - "Terminal atoms move as far apart as possible"
- → Building a VSEPR diagram
  - Count # of e- clouds around central atom
    - Bonding pairs (2 e-)
    - Double bonds (4 e-)
    - Triple bonds (6 e-)
    - Lone pairs (2 e-)
    - Lone e- (1 e-)



0

Predict molecular shape (e.g., linear, tetrahedral, trigonal planar, etc)



#### **VSEPR Theory (Molecular Shapes)**

A = the central atom, X = an atom bonded to A, E = a lone pair on A

Note: There are lone pairs on X or other atoms, but we don't care. We are interested in only the electron densities or domains around atom A.

| Total<br>Domains | Generic<br>Formula             | Picture    | Bonded<br>Atoms | Lone<br>Pairs | Molecular<br>Shape | Electron<br>Geometry | Example           | Hybridi<br>-zation | Bond<br>Angles |
|------------------|--------------------------------|------------|-----------------|---------------|--------------------|----------------------|-------------------|--------------------|----------------|
| 1                | AX                             | A—X        | 1               | 0             | Linear             | Linear               | H <sub>2</sub>    | s                  | 180            |
| 2                | AX <sub>2</sub>                | х—А—Х      | 2               | 0             | Linear             | Linear               | CO2               | 50                 | 180            |
|                  | AXE                            | O A-X      | 1               | 1             | Linear             | Linear               | CN.               |                    |                |
| 3                | AX <sub>3</sub>                | Å          | 3               | 0             | Trigonal planar    | Trigonal planar      | AlBr <sub>3</sub> |                    |                |
|                  | AXaE                           | x          | 2               | 1             | Bent               | Trigonal planar      | SnCl <sub>e</sub> | sp²                | 120            |
|                  | AXE,                           | x-x<br>x-x | 1               | 2             | Linear             | Trigonal planar      | 0,                |                    |                |
| 4                | AX <sub>4</sub>                | Å          | 4               | 0             | Tetrahedral        | Tetrahedral          | SICI,             |                    | 3              |
|                  | AX3E                           |            | 3               | 1             | Trigonal pyramid   | Tetrahedral          | PH,               | sp <sup>3</sup>    | 109.5          |
|                  | AX <sub>2</sub> E <sub>2</sub> | × ×        | 2               | 2             | Bent               | Tetrahedral          | SeBr <sub>2</sub> | 3                  |                |
|                  | AXE <sub>3</sub>               | <u>×6</u>  | 1               | 3             | Linear             | Tetrahedral          | CL                |                    |                |

0











Theories of chemical bonding







## **Dipole moment**

### $\rightarrow$ What is a dipole moment?

- Net polarity of a molecule that results from polar bonds
- A larger A value = larger the dipole
- Molecular shape + AX = polarity
- Measured in units of debye
- → E.g., N2
  - $\Delta X = 3.0 3.0 = 0$
  - Therefore  $\mu = 0$  and there is not a dipole moment







## **Dipole moment**

→ E.g., Calculate △X for the following molecules and determine if there is a dipole moment:

**SO2** 

♦ CH4

0







## **Dipole moment**

→ E.g., Calculate △X for the following molecules and determine if there is a dipole moment

SO2

- Bent molecular shape
- $X(S) = 2.5 \& X(O) = 3.5 \rightarrow \triangle X = 4.5$

Molecular shape and AX indicate that there is a dipole moment







 $\bigcirc$ 

# Thanks!

Please email me if you need anything!



**CREDITS**: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik** 

Please keep this slide for attribution



Ο