UNDERWATER CABLES 101

An introduction to underwater cable application, design and installation

Giovanni Discenza

- Introduction
- Power
- Communications (Fiber Optics)
- Cable Design
- Advantages of Fiber Cables
- Lake, Marsh and River crossings
- Design Considerations
- Cable Laying
- Discussion

POWER CABLES

- Used for transmission of Electricity
- Specifically designed for AC or DC systems
- The largest operating system is the VikingLink.
 - 756 Km, 525V DC.
 - Initially designed at 800 MW
 - Ultimate capacity of 1,400 MW.
- The design generally includes fiber optic element for thermal monitoring and communications

TYPICAL POWER CABLE DESIGN

3 Phase AC Submarine Power Cable

Co-Axial HVDC Submarine Power Cable

Biggest project on the drawing table

COMMUNICATION CABLES

- Used for the transport of signals
- First design used a co-axial conductor for trans-oceanic applications
- Current designs use fiber optic filaments
- The design is dictated by the application
- The signal can be regenerated (amplified) along the route
- Generally, the fiber optic elements are the least expensive elements

Typical Communication Cable Design

Deep Water

River and Lake Crossings

Metallic Aerial Self Supporting

THE ANATOMY OF A SUBMARINE CABLE

- 1.Optical Fibers
- 2.Plastic Sheathing
- 3.Steel Wires/Strands
- **4.Power Conductor**
- 5. Polyethylene Layer
- 6.Armoring

WHY USE FIBER CABLES

- Vastly Superior Bandwidth
- Capacity and Reliability
- Lower Latency
- Greater Stability and Security
- Upgradeable

COMMUNICATIONS CABLES MANUFACTURERS

- Alcatel Submarine Networks (France.
- SubCom, LLC (US)
- NEC Corporation (Japan).
- Prysmian Group (Italy)
- Nexans (France)
- HENGTONG GROUP CO., LTD. (China)
- ZTT (China).
- NKT A/S (Denmark)
- Furukawa Electric Co., Ltd. (Japan)
- LS Cable & System Ltd (South Korea)

Unique Challenges of Lake, Marsh, and River Crossings

- Environmental Sensitivity
- Terrain Variability
- Water Obstacles
- Accessibility
- Potential Hazards
- Regulatory Requirements

CONSIDERATIONS FOR SYSTEM DESIGN

- Terrain and access to landing points
- Environmental Protection
- Durability and Longevity
- Redundancy
- Cable/Conduit Material
- Monitoring and Maintenance

DEPLOYMENT METHODS AND TECHNOLOGIES

1.Buried Cables/Conduits:

- Direct Burial
- Horizontal Directional Drilling (HDD)
- Micro-trenching: For shallower crossings or near shorelines, microtrenching can create narrow, shallow trenches for cable placement with minimal disturbance.

2. Submerged Cables:

- Weighted Cables
- Buried Submerged Cables

3. Aerial Crossings:

- Overhead Cables
- Hybrid Approaches

LAYING THE CABLE

- 1. Surveying the Route
- 2.Loading the Cable
- 3. Laying the Cable
- 4. Jointing and Testing
- 5.Shore Ends

SUSTAINABLE INSTALLATION METHODS

1. Trenchless Technologies

Horizontal Directional Drilling (HDD): Micro-trenching

2. Eco-Friendly Materials

- biodegradable cable sheathing.
- Fiber optics consume less energy than

3. Smart grids

optimize energy use, making fiber installations more sustainable.

4. Wetland and Waterway Protection

- Floating cable systems minimize disruption in lakes and rivers.
- Directional drilling avoids disturbing sensitive ecosystems.

5. Long-Lasting, Low-Maintenance Design

- Fiber optic cables require less frequent replacement than traditional copper wiring.
- Their durability reduces waste and maintenance costs over time.

POSSIBLE DISCUSSION ITEMS

- Timeline
- Permitting
- Environmental impact
- Maintenance
- Spare equipment
- Advantages of using one type of cable

GROUND PRESSURE VEHICLES

PAY-OFF SYSTEMS

UNDER WATER PLOUGHS

Trenching equipment

