

Dr. Reza Rajabiun

Research Fellow, Ted Rogers School of Information Technology Management Ryerson University

Economics of Rural Broadband: An Interactive Session

Canada's Rural & Remote Broadband Conference 2019 #CRRBC202

The Economics of Rural Broadband

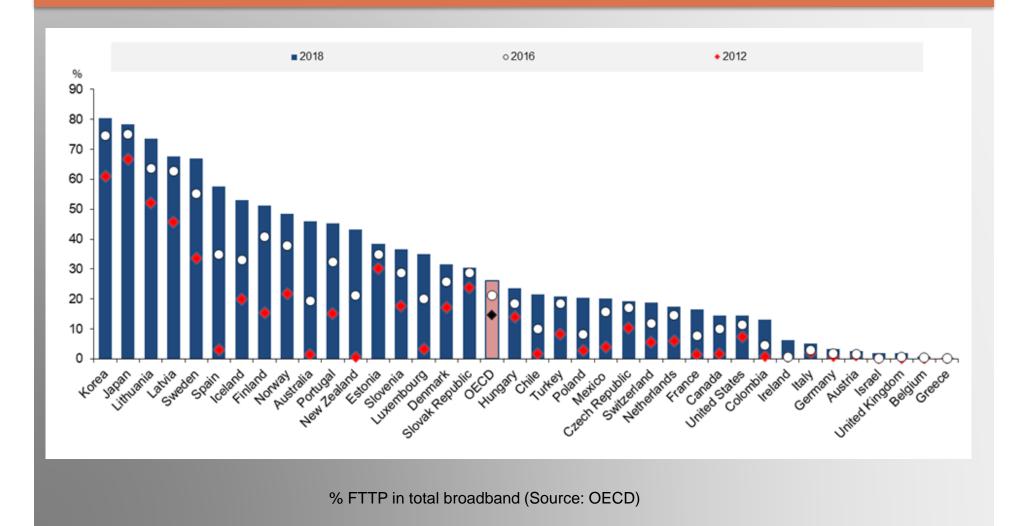
A global to local perspective on options and strategies

Bridging the Digital Divide Canada's Rural & Remote Broadband Conference

North Bay, Ontario November 2019

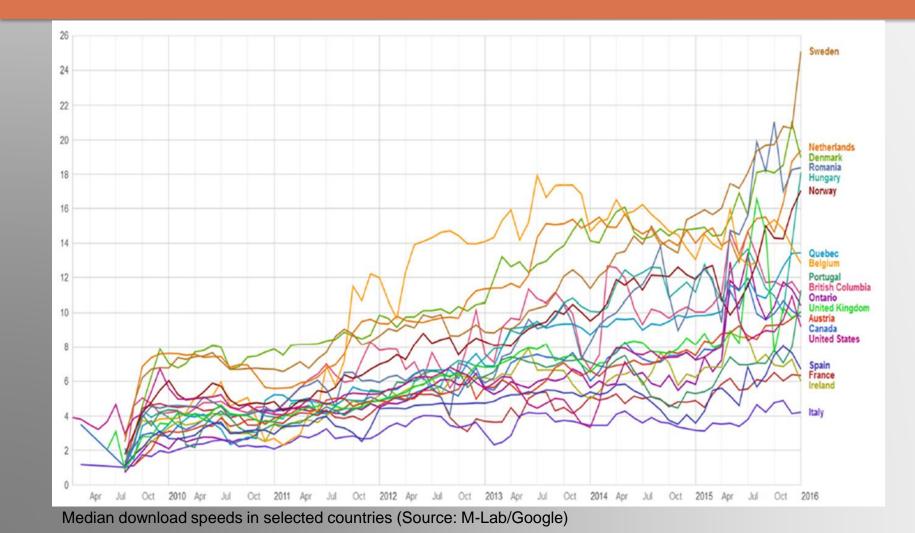
Dr. Reza Rajabiun, LLM

eFilters Inc.


1. Rural broadband a global problem wih local solutions

\rightarrow 2000s to today: From special projects to universal access

- **Demand:** Matters more than ever to people in rural areas + others/urban e.g. regional and global food systems, public finance: more efficient delivery of public services, higher property values/local tax base/less need for transfers, etc.
- Technology: 2nd generation personal and business apps./services require more reliable/low latency service: Better than "best effort" with minimum QoS/SLAs
 - min. standards particularly important for rural/remote prone to market failures/underinvestment; need for redundancy/resilience
- **Supply:** New technologies, business models for counteracting rural digital divide; falling costs, but revenue/expected take up low
 - → Network deployment local enterprise requiring private coordination
 - → Network provisioning/management, other functions: Scale economies Are/can be outsourced → Vertical separation/specialization
- Economics of public goods: Positive externalities/value added from network effects hard to capture/monetize by private sector provider of public infrastructure
 → Market failures/sub-optimal private supply/investment incentives


2. Global context: Divergence in FTTP diffusion

- \rightarrow Risk of both over-investment (in legacy) and under-investment (in fibre/4/5G)
- \rightarrow "Sweating the copper" strategies can be dominant and persistent

3. Global context: Divergence in effective speeds

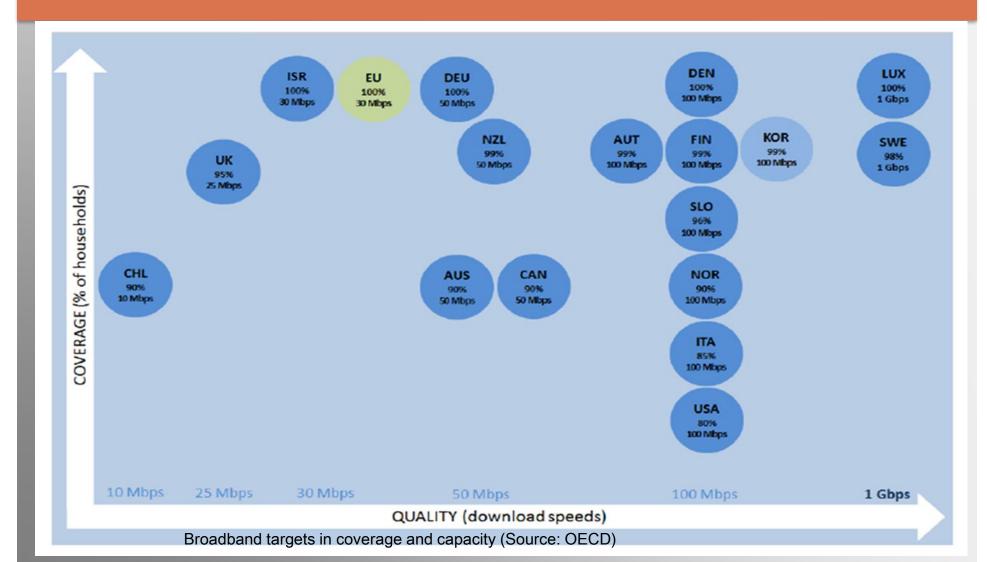
→ Growing necessity: Demand, but divergence in network capacity improvements
 → Clustering in effective speeds/QoS across and within countries

4. Rural fibre & 5G: Substitutes or complements?
→ Without "deep fibre"/backhaul, as 5G deployed in urban cores:
a) rural fall further behind due to no 5G deployment capacity?
b) higher capital intensity in 5G in cities diversts capex from longer range LTE/4G and extending fibre hops deeper into rural?

Limits of 5G in rural broadband applications (Source (Source: Samsung/NTT)

5. Drivers of divergent network outcomes

- International evidence suggests driven primarily by:
 - a) **Strategic choices** of large infrastructure providers; which are driven by firm level technology endowments, investor expectations....
 - b) National regulatory policy strategies
 - Strategies that limit the scope for "sweating the copper", inefficient duplication, promote risk sharing, co-investment, specialization
 - Minimize capex in fixed assets and expand network (e.g. privately negotiated e.g. Bell/Telus, or nudged with some policy instrument)
- Particularly important for bridging the rural/urban digital divide

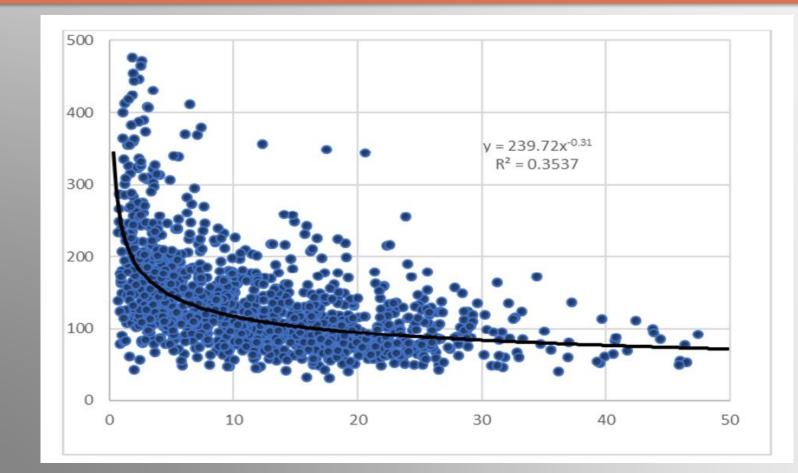

 → Facilities-based competition may be feasible/economically efficient
 in some very low cost urban centres, but not generally
 - → High cost/low revenue areas: Coordination failures
 - → Demand for community fibre, regional transport, PPP coordination

6. General options and strategies

- a) Do nothing: Wait for technological innovation in wireless/LEO satellites
 → Likely only option for very remote (5, 10% of HH?)
- b) Targeted subsidies: Direct fixed (operational?) cost subsidies to private providers willing to serve high cost/low return rural from the public budget; tax incentives (Canadian federal approach past two decades). How effective/efficient?
- c) Essential facilities obligations: Wholesale access obligations on dark/lit fibre transport capacity to minimize duplication/promote co-investment/cooperation in rural. Common in Europe/Asia. Rural communities have been asking CRTC for 20 years to mandate. Time to rethink?
- d) Universal service fund: Fees on large providers dominating low cost/high revenue areas to subsidize rural. U.S. approach, now CRTC bb fund
 → Note post election: Call for "Internet tax" for CanCon vs. rural bb
- e) Universal service mandate: Leverage internal cross-subsidies from low to high cost areas to deploy NGN into rural transport/access, decommission copper. Monitoring and implementation problems. Is it feasible and/or desirable today?
- f) Decentralized public/PPPs/managed service: Municipal/regional fibre/lit transport/retail: Lots of experimentation in Canada and around the world

7. Long term aspirational universal service policy targets

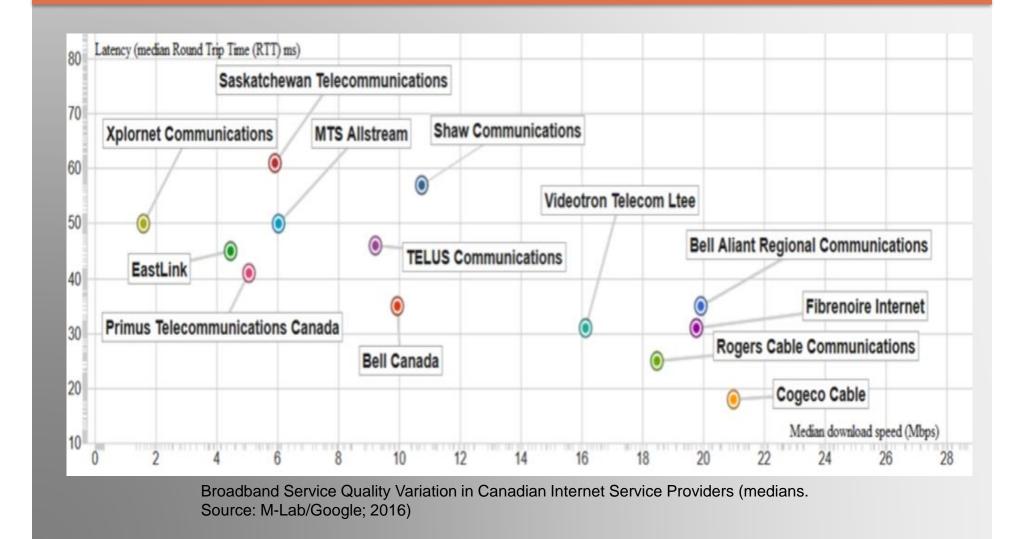
→ Rural connectivity/net neutrality: Trend towards minimum speed/QoS standards of "basic service" (e.g. CRTC 50 ms RTT latency to offnet)



8. Canadian context

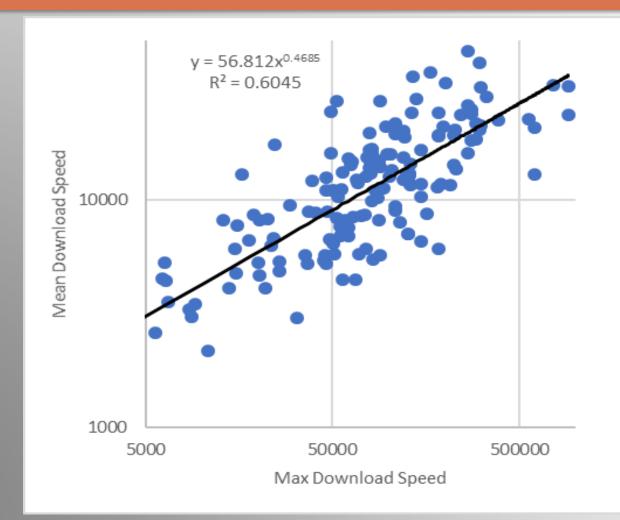
- Canadian federalism: Telecom regulation mostly federal, but provision of social and business infrastructure provincial/regional/municipal
 - → Potential for misalignment of regulatory incentives at different levels, Demand from communities/lower levels of government on feds; statutory basis in S.7. of Telecom Act.
- Federal responses to universal access policy demand to broadband: In 2000s ad hoc panels of telecom executives, institutional investors, others e.g. National Broadband Task Force (2001), TPRP (2006)
 - \rightarrow Mostly targeted subsidies to upgrade DSL, wireless speeds
 - → No SLAs/minimum speed/quality standards: Initial speed improvements not sustainable: Rajabiun & Middleton (2013); Auditor General CTI (2018)
 - Diversity of provincial/rural/regional solutions have come (and gone)
 - → Privatization/sale of public fibre assets deployed in the 2000s; e.g. Atria, Ontera. Hydro fibre assets? Critical for rural.
 - → Existing fibre assets not necessarily affordable/access via dark fibre IRUs to underserved communities/small ISPs

9. Broadband divergence in Canadian municipalities


→ Harder to improve QoS as speeds increase; need for "deep fibre" in rural → Is the 50/10 mbps long term "basic service" objective sufficient for 2030?

Broadband Divergence in Canadian Municipalities (x-axis, effective bandwidth, Mbps; yaxis, Round Trip Time (RTT) ms Source: M-Lab/Google, Rajabiun & McKelvey, Information Society 2017)

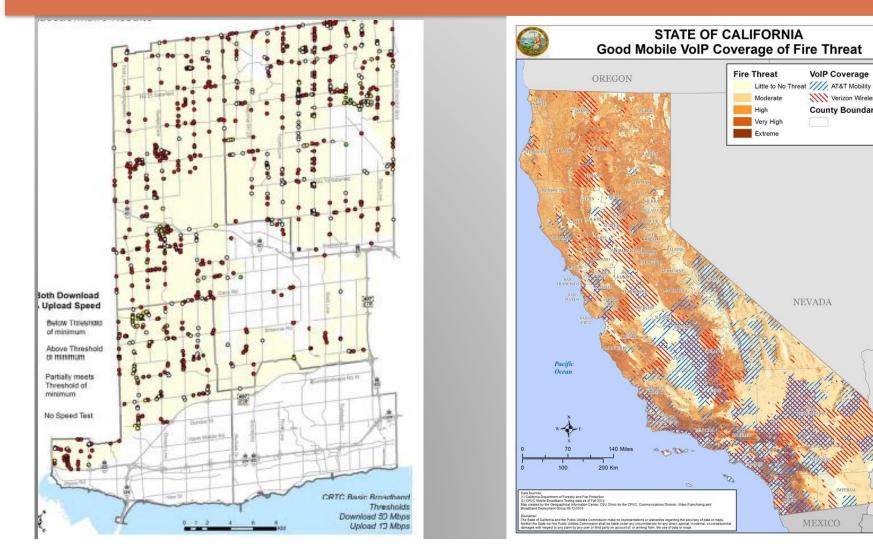
10. Service quality variation among service providers


\rightarrow Driven by: Technological endowments + capacity provisioning incentives

11. Regional divergence: On the edges of urban in GTHA → Large proportion satellite users in GTHA + demand for fibre in SME/residential → Mayors' BB task force/Chamber of Comrerce: Importance of muncipal leadership est. IRR for FTTN to FTTP 13%, just under expected IRR of large telcos \rightarrow But positive enough for small ISPs/muni. Networks if can aggregate demand? \rightarrow Average Round Trip FW Customers Sat Customers Time (milliseconds) Tier 4 Block (4-077 20 - 60 120 y = -2.55x + 132.9260 - 90 Clarington $R^2 = 0.54$ 110 Scugog Caledon 90 - 120 Burlington Georgina Milton $\stackrel{(s)}{=}$ 100 Toronto 120 - 210 Brock King RTT Oshawa 210 - 360 90 Mississauga East Gwillimbury Vaughan Average Oakville Dissemination Jewmarket Areas (Outline Uxbridge Markham 80 Hamilton Whitby Ajax Brampton Aurora 70 Rajabiun (2017), MOI Halton Hills Whitchurch-Pickering Stouffville 60 8 10 12 14 16 18 20 22 24 Average Download Speed (Mbps)

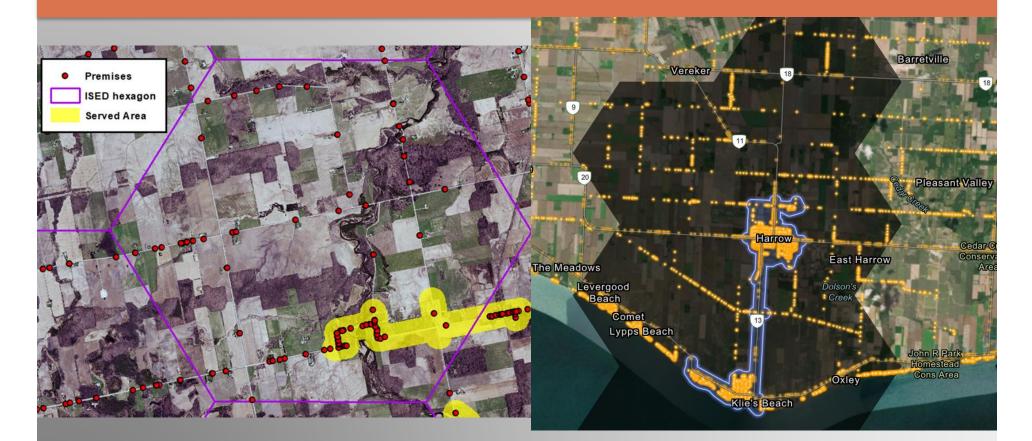
12. Magnitude of regional/localized gaps

→ Significant: 3-5x down average; higher in terms of upload/latency
 → Highly localized transport and access network market failures/bottlenecks


Avg. vs. max downstream bandwidth in SWO Rajabiun & Hambly (2018), CIRA/M-Lab

- 13. Towards evidence-based decision making: Examples from Halton/R2B2 and California Public Utilities
- → Improving rural broadband requires "big data" approach to infrastructure monitoring, mapping gaps, prioritizing scarce funds, ex post QoS/SLA verification

VoIP Coverage


W Verizon Wireless

County Boundaries

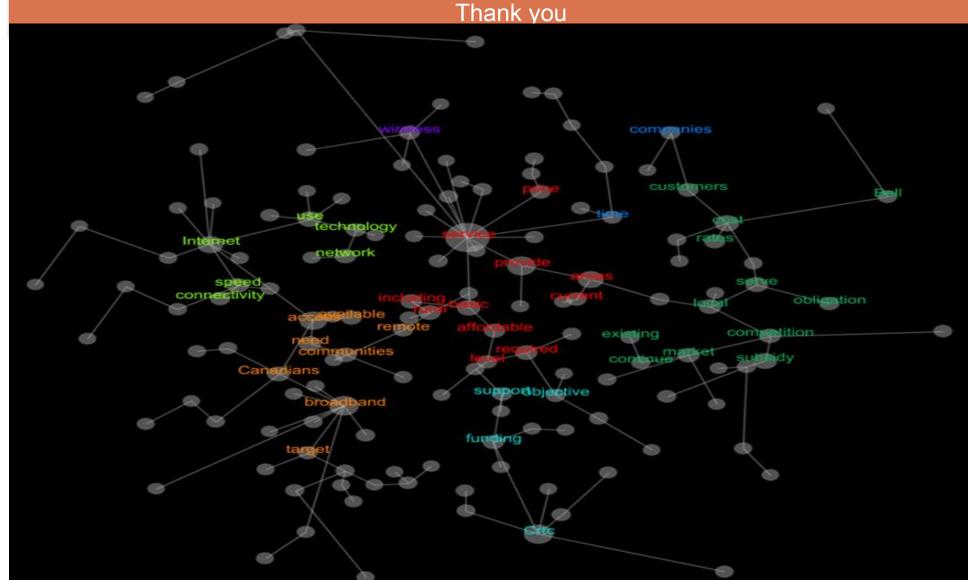
14. The dreaded hexagons

- → Reduce the accuracy of real data: Errors: Both equity and efficiency implications; overbuilds, very small projects on remote edges not viable/sustainable
- \rightarrow Value for money/program efficiency; leave many behind \rightarrow Auditor General CTI

15. Generic cost structures

 \rightarrow Fibre pass through, drop: Varies considerably across regional/local mks.

- \rightarrow Network equipment costs dropping fast; but for how long/trade war?
- → Lesson from Europe: Need to offload capex/risk of network equipment to private providers.; scarce public funds to FTTx/other scalable assets with long lifespan


						FTTP per Household Deployment Costs													
					-	ojec	t					Со	st of	h	omes passed	(Cost of drop to customer	Total	
\$6.00 - \$5.00 -	P	rice p	per N	1bps	_ ве	Bell Aliant/Atlantic Canada						\$500 \$400 in urban/dense (e.g. Halifax) to \$600 in less dense					\$900	\$1500	
\$4.00 -							fiber, rland		e			\$1	300			ſ	NA	+\$1300	
\$3.00 -		\backslash			Go	oogle	e Fibe	er, L	JSA			\$6	16			\$	\$250	\$866	
<i>\$</i> 3.00			\mathbf{X}		UF	UFB New Zealand Guifi/Gurb, Barcelona						\$2	348			¢,	\$1104	\$3452	
\$2.00 -			\rightarrow		Gu							\$7	00			¢,	\$250	\$950	
				\mathbf{x}	NT	r T, J a	pan	_				\$3	44			(\$38	\$382	
\$1.00 · \$0.00 ·	2008	2009	2010	2011	2012	2013	2014 2	2015	2016	2017	2018	2019	2020		· · ·	Ca	igh end routers: Source: ble carriers (Rogers, Cogeco, 2017)		

16. Revenue potential and positive externalities

- Additional willingness to pay for NGN relative to legacy limited. Expected take-up rates from improved service if invest in FTTP/advanced wireless?
- Few large/high margin users in rural; older residential
- Incumbent legacy plant operators usually the least cost supplier with highest revenue potential from fixed/wireless NGN deployment
 - \rightarrow Also, can save costs if deploy FTTP and decommission old copper plant
 - → But, tend to have better investment opportunities (urban FTTP, wireless, media)
- Small incumbents/entrants/municipalities: Higher costs, access to transport, capital, etc., but potentially satisfied with lower rural IRR with support/subsides?
- First Best solution: Cooperative outcomes that allow incumbent to decommission legacy copper + subsidies to incentivize "deep fibre in high cost areas?
 → Have been feasible in some Northern European and East Asian countries
 → Not so far in Canada (coordination failures)

Questions and discussion

How to build trust and cooperative rural NGN solutions? The role of smaller ISPs/towns/regions complement/incentivise? More efficient/effective subsidy/contractuall/organizational models?

