NRC-CNRC

NRC.CANADA.CA

Satellite Communications: A Deeper Dive

Lynne Genik

Director, High Throughput and Secure Networks (HTSN) Challenge Program, National Research Council Canada NRC)

CRRBC West

November 5, 2024

National Research Conseil national de

Canadä

Overview

- Introduction to NRC and HTSN Challenge Program
- Satellite communications overview
- Optical satellite communications

NRC at a Glance

R&D SERVICES

\$1,471M TOTAL **EXPENDITURES**

12 RESEARCH

CENTRES

CLIENTS

1,222 PUBLICATIONS

\$179M **REVENUE**

182 BUILDINGS AT 24 SITES

15 COLLABORATIVE

PROGRAMS

STAFF

1,950+ ACTIVE **PATENTS** (461 new patent applications)

NRC LONG-TERM ROLES

INDUSTRIAL RESEARCH ASSISTANCE **PROGRAM (NRC IRAP)**

269 INDUSTRIAL LOCATIONS **TECHNOLOGY ADVISORS**

106

\$489M **GRANTS &** CONTRIBUTION **FUNDING INVESTED**

6,204 **UNFUNDED** FIRMS RECEIVE **ADVISORY SERVICES ONLY**

3,486 **FIRMS RECEIVE FUNDING**

^{*} Figures are from fiscal year 2022-23

CHALLENGE PROGRAMS

#NRCChallengeAccepted

OBJECTIVE: Leverage NRC facilities, expertise & networks to anchor strategic teams from across academia and industry to address public policy challenges, government priorities and to stimulate business innovation.

CHALLENGE PROGRAMS:

Materials for Clean Fuels

Disruptive Technology Solutions for Cell and Gene Therapy

High-throughput and Secure Networks

Artificial Intelligence for Design

Arctic and Northern

Aging in Place

Pandemic Response

Internet of Things: Quantum Sensors

Applied Quantum Computing

Critical Battery Materials

Low Carbon Built Environment

Construction Digitalization and Productivity

Canada's National Broadband Internet Service Availability Map

Canadian population: ~40M people

Geographic area: ~10M km²

Image: https://www.ic.gc.ca/eic/site/139.nsf/vwimages/map.JPG/\$file/map.JPG

HTSN CHALLENGE PROGRAM 7-YEARS (2019-2026)

4 RESEARCH THEMES

\$24.9M GRANTS & CONTRIBUTIONS

HTSN is enabling a program vision of "1 Gbps everywhere" by removing key technical bottlenecks and accelerating technology for future networks

HIGH THROUGHPUT AND SECURE NETWORKS (HTSN) CHALLENGE PROGRAM

Progress as of 30 Sept 2024

Grants and Contributions (G&Cs)

Projects 70	
70	

Active	Ended
29	41

Committed \$23.2M

HQP and Outputs

273	Highly Qualified Personnel
213	(HQP) supported

Project Collaborators

University (3 international)

12 Industry

2 Not-for-profit

Optical Satcom Consortium (OSC)

23 OSC Members

>\$7.6M Member In-Kind (>\$2.4M NRC)

Major Equipment Investments

\$1.45M to McMaster University towards an Optical Ground Receiver Extension and Canada's first optical downlink demonstration

\$2.1M to the Canadian Space Agency for an Optical Quantum Ground Station for satellite communications

\$1.96M to uOttawa towards equipment for a world-class joint NRC-uOttawa **quantum optics lab**

Optical Satcom Consortium (OSC) Members

Level 1

LU.M

National Research Council Canada Conseil national de recherches Canada

Level 2

Level 3

🗰 u Ottawa

University of Manitoba

Satellite Communications

Radio Frequency (RF) Spectrum for Satellite

Image: ESA -Satellite frequency bands

Electromagnetic Spectrum

Higher frequencies, faster communications

For higher throughput, need to leverage the optical spectrum

Image: Nasa.gov

Satellite Basics

For existing satellite systems, links are typically RF with some optical intersatellite links emerging

Image: Satellite Communication: Definition, Block Diagram, Advantages, Applications

Satellite Orbits

- Since the 1960s, geostationary earth orbit (GEO) satellites have provided communication services
- Low earth orbit (LEO) satellites have lower latency and often provide higher bandwidth per user than GEO satellites

Satellite Orbits, Periods and Footprints

GEO Satellites – Large, stand-alone units

Geostationary Earth Orbit (GEO)

Features:

- Large, stand-alone units, each satellite:
 - Can service more than 33% of earth surface
 - Is large and expensive
- Orbit: 35,786 km above equator
 - Moves in sync with earth's rotation, stays above same point on the ground
 - High and low latitudes hard to reach
- Higher orbit = high latency (delay), e.g. 600-800ms
- Use radio frequency bands, no optical signals

Applications: Weather data, broadcast TV, low speed telecommunications

Ref: ESA - Types of orbits

MEO Satellites – Alone or constellations

Medium Earth Orbit (MEO)

Features:

- Work alone or as constellations, each satellite can service a good portion of the earth's surface
- Orbit: ~2000 to 35,786 km above earth
- Satellites not synchronous with earth rotation
 - Period (one full orbit around earth): 127min 24 hrs
- Medium orbit = Medium latency, e.g. 125-250 ms

Applications: GPS / navigation

LEO Satellites - Constellations

Low Earth Orbit (LEO)

Features:

- Work in "constellations" of interconnected satellites, each satellite:
 - Can service only a small portion of the earth's surface (about 500 km x 500 km)
 - Is relatively small and "cheap"
- Orbit ~500 to 2000 km above earth
- Satellites not synchronous with earth rotation
 - o Period (one full orbit around earth): 88-127 min
- Lower orbit = lower latency, e.g. 30-50 ms (Starlink | Technology)
- Optical inter-satellite links are in use and emerging

Applications: Earth observation, broadband internet

Communication Services from GEO Satellites: Viasat

Year	Satellite	Band	Total Capacity	Cost Base of Capacity	Peak data rates (down)	
2006	Wildblue-1	Ka-band	7 Gbps	>\$200/Mbps/mo.	3 Mbps	
2011	Viasat-1	Ka-band	140 Gbps	\$20/Mbps/mo.	12 Mbps	
2017	Viasat-2	Ka-band	260 Gbps	\$13/Mbps/mo.	30 Mbps	
2022	Viasat-3	Ka-band	1,000 Gbps	\$4/Mbps/mo.	100 Mbps	
2028	Viasat-4	TBD	5 to 7 Tbps	TBD	500 Mbps (extrapolated)	
Post-2030	Viasat-5	TBD	10 to 15 Tbps	TBD	1 Gbps (extrapolated)	

Ref: OSC Technology Roadmap, SatCan, 2022

- Each Viasat-3 satellite (3 satellites) planned for 1 Tbps total capacity
 - o Advertised downlink speed up to 100 Mbps
- 1st satellite launched April 2023
 - Main antenna failed to deploy correctly, losing >90% of satellite's planned capacity
- Company filing \$420M insurance claim

Communication Services from LEO Constellations

Year	Constellatio	n	# of Sats	Capacity per Sat	System Capacity	Optical ISLs	Optical Ground Link
2020-27	SpaceX	Gen1	4,425	20 Gbps	88 Tbps	Yes	No
2025-32	Starlink	Gen2	30,000	>60 Gbps	>1,000 Tbps	Yes	Yes
2025-35	Telesat	Gen1	300	50 Gbps	15 Tbps	Yes	No
2032-40	Lightspeed	Gen2	1,373	TBD	>70 Tbps	Yes	Yes
2021-26	OneWeb	Gen1	650	8 Gbps	5 Tbps	No	No
2025-30	Offewer	Gen2	6,372	TBD	>50 Tbps	Yes	Yes
2024-30	Amazon Kuiper	Gen1	3,326	50 Gbps	166 Tbps	Yes	No

- Each satellite covers a small area (~500 km x 500 km)
- Smaller capacity per satellite, higher capacity per user
 - o Current service levels: Maximum ~100-200 Mbps downloads
- Shorter distance = lower latency
- · Optical inter-satellite links (ISLs) makes routing faster and more secure
- Satellite to ground links radio frequency (RF) (Ka-Band)
 - Second generation plans for optical satellite to ground links

LEO Satellite Constellations – SpaceX StarLink

- As of September 2024, >6,000 LEO satellites at 550km altitude
 - Each satellite has 3 optical ISLs operating at up to 200 Gbps
 - Possible extension to as many as ~40,000 satellites
- >4 million subscribers
- Residential plan in Canada
 - Cost: CA\$140/month for service (unlimited data, no contract) and CA\$299-\$499 for hardware
 - Currently in Iqaluit: "StarLink is at capacity in your area"
 - **Speed:** Download 25-220 Mbps; upload 5-20 Mbps ("actual speeds may be lower than expected speeds during times of high usage")
 - Latency: 25-60 ms on land, 100+ ms in certain remote locations (e.g. Northern Canada)

21

LEO Satellite Constellations – Telesat LightSpeed

- Government loans in support of Telesat Lightspeed as of 2024
 - Government of Canada: \$2.14B
 - Government of Quebec: \$400M
- Scheduled to begin launch in 2026
- 198 LEO satellites at ~1,300 km altitude
 - 30-50 ms latency
 - Multiple Tbps of capacity
 - Gbps speeds
 - Ubiquitous coverage
 - 20X faster than GEO

Sources: https://www.telesat.com

Optical Satellite Communications: HTSN Vision

LEO Example: Connecting Remote Villages

Objective: Provide high speed internet connectivity to Clyde River

Challenges:

- No nearby fiber link
- Low capacity on existing GEO satellites
- For sat-ground laser link: cloud coverage is wide in Clyde River

However, there are areas in Canada without clouds, some of which have points of presence (PoPs) (e.g. Calgary)

Solution: Connect to the Calgary OGS / PoP and establish a route to Clyde River

LEO Example: Connecting Remote Villages

The Calgary OGS is selected and the optical link established, along with the space-based route, to **Clyde River**

The Clyde River user is covered by clouds: an RF link is used

Satellites are moving, but it is deterministic (i.e. trajectories are known as a function of time)

Cloud coverage is varying but can be predicted on the short/medium term

Comparing Optical and RF Ground-to-Satellite Links

Characteristic	Laser Link (free space optical link)	RF Link			
Spectrum	near infrared and visible light band	Ka, Ku, and mm-wave band			
Spectrum allocation	Unlicensed	Licensed by ITU			
Bandwidth	THz (Tb/s)	GHz (Gb/s)			
Wavelength	nm	up to mm			
Antenna size	smaller antenna (lens) size	much larger antenna size as it is proportional to wavelength			
Beam spread	much narrower (1 km radius or so)	typically 1,000 times wider			
Directivity	very high	much lower			
Power consumption	more received power for a given transmitted power	less received power due to beam spreading			
Security	very difficult to intercept due to its directivity	easy to intercept due to the beam spreading and reflections			
Interference	minor interference due to reflections	severe interference from neighboring users			
Line-of-sight obstructions	severely impact performance	severely impact performance at mm-wave band, but better than FSO otherwise			
Pointing error	Degrades link quality dramatically	Much less affected by pointing errors than FSO			
Weather conditions	can cause attenuation of 250 dB/km with dense fog	Affected by rain (drops comparable to wavelength), but still much better than FSO under harsh weather conditions			

Ref: OSC System Architecture, MDA Space, 2022

HTSN: Key Optical Satcom Investments

HTSN Project, "Canadian Optical Communication Downlink Demonstration with Optical Channel Assessment"

- Timeframe: August 2024 March 2026
- Collaborators: McMaster University, MDA Space, NRC, NRCan, DLR (German Aerospace Centre)
- Key outcomes:
 - A mobile research facility will be developed and deployed at a Canadian location
 - First demonstration of an optical data downlink from a (LEO) satellite to a location in Canada
 - Atmospheric mitigation experiments will be performed using other HTSN-developed technologies
 - Database of real atmospheric measurements will be created

Summary

- Many communities in Canada are satellite-dependent
- LEO satellite communications are being deployed and offer broadband internet;
 capacity will increase and costs will decrease over time
- The future of space communications is optical satcom, enabling orders of magnitude higher capacity
 - Will allow seamless extension of high-capacity terrestrial systems into space, expanding coverage and reducing latency and connection costs
- Canada is ideally positioned to become a leader in optical satcom due to our geography and technological strengths
 - HTSN investments have seeded vital expertise in optical satcom in Canada

Questions?

Lynne Genik, HTSN Director: lynne.genik@nrc-cnrc.gc.ca

Sylvain Raymond, Deputy Director and Optical Satcom Theme Lead: sylvain.raymond@nrc-cnrc.gc.ca

High Throughput and Secure Networks Challenge Program: https://nrc.canada.ca/en/research-development/research-collaboration/programs/high-throughput-secure-networks-challenge-program

Optical SatCom Consortium: https://www.satellitecanada.org/osc

Conseil national de recherches Canada Canadä