

Novel cases with biallelic variants in Wnt ligand secretion mediator (WLS) further support its role in structural eye anomalies

Fabiola Ceroni^{1*}, Hande Tunbak^{1, 2*}, Lidiya V. Talbot¹, Yesim Kesim^{3, 4}, Dorine A. Bax¹, Zena Lam⁵, Joanna Jarvis⁵, Evan Reid⁶, Lyndall Sarkies⁷, Stephen W. Wilson², Gaia Gestri², Nicola Ragge^{1, 5}

1 Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK; 2 University College London, UK; 3 Centre for Human Genetics, University of Oxford, Old Road Campus, Oxford, UK; 4 NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; 5 West Midlands Regional Clinical Genetics Service and Birmingham, UK; 6 Cambridge Institute for Medical Research and Department of Medical Genetics, University of Cambridge, Cambridge, UK; 7 East of England Regional Genetics Service, Cambridge, UK. *These authors contributed equally.

Background

Anophthalmia (absent eye), microphthalmia (small eye) and coloboma (gap in the eye structures) (AMC) are rare congenital eye anomalies affecting 11.9/100,000 live births¹ and are associated with systemic features in >50% of cases. More than 130 genes are diagnostically tested in UK patients, including members of the Wnt signalling pathways.

Wnt Ligand Secretion mediator Wntless (WLS) is essential to the trafficking and secretion of all Wnt ligands. Biallelic WLS variants cause a rare multi-systemic condition (Zaki syndrome), to date described in 7 families with a range of systemic phenotypes^{2,3,4}. Among these, AMC was reported in 3 families which led us investigate the role of *WLS* in developmental eye anomalies.

Methods

WLS screening: We screened three cohorts using whole exome/genome sequencing (WES/WGS) data to identify rare biallelic variants affecting WLS coding regions and canonical splice sites. A) Ragge AMC cohort - 172 individuals with AMC from 167 families (REC 04/Q0104/129); B) CAP69 cohort – 486 individuals with developmental eye anomalies from 484 families selected from the Deciphering Developmental Disorders (DDD) study (REC 10/H0305/83); C) 100,000 Genomes <u>Project (100K)</u> – Rare Disorders cohort (Tiering data v14). The study was conducted in accordance with the Declaration of Helsinki.

Abrogation of zebrafish wls: We generated FO wls crispants (wls FO) by injecting guide RNA (gRNAs) in 1-cell embryos to target three wls exons (1, 11, 12). We confirmed loss of wildtype wls alleles with MiSeq sequencing.

Zebrafish screen for genetic interactions: We also abrogated *wls* in zebrafish backgrounds with mutations in *lrp5*, *lrp6*, *taz*, *mab2112* and *lama1*, in which fish are sensitised to ocular malformations^{5,6,7,8}. We confirmed *wls* disruption in fish with anomalous phenotypes using T-ARMS-PCR. All zebrafish experiments were conducted in accordance with standard protocols and UK Home Office regulations (PIL: PP4300676).

Two new families with syndromic AMC and biallelic WLS variants

\bigcirc \bigcirc \bigcirc

FAMILY A

AMC phenotypes:

Bilateral microcornea, iris and chorioretinal coloboma Systemic features:

Micrognathia, abnormal left ear, small left kidney, mild 2-3 toe syndactyly, spinal lordosis, osteopenia

WLS (NM_024911): compound heterozygous variants

- Exon3:c.443G>A:p.Trp148* (maternal) MAF (gnomAD v4.1): 0.00001735; CADD=40, GERP_RS=5.94
- Exon3:c.473G>A:p.Arg158Gln (paternal) MAF (gnomAD v4.1): 0.00007745; CADD=29, GERP RS=5.94

FAMILY B

AMC phenotypes:

Bilateral microphthalmia, iris and chorioretinal coloboma

Systemic features:

Turricephaly, right lip and alveolar cleft, preauricular skin tags, slightly upturned earlobes, irregular dentition, cryptorchidism, small scarred left kidney, square fingertips and flat feet, hypotonia, osteopenia

WLS (NM_024911): homozygous variant

 Exon9:c.1261C>T:p.Arg421Trp (homozygous) MAF (gnomAD v4.1): 0.000003098; CADD=34, GERP RS=5.36

Black symbols: individuals carrying biallelic WLS variants; grey symbols: individuals with Bardet-Biedl syndrome

	Family A (n=1) <u>This study</u>	Family B (n=1) <u>This study</u>	Family 1 (n=5) Chai et al 2021	Family 2 (n=2) Chai et al 2021	Family 3 (n=1) Chai et al 2021	Family 4 (n=1) Chai et al 2021	Family 5 (n=1) Chai et al 2021	Family 6 (n=1) Yu et al 2023	Family 7 (n=1) Abdel-Salam et al 2023
WLS variant NM_024911.7	c.443G>A; p.W148X c.473G>A; p.R158Q	c.1261C>T; p.R421W	c.1175A>G; p.Y392C	c.1433A>G; p.Y478C	c.1433A>G; p.Y478C	c.1592T>C; p.I531T	c.1606C>T; p.R536C	c.421C>T; p.R141C c.1433A>G; p.Y478C	c.1579G>A; p.G527R
Consanguinity	-	+	+	+	(suspected)	(suspected)	+	-	+
Gender	F	М	4 F, 1 M	2 F	F	F	F	М	Μ
Short stature	 -	-	+	+	-	n/a	+	-	+
Microcephaly	Relative microcephaly in early childhood	-	+ (*)	+	+	n/a	+	-	+
AMC	+ (BL iris and chorioretinal coloboma, BL microcornea)	+ (BL iris and chorioretinal coloboma, BL microphthalmia)	-	+ (iris coloboma and microcornea)	+ (BL iris coloboma)	n/a	-	n/a	+ (BL optic disc coloboma, BL microphthalmia, L cyst)
Other ocular features	L divergent squint, nystagmus, visual impairment	L convergent squint, upslanting palpebral fissure	Strabismus (2/5), no visual impairment	Strabismus, nystagmus, visual impairment	Strabismus, visual impairment	n/a	Strabismus, no visual impairment	Refraction error	BL vitreous floaters
Mouth	Micrognathia, wide mouth	R cleft lip and alveolar cleft, wide mouth, abnormal dentition	Micrognathia, wide mouth, short philtrum, high arched palate	Median pseudocleft lip, wide mouth, short philtrum, high arched palate	n/a	Micrognathia, high arched palate	Median pseudocleft lip, wide mouth, short philtrum	Median pseudocleft lip, high arched palate, delayed eruption of deciduous teeth	Wide mouth, median pseudocleft lip, BL transverse cleft, short philtrum, hypodontia, abnormal teeth shape and spacing
Ears	Abnormal shape, anomalous L pinna	Abnormal shape, preauricular tags	Cupped ears	Cupped ears	n/a	n/a	Cupped ears, preauricular tags	Abnormal shape	Cupped ears, preauricular tags
Hair	Sparse hair	Thin hair	Sparse hair	Sparse hair and eyebrows	n/a	n/a	Sparse hair and eyebrows	n/a	Sparse hair, absent eyebrows
Limb and skeletal anomalies	Mild 2-3 toe syndactyly, osteopenia, lordosis	BL short index finger, curving of R index, flat feet, osteopenia	Partial toe syndactyly (3/5), scoliosis (1/5)	Toe syndactyly, broad distal phalanx of finger, hypoplasia of toenails and phalanges of toes (1/2)	n/a	Broad distal phalanx of finger, scoliosis	Broad distal phalanx of finger, hypoplasia of toenails and phalanges of toes	-	3 rd -4 th finger syndactyly (L complete, R: partial), thin cortex of long bones, severe osteopenia (frequent fractures), mild scoliosis
Kidneys	L small	Small scarred L kidney	-	-	n/a	Renal agenesis, BL hydronephrosis	-	Renal agenesis (R), CKD stage 2	R small, but normal function
Genital	n/a	BL undescended testes, buried penis	n/a	n/a	n/a	n/a	n/a	BL undescended testes (hypoplastic R testicle)	BL undescended testes, epispadius
Brain	- (normal MRI)	MRI n/a	CV hypoplasia and enlarged 4 th ventricle (MRI:1/5)	CC hypoplasia, CV hypoplasia (1/2)	n/a	CC and CV hypoplasia, enlarged 4 th ventricle	Intracranial arachnoid cyst (3 rd ventricle)	Slight dilation of lateral ventricles	CC and CV hypoplasia, enlarged 4 th ventricle, Dandy-Walker malformation
Neurological findings	Seizures	Hypotonia	Tone, gait, tendon reflexes (1/5)	Tone and gait (1/2), tendon reflexes	-	Seizures	Tone and gait	-	-
Developmental delay	Speech delay, mild learning difficulties	Motor delay, mild ID	Motor delay (3/5), ID (4/5)	Motor delay (1/2), ID	Motor delay, ID	Motor delay, ID	Motor delay, no ID	Delayed global milestones	Motor and speech delay
Other features	Nasolacrimal duct obstruction	BL punctal agenesis, widely spaced nipples, Vitamin D deficiency	Widely spaced nipples (1/5)	Widely spaced nipples, patent foramen ovale (1/2)	Congenital diaphragmatic hernia		Widely spaced nipples, patent foramen ovale, patent ductus arteriosus	Nasolacrimal duct obstruction	Craniosynostosis

Zebrafish wls crispants show reduced eye, brain and body size

Eye area

F0 wls crispants (wls F0) larvae at 4 days postfertilization (dpf) exhibit visibly reduced:

Body length

- > Eye size (and altered shape)
- > Otic vesicles (*Ot*) size (*indicated by dashed line*)
- \succ Mandible (*Mn*) size
- Swim bladder (*Sb*) inflation

Body length

Eye eccentricity

Forebrain Midbrain Hindbrain

Quantification of body length, eye area and eccentricity in wls F0 at 4 dpf.

- wls F0 larvae display significant (*** p < 0.001):
- Reduction in body length
- Reduction in eye size
- More spherical eye shape

A) Forebrain, midbrain and hindbrain of 5 dpf larvae, separated by white dashed lines (ventral view). Wls F0 brains display visibly reduced: Forebrain length

Midbrain width

B) Quantification of width/length ratios in forebrain, midbrain and hindbrain of wildtypes (n=8) and wls F0 (n=7). wls F0 brains display significant (*** p < 0.001) differences in:

Clinical features of the individuals described in this and previous studies.^{2,3,4} In families 1-2, phenotypes shared across all affected individuals unless specified Abbreviations: BL: bilateral, CC: corpus callosum, CKD: chronic kidney disease, CV: cerebellar vermis, F: female, ID: intellectual disability, L: left, M: male, n: number of affected individuals, n/a: not available, R: right. *1 individual was not assessed.

Forebrain (increased width/length ratio) Midbrain (decreased width/length ratio)

Zebrafish *mab2112* mutants display more severe eye phenotypes upon abrogation of *wls* function

Controls Wls FO Effect (% change) Average (unjected) (injected) 319 296 Reduction (7.20%)*** Eye Length (µm) Siblings 3492 Body Length (µm) 3134 Reduction (10.23%)*** (mab21l2 +/+ and 0.091 0.095 Increase (3.46%)*** Eye/Body Ratio mab21l2 +/-) Head/Body Ratio 0.2296 0.2304 Increase (0.35%, ns) 299 276 Reduction (7.70%)*** Eye Length (µm) Reduction (9.36%)*** Body Length (µm) 3579 3244 mab21l2^{-/-} 0.084 0.086 Eye/Body Ratio Increase (1.83%, ns) 0.2230 0.2216 Reduction (0.62%, ns) Head/Body Ratio

Phenotypes of *mab21l2* larvae at 4 dpf with and without abrogation of wls

wls control (uninjected)

- *mab21l2*^{+/+} and *mab21l2*^{+/-} were phenotypically normal - *mab21l2*^{-/-} exhibited microphthalmia and variable swim bladder (Sb) defects

wls FO crispants:

- All wls F0 larvae exhibited consistently reduced Mn size and Sb defects, independent of the *mab21l2* genotype - *mab21l2*^{-/-} with abrogated *wls* exhibited an additional ocular coloboma (*Cb*) phenotype in 100 % of the embryos

58/58 *mab21l2^{-/-}* fish with abrogated *wls* displayed bilateral coloboma

Comparison of average eye length, body length, eye/body ratio and head/body ratio across groups.

Mab2112 mutants with abrogated wls show a significant (*** p<0.001) reduction in:

- Eye size
- Body length

Discussion

- > We describe two novel cases with rare biallelic WLS variants which are predicted damaging. Both displayed AMC, kidney defects and osteopenia, in addition to facial, ear and digit dysmorphisms. Case 2 also presented with genital anomalies.
- > Our findings provide further evidence for the inclusion of eye anomalies among the recurrent features of the WLS spectrum, being now observed in 50% of examined individuals (n=6/12), while also highlighting additional phenotypes such as kidney defects (n=5/13), osteopenia (n=3/14) and genital anomalies (n=3/4 males).
- > Our clinical findings are supported by zebrafish wls FO crispants, which recapitulate phenotypic features observed in patients such as reduced eye, jaw and body size, and altered brain size and shape.
- > Disrupting wls function in mab2112^{-/-} zebrafish additionally resulted in coloboma, a phenotype not observed in other AMC-sensitised fish (Irp5, Irp6, taz, and Iama1), suggesting that the impact of wls dysfunction on eye development depends on specific genetic backgrounds, specifically demonstrating an interaction between mab2112 and wls. Variability with genetic background might help explain the variability in ocular (and other) anomalies observed in patients with WLS variants. > By highlighting the critical role of genetic interactions, our study marks a shift in the understanding of these disorders from the prevailing single-gene paradigm.

References

- 1. Shah et al., Invest Ophthalmol Vis Sci. 2011;52(1). PMID: 20574025
- 2. Chai et al., N Engl J Med. 2021;385(14). PMID: 34587386
- 3. Yu et al., Clin Genet. 2023;104(2). PMID: 37005218
- 4. Abdel-Salam et al., J Hum Genet. 2023;68(9). PMID: 37106064
- 5. Singh et al., Biochem Biophys Res Commun., 2021;545. PMID: 33545636
- Williamson et al., Am J Hum Genet., 2014;94(2). PMID: 24462371 6.
- 7. Miesfeld et al., Development (Cambridge), 2015;142(17). PMID: 26209646
- 8. Wycliffe et al. 2021, Int J Dev Biol., 2021;65(4-5-6). PMID: 32930

Contacts

If you want to get in touch, please email us: Fabiola Ceroni

fceroni@brookes.ac.uk

Hande Tunbak htunbak@brookes.ac.uk

Acknowledgements

We would like to thank the patients and their families for their participation in our study. We are also grateful to the many clinicians and scientists who have collaborated on our national study, particularly Richard Collin, Alison Salt, and Yassir Abou-Rayyah at Moorfields Eye Hospital. This research was made possible through access to data and findings in the National Genomic Research Library via the Genomics England Research Environment. This work was supported by grants from Baillie Gifford, Microphthalmia, Anophthalmia, Coloboma Support (MACS) (www.macs.org.uk), Oxford Brookes University, NIHR Clinical Research Network (CRN) and the Medical Research Council (MR/L003775/1). The DDD study presents independent research commissioned by the Health Innovation Challenge Fund [grant number HICF-1009-003]. The authors declare no conflict of interest.

