Deep Extubation: Stop the Buck! Can we land the plane safer?

Anthony Curione¹, Connor Ogrydziak¹, Jacques Abi-Hanna¹, Alexander Bleau¹, Eric Moses MD¹, Daniel Platt MD ¹SUNY Upstate Medical University Syracuse, New York

Deep Extubation vs Awake Extubation

Deep Extubation

Awake Extubation

Tube removal under <u>deep</u> anesthesia, before return of airway reflexes

Goal: *Reduced* bucking/ coughing, decreased cavity pressure spikes and wound

dehiscence

Tube removal after return of *reflexes* and adequate

Goal: Airway safety, <u>risk</u> *prevention* in extubation

When Should Deep Extubation Be Considered?

Maintaining low ICP/ IOP

Minimal Bronchospasm Dehiscence Risk

Decreased risk Fasted patient, during surgery empty stomach

Smooth. Quiet **Emergence**

Decreased emergence agitation

Tachycardia/ Hypertension Risk **Transmission**

Maintenance of stable vitals

Reduced viral spread during COVID-19

Decreased

Aerosol

Current Guidelines on Deep Extubation

Lack of **Standardized Guidelines:**

Unclear Patient

Selection and Risl

Thresholds

prescriptive criteria.⁹ Practice patterns vary widely across regions and specialties.¹¹

• Most sources provide general principles (planning, oxygenation, readiness) rather than

• No unified or evidence-graded recommendations exist for deep extubation.⁵

- Studies describe "selected low-risk" patients as appropriate but fail to define clear inclusion or exclusion criteria.
- Reported complication rates are inconsistently measured, making it difficult to identify a standardized risk threshold for safe use.
- Recommendations limit use to an "experienced provider", but definition is vague and unclear.¹²

Adjuncts and Monitoring

- Techniques like THRIVE, SGA exchange, and pharmacologic agents are recommended inconsistently without protocol guidance on dosing or necessity.^{3,8}
- Reflects reliance on individual provider judgment rather than formal guidelines^{2,5}

Problems & Risks with Deep Extubation

	Post-Extubation Complications From Literature ^{4,10}					
	Laryngo- spasm	Airway Obstruction	Tachycardia (HR≥100 BPM)	Hyper- tension (MAP≥110 mmHg)	Emergence Delirium	Bucking/ Coughing*
Awake Extubation			(7x Higher)	(20% Higher)		Common (50%)
Deep Extubation		(5x Higher)				

Note: A small check denotes a nonzero risk of a complication.

*Bucking and coughing are common drivers of wound dehiscence, intra-abdominal, intraocular, and intracranial pressure spikes. 10,12

Aspiration is a risk in all patients, but is minimized by following pre-hospital fasting protocols and correct procedures by the anesthesiologist.

Risk Mitigation of Deep Extubation

- Staged use of an SGA and ET tube in situ (i.e. Bailey Maneuver) can decrease the risk of bucking up to 55% and significantly lessens the risk of airway obstructions, but these techniques interrupt ventilation and instructions are not defined.¹⁵
- Application of trans-nasal humidified rapid insufflation ventilatory exchange (THRIVE) in one trial demonstrated decreased incidence of hypertension and desaturation events.⁸
- Transitioning from sevoflurane to remifentanil peri-operatively and flumazenil post-operatively. 1

Takeaways

- Deep extubation carries risks of aspiration and airway obstruction, but avoids the hypertension, tachycardia, and bucking common in awake extubation, making its benefits to certain procedures clear.
- Further studies and guidelines for deep extubation techniques are needed to mitigate postextubation complications, particularly obstruction, and to optimize MAC, contraindications, and selection criteria.
- Post-Extubation complications in deep extubation, require physical interventions including positive pressure ventilation or a chin lift ~2.5x as often.⁸
- Deep and awake extubation produces distinct airway and respiratory complication profiles, without either being conclusively safer when performed by seasoned providers.⁴

Gaps in Deep Extubation Research?

- How does rate of reintubation following deep extubation impact operating room time, postoperative recovery duration, and time to full recovery?
- Can we create evidence based guidelines for deep extubation?
- Can improvements in techniques for deep extubation decrease obstruction risk, extubation failure, hospital mortality, and healthcare costs?
- Would more providers perform deep extubation if obstruction risk was minimized?
- Can a decision-making tool be created to make deep extubation safer?
- What devices or strategies exist for making deep extubation safer and accessible?

Designing a Future Study For Deep Extubation

Development and Validation of a Clinical Decision Algorithm for Safe Deep Extubation

Background: Deep extubation can smooth emergence but raises airway risk. ASA guidelines stress individualized planning but lack clear criteria. An evidence-based tool is needed to guide safe patient selection.

Objective: Develop and validate a decision • algorithm to identify when deep extubation is appropriate based on patient, airway, and

Hypothesis: A standardized algorithm will improve safety by reducing airway complications and optimizing patient selection.

Outcomes/Measures: Rate of peri-• extubation airway events (desaturation, • obstruction, laryngospasm), vitals i monitoring, algorithm adherence, comfort

Deep Versus Awake Extubation With and Without Adjuncts in Adult Surgical Patients

Background: Deep extubation may limit • coughing and hemodynamic swings but increases risk of airway obstruction and hypoxemia. Few data exist on standardized safety strategies.

Objective: Assess whether a protocol using respiratory support lowers airway

! Hypothesis: A structured protocol with risk assessment and post-extubation support will

Outcomes/Measures: Airway complications within 30 min, reintubation within 24 hr, respiratory support use, and hospital stay; patient data collected for analysis.

Protocol for Risk Stratification and Post-Extubation Support to Reduce Airway Complications After Deep Extubation

> Background: Deep extubation may smooth • emergence but heightens obstruction risk. Using adjuncts (medication, devices, protocols) during deep extubation may reduce hypoxemia, though adult safety data

> > • **Objective:** Compare safety of deep vs adjunctive therapy, in adult elective surgery.

Hypothesis: Deep extubation, especially with adjuncts, reduces hypoxemia and adverse events versus awake extubation.

Outcomes/Measures: Desaturation (SpO₂ < • 90%) during emergence and 30 min postextubation. Continuous vitals, observerrecorded events, comfort scores, and 96-hr

References

