

3/17/2022

Re: Storm Related Structural Glazing Assessment

[REDACTED]

TSSA Project # [REDACTED] - 2021-10-29

Date of Loss: September 16th, 2020

Final Report Dated - 3/17/2022

Dear Mr. & Mrs. [REDACTED]

As requested by Mr. [REDACTED] TSSA Storm Safe DAC Inc. (TSSA) conducted a glazing damage assessment of the [REDACTED] residence on 12/3/2021. The purpose of this inspection was to evaluate the condition of the installed glazed systems (listed below) as they currently exist following the effects of [REDACTED] (a powerful Hurricane that passed through the area on September 16th, 2020.)

Single Hung Window System with Colonial Grid - 35" X 71"

Double Mulled Single Hung Window System - 71" X 60"

Single Hung Window System - 34" X 58"

Single Hung Window System - 30" X 35"

Single Hung Window System - 31" X 35"

Single Hung Window System with Colonial Grid - 31" X 35"

Single Hung Window System - 29" X 34"

Single Hung Window System - 29" X 34"

Entry Door with Picture Window Glass Insert - 36" X 79"

Double Mulled Single Hung Window System - 70" X 59"

Two Panel Sliding Glass Door System - 72" X 80"

Present during our TSSA inspection of the [REDACTED] Residence was Ivan Browner (President) and Steven Browner (Vice President) from TSSA Storm Safe DAC Inc., and Consultant - Nick O'Halloran GC (O'Halloran Construction Services LLC.) The homeowners, Mr. and Mrs. [REDACTED] were also present during the inspection.

Inspection Protocol: TSSA employed a systematic inspection protocol to document and note the physical damage profile seen on the installed glazed systems. The inspection protocol considered system installation, operational capacity, frame disposition, glazing disposition, and adherence to the main structure.

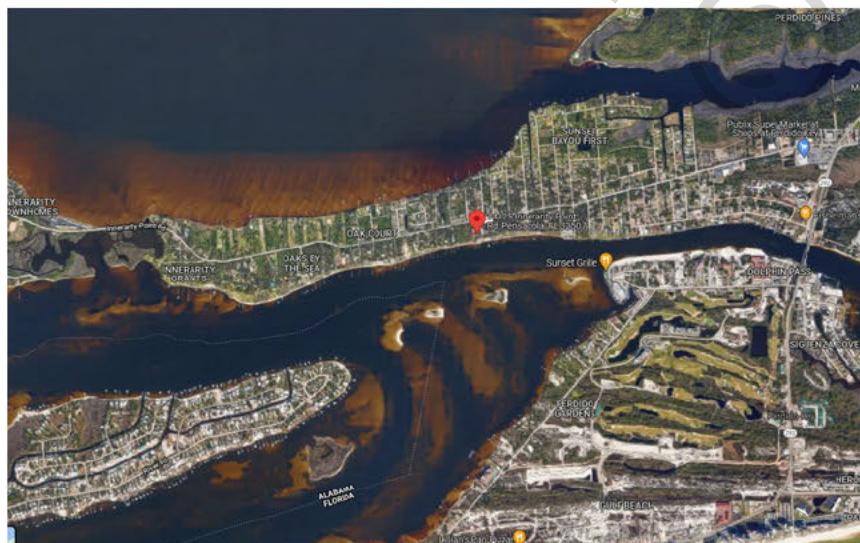
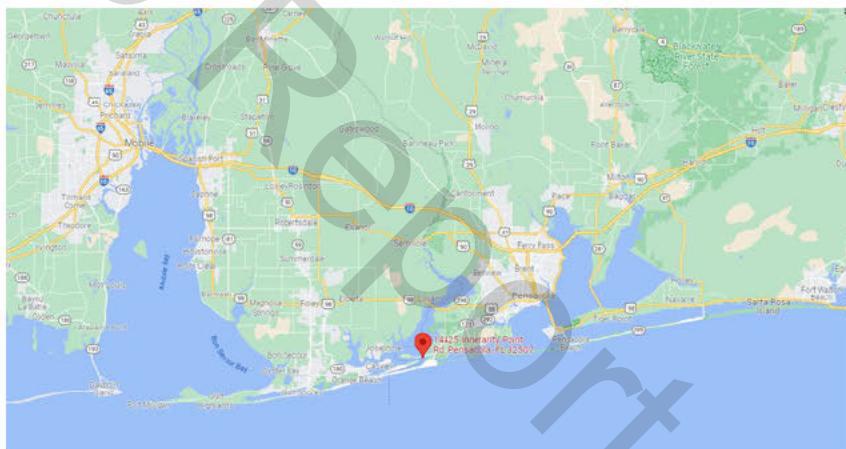
Inspection Protocol, Methodology, and Compliance:

The TSSA Storm Safe DAC Inc. inspection protocol, field inspection methodology, analysis, and reporting were performed in general compliance with standards and recommendations set forth by ASCE, FEMA, ASTM, and FGIA/AAMA.

Inspection Protocol: In general compliance with ASCE/SEI 30-14 "Guideline for Condition Assessment of the Building Envelope," TSSA employed a systematic inspection protocol to document and notate the physical damage profile seen on the installed glazed systems. The inspection protocol considered system installation, operational capacity, frame disposition, glazing disposition, and adherence to the main structure.

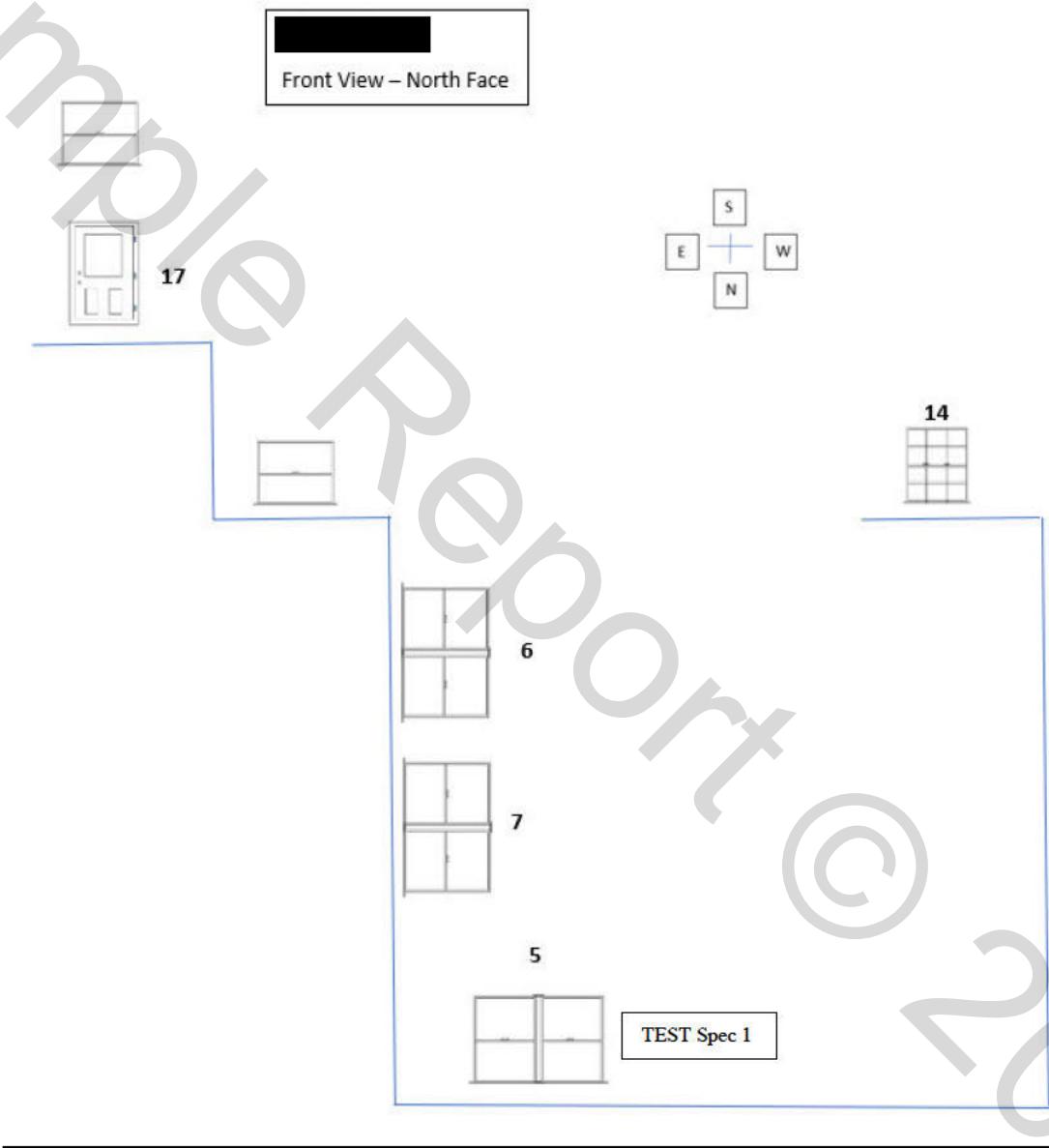
During the valuation of the [REDACTED] Residence, TSSA inspectors employed the following protocol and procedures.

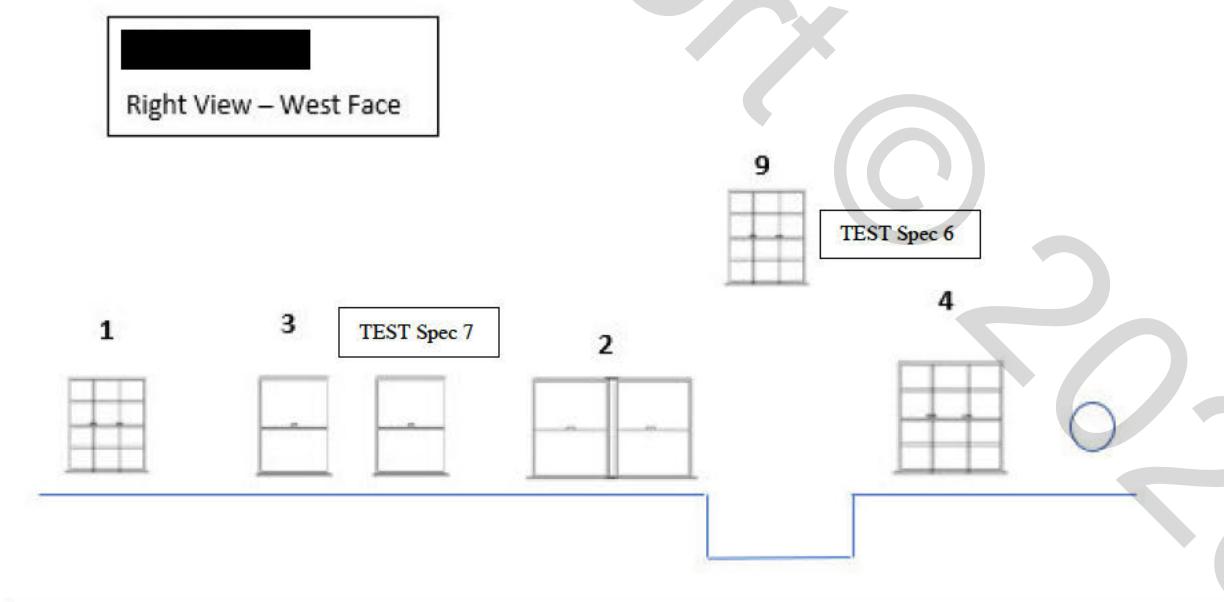
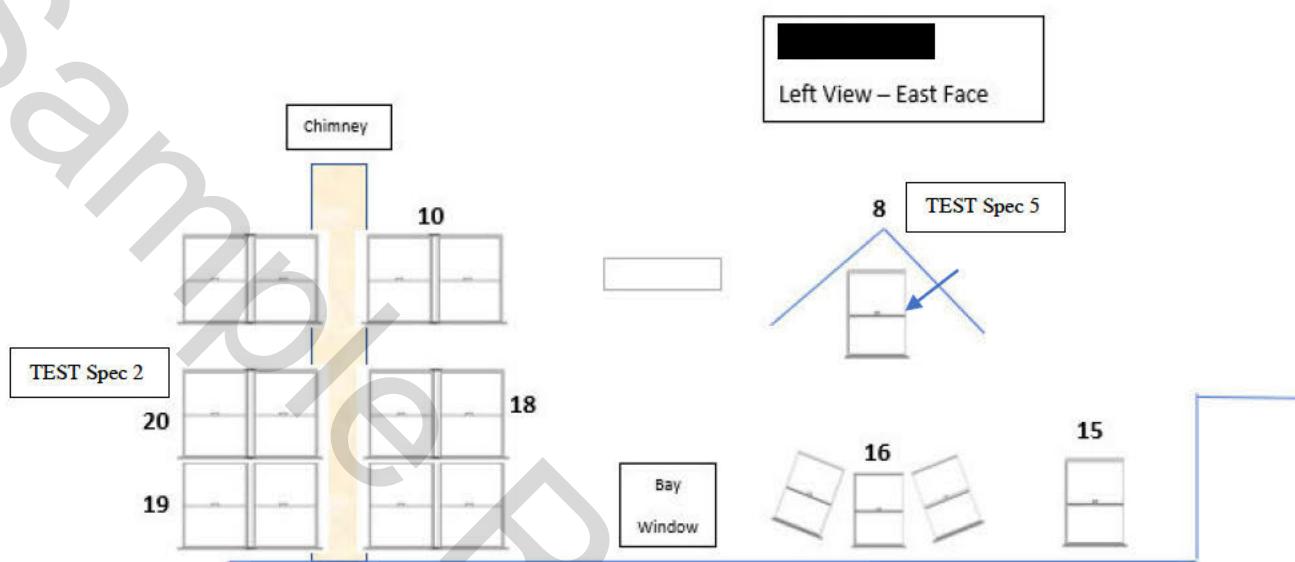
- Conducted a visual, non-destructive assessment of the residence to document, photograph, and evaluate the damage.
- Collected field dimensions of the [REDACTED] Residence to illustrate the structure's general configuration and the location of all the observed damage to the windows.
- Reviewed published weather data and subsequent analysis for the effects of [REDACTED] in [REDACTED] Florida.
- Prepare an in-depth inspection analysis of each glazed opening, notating each specific type of storm-related physical damage witnessed during our site visit.
- Prepared Executive Findings report summarizing the field investigation results and our storm damage evaluation and conclusions.
- Make a repair/replace recommendation after analyzing the damage witnessed and applying glazing science, technology, and standard practice concepts.

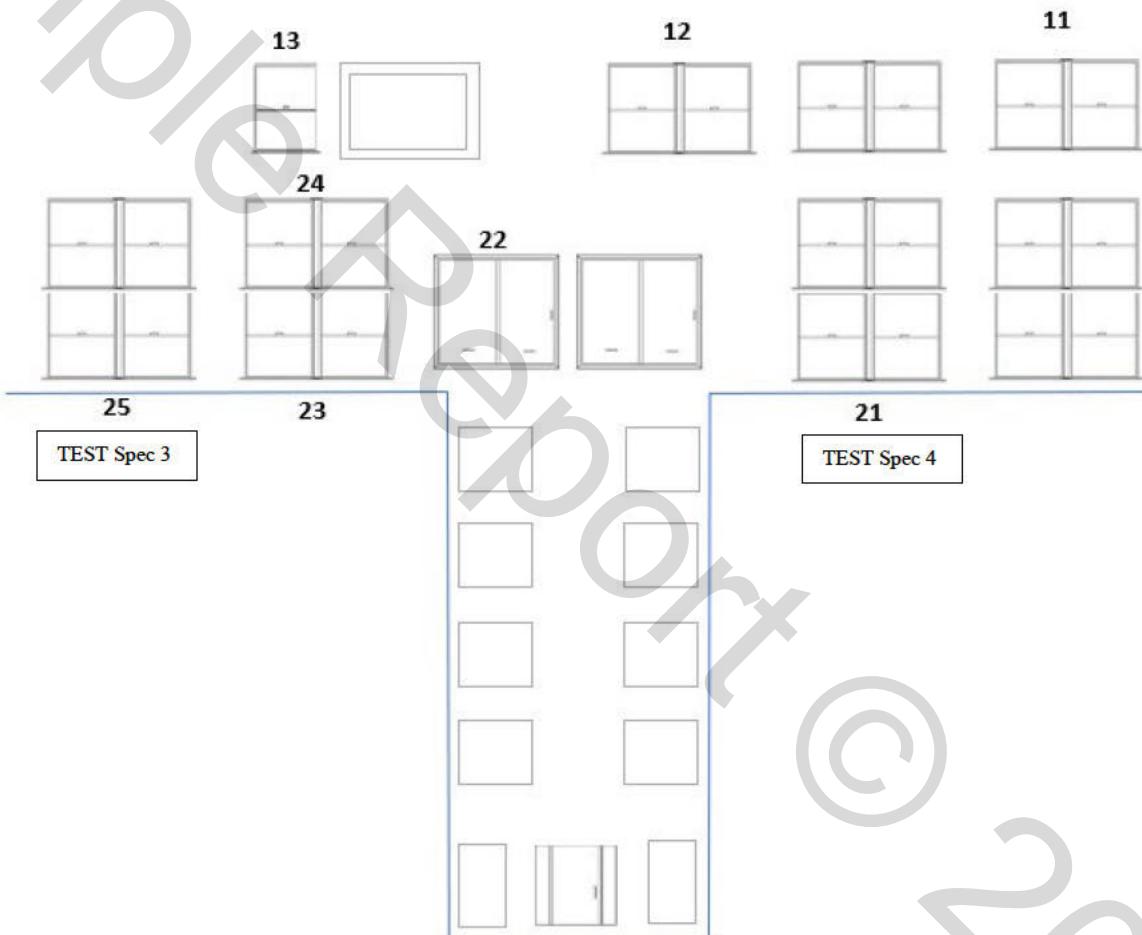
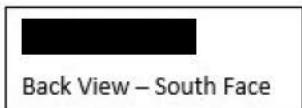


Overview of Site Conditions

The [REDACTED] Residence is a two-story single-family home located at [REDACTED]

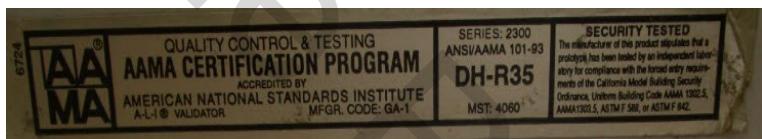
Background Information

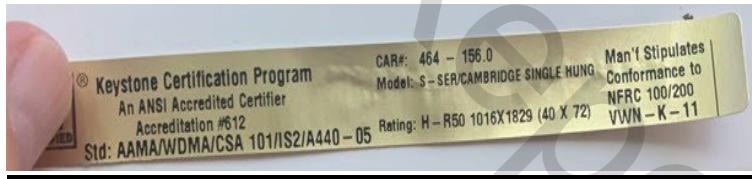

The two-story structure was constructed via a slab-on-grade foundation, wood framing system, gable/hip shingled roof, and an exterior stucco finish. According to the [REDACTED] County Property Appraisers Office, the two-story family house was built in 1997 with a total gross square footage of 7,312 (5,278 sq. ft. under air conditioning.)

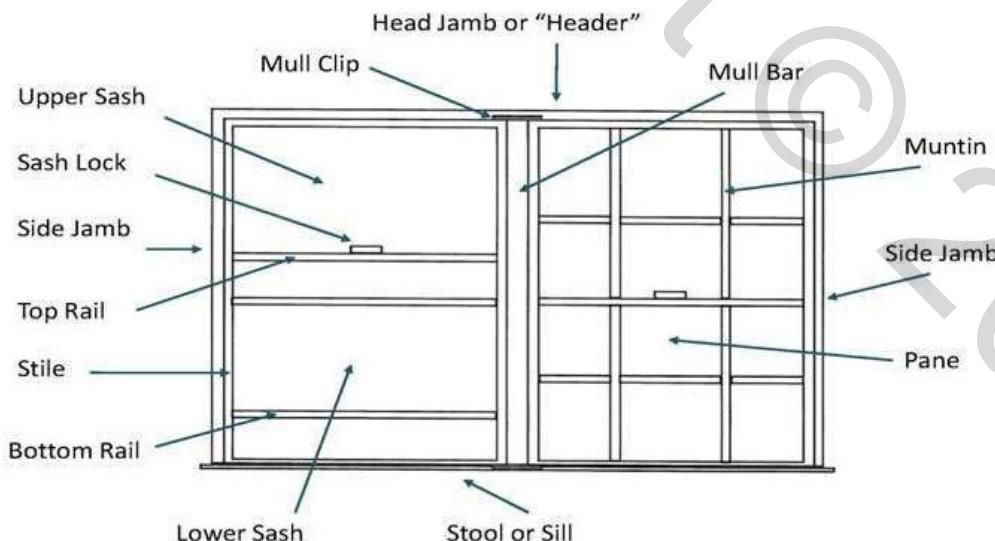


[REDACTED] Residence - [REDACTED]

████████ – Wall Map




Manufacturer's Installed and System Nomenclature:


Danvid Windows –
Single Hung Windows

General Aluminum –
Series 2300 Single
Hung Windows

Vi Win Tech Windows
& Doors – Cambridge
Model Single Hung
Windows

Mr. [REDACTED]

Number of Systems Inspected:

There are 53 glazed openings in the █ Residence consisting of the following Window Types:

- Single Hung Window System with Colonial Grid
- Double Mulled Single Hung Window System
- Single Hung Window System
- Entry Door with Picture Window Glass Insert
- Two Panel Sliding Glass Door System

TSSA was able to investigate each type of window and door system installed in the structure.

TSSA inspectors were able to physically inspect 25 out of the 53 (47.1%) or the glazing openings in the █ Residence and the following was observed:

Explanation of Major Damages Identified -

The purpose of the following section is to identify and explain the Major Repeated Damage types that were witnessed throughout the entire campus of the █ Residence inspection. In our professional opinion, TSSA Storm Safe DAC Inc. defines Major Damage as damage identified on the glazed system which jeopardizes the structural integrity of the building envelope. The following explanations of major damage (Frame Separation, Frame Rotation, Interior Finish Distress, Exterior Finish Distress, Moisture Intrusion, Sealant Disruption, Deglazing, Spacer Damage, Glass Stop Damage, and Seal Failure) were discovered repetitively on all the major directional facades, elevations, and exposures of the campus.

The glazed systems installed were stressed, buffeted, and exposed to the intense Hurricane-created wind force and came to rest in a damaged state showing a diminishment of capacity to keep a congruent glazed envelope of protection and a weather-tight barrier.

These physical damages are an example of what occurs when windows that share the characteristics of assembly and installation, such as the systems installed in the █ Residence, are overstressed and affected by intense Hurricane-created wind pressure.

Summary of Glazing Damages Observed

Frame Separation

During our investigation of the █ Residence, TSSA Storm Safe DAC Inc. inspectors witnessed frame separation seen at adjoined framing components of the installed Single Hung Window Systems. High wind created buffeting of the glazed systems and adverse framing system movement allowed the assembly systems to separate between adjoining frame members causing a diminishment of the window's capacity to keep a congruent envelope of protection. The glazed systems currently sit in a diminished state and are susceptible to moisture intrusion between the opened joints.

Frame Rotation

During our investigation of the █ Residence, TSSA Storm Safe DAC Inc. inspectors witnessed frame rotation seen at adjoined framing components of the installed Single Hung Window Systems. High wind created buffeting of the glazed systems and adverse framing system movement allowed the assembly systems to separate between adjoining frame members causing a diminishment of the window's capacity to keep a congruent envelope of protection. The glazed systems currently sit in a diminished state and are susceptible to moisture intrusion between the opened joints.

INTERIOR FINISH DISTRESS

Throughout the TSSA Storm Safe Inc. Glazing Damage Assessment of the [REDACTED] Residence, our inspectors witnessed interior finish distress. The buffeting of the systems during a high wind event allowed the glass systems to vibrate and move within their installed position. This movement affected the installation fastening system and created system movement which disrupted the interior finish between the systems framing and its interior finish reveal.

EXTERIOR FINISH DISTRESS

Throughout the TSSA Storm Safe Inc. Glazing Damage Assessment of the [REDACTED] Residence, our inspectors witnessed exterior finish distress. The buffeting of the systems during a high wind event allowed the glass systems to vibrate and move within their installed position. This movement affected the installation fastening system and created system movement which disrupted the exterior finish between the systems and its exterior finish.

Moisture Intrusion

During our investigation of the [REDACTED] Residence, our inspectors witnessed moisture intrusion seen around the perimeter of the installed glazed systems. A combination of system movement and finish disruption allowed moisture to intrude between the installed stems and the weather barrier finding its way into the interior living space.

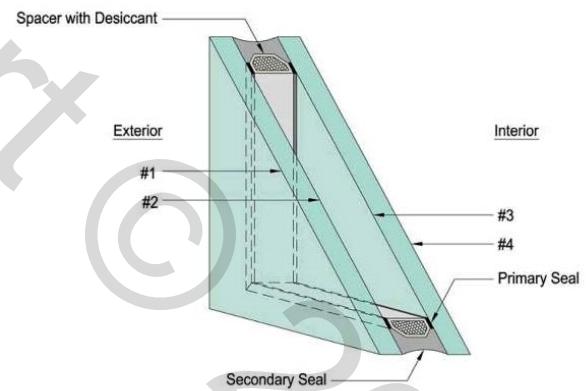
Sealant Disruption

During our investigation of the [REDACTED] residence, our inspectors witnessed Sealant Disruption created from high wind buffeting and system movement. The buffeting of the systems during a high wind event allowed the glazed lites and frame systems to vibrate and move within their installed position. This movement allowed the glazing sealant to avulse from its installed position between the glass lite and the glazing stool.

Deglazing

rough ut the TSSA Storm Safe Inc. Gl zing amage Assessment of the [REDACTED] Res dence, our inspectors witnessed wid spread deglazing observed between the glazing ch nnel and glass panes of the nstall d window systems. The sealant edge etween the framing system and the g ass pa e was used to set the primary glazing seal in e same manner the primary seal i set round the installation flang of th window framing system. Wh n a indow system's glass pane is acted upon by cyclical movement such during an interaction with a high win event the glass pane moves violently within th glazing channel severely weakenin if not completely separating its adherence to the framing system. This is a dangerous combination which leaves the envelope of protection in a state that is no longer performing its function to protect the interior living space from the exterior elements.

(NOTE – the depth gauge is used only to show the deglazed panel and is not depicting a depth of penet atio between the glazing stile and glass l e.)



Damaged Spacer

During our investigation of the [REDACTED] Residence, our inspectors witnessed disruption of the Spacer found within the installed Insulating Glazing. Wind Buffeting and Pressure created during a high wind event effects the IGU Air Space, as well as the adherence of the IGU within its glazing pocket. Spacer Migration, Spacer Sealant Disruption, and Deglazing are all indicative of IGU glass movement and damage created during a high wind event.

Glass Stop Damage

During our investigation of [REDACTED] Residence, our inspectors witnessed disruption of exterior Glass Stop system components. A Glass Stop a molding used to hold glazing infills in position, as well as keep the glazing pocket clean of debris. When high wind created buffeting vibrates a glass infill, the exterior glass stops become avulsed from their installed position no longer protecting the glazing channel and glass lite from the exterior elements. This damage will eventually lead to deglazing and moisture damage leaving the exterior envelope in a diminished and compromised state.

Seal Failure

Throughout the TSSA Storm Safe Inc. Glazing Damage Assessment of the [REDACTED] Residence, our inspectors witnessed Seal Failure of the IGU "Insulated Glazing Unit." High wind buffeting, system movement, and wind-created pressure allowed the IGU to move within its installed position. This movement creates separations between the two panes of glass and the internal warm edge spacer, allowing moisture to intrude within the sealed airspace. If there is a gas fill (O₂, Argon, or Krypton) charged within the sealed air space, the Gas vacates the system, and the moisture remains. The desiccant found within the warm edge spacer is consumed by the excess moisture, which leaves the IGU in a compromised state. Eventually, internal fogging of the IGU demonstrates the seal failure damage rendering the glass pane unable to perform its function.

ASTM E-1105 Water Penetration Resistance Testing

Testing Plan

History:

In estig tive Water Penetration Resistance Testing was conducted on Wednesday October 12th, 2021, through Thursday, October 13th, 2021. Pre ent uring the testing activities were Ivan Browner (President) and Steven Brown (Vice President), and Nick O'Halloran (Project Director) from TSSA Storm Safe DAC Inc. Mr. and Mrs. [REDACTED] was also present during the time testing w s being performed

Planning:

TSSA Storm Safe DAC In was requested to test 7 of the 53 (13.21%) window specimens installed at the [REDACTED] Residence.

TSSA Storm Safe DAC Inc as the specifying authority performing the testing activities onsite created a testing plan ons dering all the structures' elevations, compass headings, and installed ystem types.

Also, TSSA Storm Safe DAC Inc created a s mple set with systems that were inspected during our physical evaluation, as well systems that were not inspected during our physical evaluation.

Test Sample Data Set:

Physically inspected:	6 out of 7 systems (85.71%)
Not Physically Inspected:	1 out of 7 systems (14.29%)

Testing Protocol:

When planning the testing of the glazed systems selected at [REDACTED] Residence, the steps put forth in section 5.1.1 of the ASTM E-2128 document titled "Sequence of Activities" were taken into consideration:

5.1.1.1 Review of project documents.
 5.1.2 Evaluation of design concept.
 5.1.3 Determination of service history.
 5.1.1.4 Inspection.
 5.1.1.5 Investigative testing.
 5.1.1.6 Analysis.
 5.1.1.7 Report preparation.

After reviewing the project details and design concept discussing the service history of the installed windows, it was determined that the appropriate test protocol to employ would be:

ASTM E-1105 – Procedure B "Test under cyclic static air pressure difference." To be applied in conformity with the protocol established by ASTM E-2128 "Standard Guide for Evaluating Water Leakage in Building Walls."

TSSA Storm Safe DAC Inc. created the following testing plan to conform with the applied testing standards:

Testing Plan Explanation:

The glazed systems installed at the [REDACTED] Residence were certified and rated according to the AAMA Certification Program. Each manufacturer submitted systems to be laboratory tested according to stringent AAMA guidelines. Upon successfully completing the certification process, were rated by AAMA to comply with a specified Performance Grade and In-Service Requirements. The AAMA certification processes glazing systems according to their Design Pressure, Structural Load Test Pressure, Water Penetration Resistance, and Air Infiltration Resistance. Therefore, the AAMA Certification is an important data point to consider when planning an ASTM E-1105 Water Penetration Resistance Investigation.

The following section explains the testing plan and execution of testing activities performed at the [REDACTED] Residence:

Single Hung Window System – (Test Specimens – 1, 2, 3, & 4)

Specified Performance Grade

Design Pressure	30	PSF
Structural Load Test Pressure	45	PSF
Water Penetration Resistance	4.5	PSF
Water Test Pressure Inches per Water	0.87	In/H ₂ O

The systems in this category were rated by AAMA at a Design Pressure of 30 PSF.

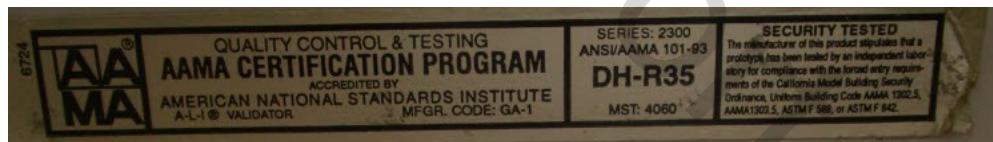
According to the AAMA 511 08 Standard Section 4.2.1.1 "point 4" to find the appropriate Field-Testing Pressure, it is recommended to calculate a 2/3 deduction from the specified design pressure

30 PSF (rated design pressure) * 0.66667 = 20.00 PSF (field testing pressure)

The water infiltration resistance testing pressure is to be determined by calculating 15% (R, LC, C, HC) or 20% (AW) of the Field Testing Pressure:

20.00 * 15% = 3.00 PSF water resistance testing pressure

The Testing Plan was specified to follow the ASTM E-1105 – Procedure B utilizing a cyclic static pressure difference. In addition, TSSA Storm Safe DAC Inc. as the specifying authority created a testing protocol that incrementally raised the testing pressure each testing cycle to reach the ultimate calculated testing pressure. This method is common in the industry to produce statistical data to track the pressure level achieved when a failure is recorded and determine if the glazed systems are adequately performing


their function to protect the interior occupied space from the exterior elements.

The following calculated testing pressures were employed to achieve the specified testing plan.

Single Hung Window System

Testing Plan							
Total Water Resistance	3.00	PSF					
Water Test Pressure Inches per water	0.58		In/H ₂ O				
	Field Test Water Infiltration (PSF)	Field Test Water Infiltration (In/H ₂ O)		Pascal		Time Duration	
Cycle 1	0.00	PSF	0.00	In/H ₂ O	0.00	Pa	5:00 min
Cycle 2	1.00	PSF	0.19	In/H ₂ O	47.88	Pa	5:00 min
Cycle 3	2.00	PSF	0.39	In/H ₂ O	95.76	Pa	5:00 min
Cycle 4	3.00	PSF	0.58	In/H ₂ O	143.64	Pa	5:00 min

Single Hung Window System – (Test Specimen 5 & 6)

Specified Performance Grade

Design Pressure	35	PSF
Structural Load Test Pressure	52.5	PSF
Water Penetration Resistance	5.25	PSF
Water Test Pressure Inches per Water	1.01	In/H ₂ O

The systems in this category were rated by AAMA at a Design Pressure of 35 PSF.

According to the AAMA 511-08 Standard Section 4.2.1.1 "point 4" to find the appropriate Field-Testing Pressure, it is recommended to calculate a 2/3 deduction from the specified design pressure.

35 PSF (rated design pressure) * 0.66667 = 23.33 PSF (field testing pressure)

The water infiltration resistance testing pressure is to be determined by calculating 15% (R, LC, C, HC) or 20% (AW) of the Field-Testing Pressure:

23.33 * 5% = 3.50 PSF water resistance testing pressure.

Single Hung Window System

Testing Plan		Field Test Water Infiltration (PSF)	Field Test Water Infiltration (In/H ₂ O)	Pascal	Time Duration			
Total Water Resistance	PSF				min	min		
Water Test Pressure Inches per water	0.68	In/H ₂ O						
Cycle 1	0.00	PSF	0.00	In/H ₂ O	0	Pa	5:00	min
Cycle 2	1.17	PSF	0.23	In/H ₂ O	55.860	Pa	5:00	min
	0.00	PSF	0.00	In/H ₂ O	0.000	Pa	<1:00	min
Cycle 3	2.33	PSF	0.45	In/H ₂ O	111.720	Pa	5:00	min
	0.00	PSF	0.00	In/H ₂ O	0.000	Pa	<1:00	min
Cycle 4	3.50	PSF	0.68	In/H ₂ O	167.581	Pa	5:00	min

Vinyl Single Hung Window System – (Test Specimen – 7)

Specified Performance Grade

Design Pressure	50	PSF
Structural Load Test Pressure	75	PSF
Water Penetration Resistance	7.5	PSF
Water Test Pressure Inches per Water	1.45	In/H ₂ O

The systems in this category were rated by AAMA at a Design Pressure of 50 PSF.

According to the AAMA 511-08 Standard Section 4.2.1.1 "point 4" to find the appropriate Field-Testing Pressure, it is recommended to calculate a 2/3 deduction from the specified design pressure.

50 PSF (rated design pressure) * 0.66667 = 33.33 PSF (field testing pressure)

The water infiltration resistance testing pressure is to be determined by calculating 15% (R, LC, C, HC) or 20% (AW) of the Field-Testing Pressure:

33.33 * 15% = 00 PSF water resistance testing pressure.

The Testing Plan was specified to follow the ASTM E-1105 – Procedure B, utilizing a cyclic static pressure difference. In addition, TSSA Storm Safe DAC Inc. as the specifying authority created a testing protocol that incrementally raised the testing pressure each testing cycle to reach the ultimate calculated testing pressure. This method is common in the industry to produce statistical data to track the pressure level achieved when a failure is recorded and determine if the glazed systems are adequately performing their function to protect the interior occupied space from the exterior elements.

The following calculated testing pressures were employed to achieve the specified testing plan.

Single Hung Window Systems - (New Vinyl)

Testing Plan		Field Test Water		Field Test Water		Pascal		Time Duration	
Total Water Resistance		5.00	PSF						
Water Test Pressure Inches per water		0.97	In/H ₂ O						
Cycle 1		0.00	PSF	0.00	In/H ₂ O	0	Pa	5:00	min
Cycle 2		1.67	PSF	0.32	In/H ₂ O	79.800	Pa	5:00	min
Cycle 3		0.00	PSF	0.00	In/H ₂ O	0.000	Pa	< 1:00	min
Cycle 4		3.33	PSF	0.64	In/H ₂ O	159.601	Pa	5:00	min
		0.00	PSF	0.00	In/H ₂ O	0.000	Pa	< 1:00	min
		5.00	PSF	0.97	In/H ₂ O	239.401	Pa	5:00	min

To Achieve the proper Chamber Pressure, the procedure listed on pg. 3 of the ASTM E-1105-15 document was followed.

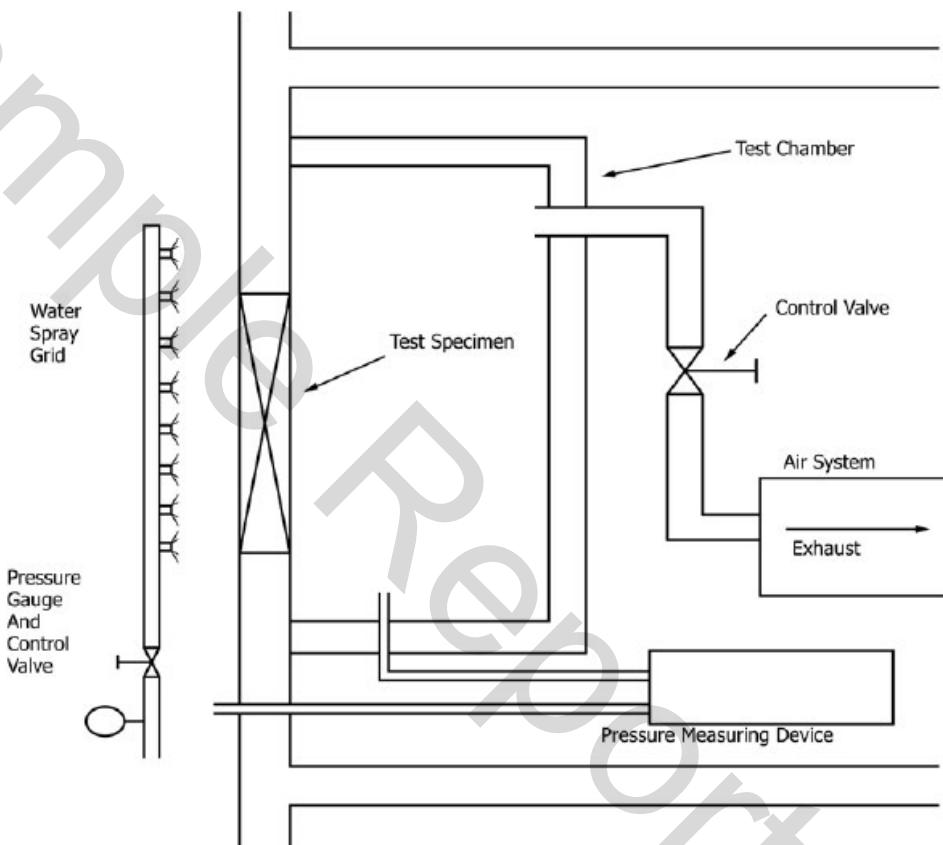
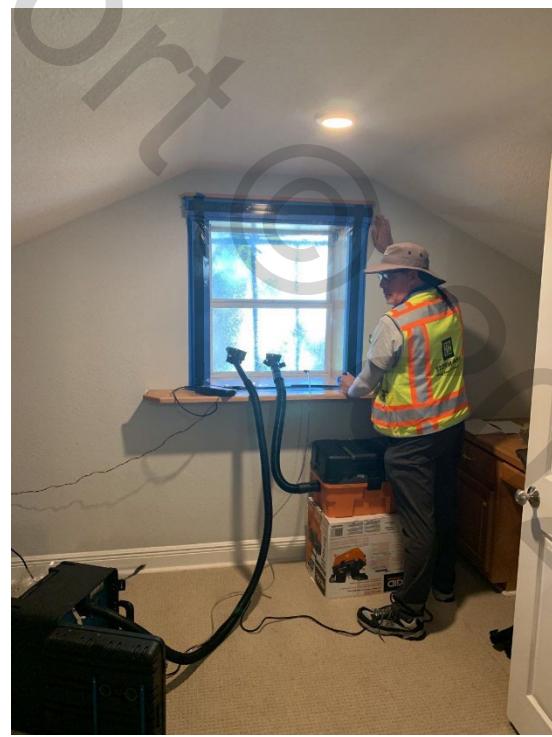



FIG. 1 General Arrangement of Water Penetration Test Apparatus

Testing Apparatus Used:

Testing Results – Analysis

The following chart displays the results of the E-1105 Water Penetration Resistance testing performed at the [REDACTED] Residence.

NOTE For a complete description of each specimen recorded testing data, see the section titled: "Exhibit A – Field Inspection Notes and Photos."

Location	System Type:	Window Observation Cycle Number:	Flow Rate (Gal/min)	Water Pressure (PSI)	Vacuum Pressure (in of H ² O)	Result	Time
Spec 1	GA	2SH	2	7.5	12 PSI	0.19	F 1:49
Spec 2	LR	2SH	1	7.5	12 PSI	0	F 1:48
Spec 3	LR	2SH	3	7.5	12 PSI	0.39	F 0:37
Spec 4	LR	2SH	4	7.5	12 PSI	0.58	P 5:00
Spec 5	D	SH	4	7.5	12 PSI	0.68	F 3:40
Spec 6	D	SH	4	7.5	12 PSI	0.68	P 5:00
Spec 7	3BR	SH	3	7.5	12 PSI	0.65	F 1:49

Testing activities performed onsite produced the following results:

5 of the 7 (71%) units tested ended in a failing result
 2 of the 7 (29%) units tested ended in a passing result.

FAILURE:

According to Section 3.2.3 of the ASTM E-1105 testing standard, failure is defined as follows:

3.2.3 water penetration, n—penetration of water beyond a plane parallel to the glazing (the vertical plane) intersecting the innermost projection of the test specimen, not including interior trim and hardware, under the specified conditions of air pressure difference across the specimen.

According to this statement, the interpretation of Water Penetration (Failure) is when water penetrates beyond the glazed system's water management system and is witnessed beyond the innermost part of the window system framing or installation.

For example, when water is seen on the marble/drywall sill or drywall reveal (head, jamb, or sill) beyond the framing system, this is considered a failure according to ASTM E-1105.

PASSING:

If water is witnessed on a frame member of an installed glazed system or is contained within the Sill Frame Member and does not reach beyond the frame into interior living space, the window is considered to have passed the test.

All glazed systems have designed within them Water Management Systems to handle "Water Infiltration."

According to ASTM E-218 Section 3.2.3, Water Infiltration is defined as follows:

3.2.3 water infiltration— process in which water passes through a material or between materials in a system and reaches a space that is not directly or intentionally exposed to the water source.

A window system is designed to manage limited water infiltration by integrating the building's Water Resistance Barrier, Moisture Drainage Plane, Incorporating Sill End Dam, Weeping System and other water mitigation design systems.

If a window system operates according to its specified designed water resistance testing pressure and is installed according to its manufacturer's prescribed installation method, it can manage limited moisture intrusion and protect the interior occupied space from the exterior elements.

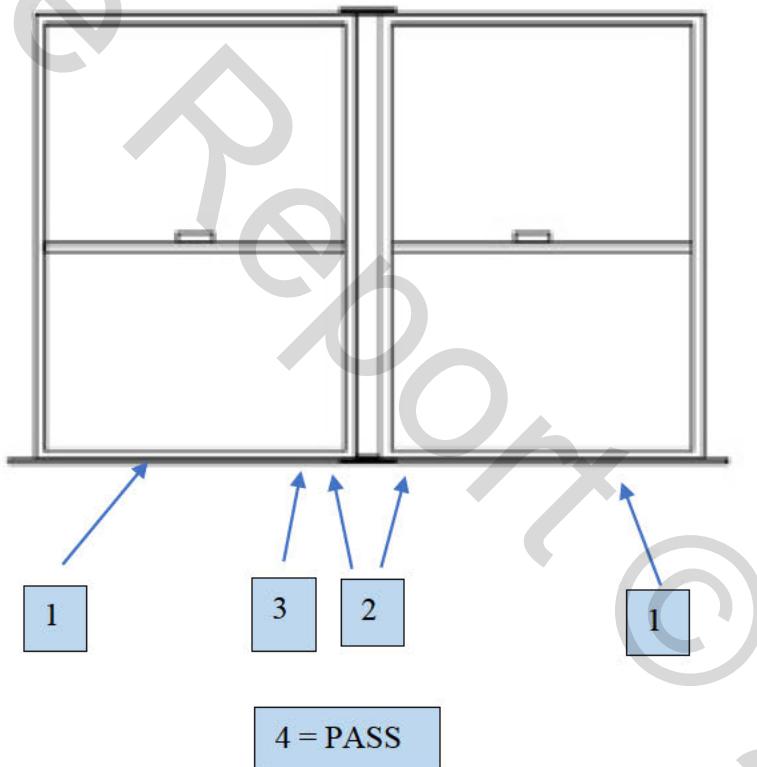
To understand this point further:


"If the water that has leaked to the inside of the window does not breach the innermost plane of the window itself, the water can not damage the building because the window is still protecting it from any of the water infiltration." - Todd Mikkelsen "Building Consultant."

However, moisture intrusion can escalate to moisture penetration when a window system is compromised, stressed beyond its specified design pressure, and has exhibited signs of failure. The window system cannot handle the amount of uncontrolled "water leakage" attacking the exterior glazed envelope. According to ASTM E-2128 section 3.2.4, Water Leakage is defined as follows:

3.2.4 water leakage—water that is uncontrolled; exceeds the resistance, retention, or discharge capacity of the system; or causes substantial damage or premature deterioration.

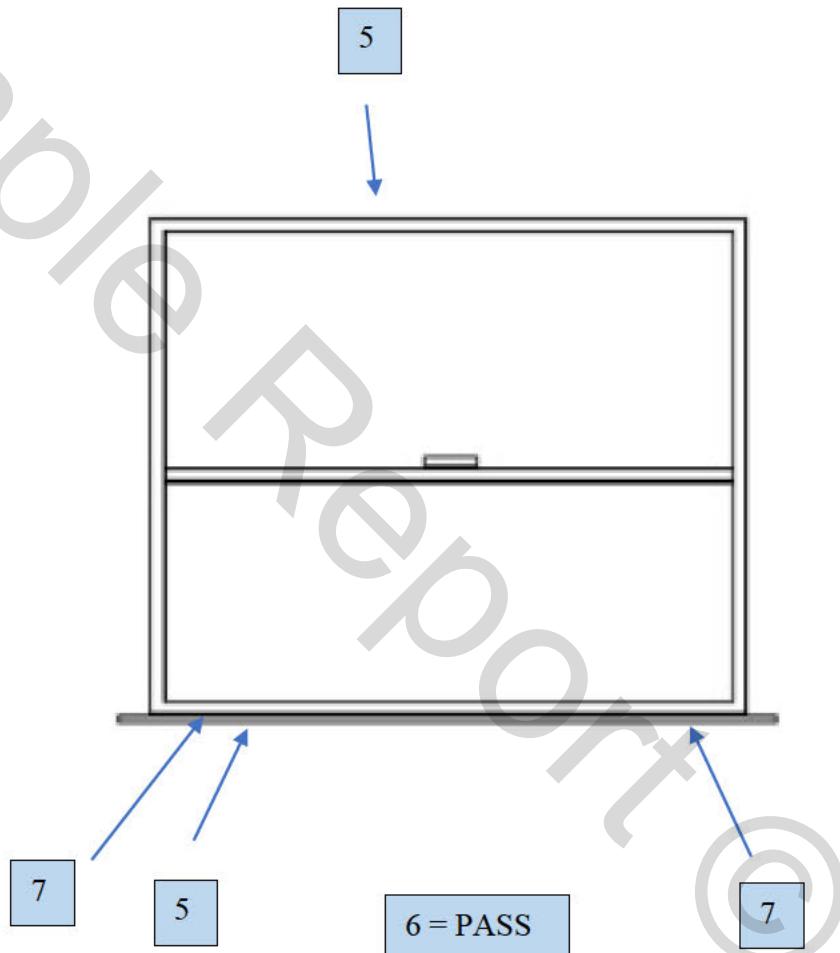
Note – the TSSA Storm Safe DAC Inc spray rack is calibrated as per the ASTM E-1105 testing standard and was in compliance with the standard when testing was performed at the [REDACTED] Residence. Below is a copy of the TSSA Storm Safe DAC Inc Calibration Certificate.



ASTM E-1105 Water Penetration Testing Results

The following diagrams show the location of failure on each of the specimens tested and what test cycle the failure occurred.

ASTM E-1105 Water Penetration Testing Results


Double Mulled Single Hung Window

Location	System Type:	Window Observation Cycle Number:	Flow Rate (Gal/min)	Water Pressure (PSI)	Vacuum Pressure (in of H ² O)	Result	Time
Spec 1	GA	2SH	2	7.5	12 PSI	0.19	F 1:49
Spec 2	LR	2SH	1	7.5	12 PSI	0	F 1:48
Spec 3	LR	2SH	3	7.5	12 PSI	0.39	F 0:37
Spec 4	LR	2SH	4	7.5	12 PSI	0.58	P 5:00

Single Hung Window

Location	System Type:	Window Observation Cycle Number:	Flow Rate (Gal/min)	Water Pressure (PSI)	Vacuum Pressure (in of H ² O)	Result	Time
Spec 5	D	SH	4	7.5	12 PSI	0.68	F 3:40
Spec 6	D	SH	4	7.5	12 PSI	0.68	P 5:00
Spec 7	3BR	SH	3	7.5	12 PSI	0.65	F 1:49

Repair Replace Analysis

After Analyzing the inspection data collected onsite, the following recommendations to repair or replace have been determined.

Window Map Location		E-1105 Testing					Reccomendation to Correct
Specimen Number	Specimen	SPECIMEN	FACING	ROOM	SPECNUM	Damages Identified	
1		SH-CG_35X71	W	2BR	1	,O,GSD,FS,DG,OS,FOA,	REPLACE
2		2SH_71X60	W	3BR	1	,O,GSD,FS,IFD,DS,	REPLACE
3		SH_34X58	W	3BR	1	,O,NSI,ND,GSD,OS,	REPAIR
4		SH_30X35	W	4BR	1	,IO,GSD,DS,OS,FS,DG,	REPLACE
5	Spec 1	2SH_71X60	N	G	1	,O,GSD,FS,DS,EFD,MM,	REPLACE
6		2SH_71X60	E	F	1	,O,IO,BM,OR,RG,FS,DS,IFD,OS,EFD,GSD,	REPLACE
7		2SH_71X60	E	F	2	,O,DS,OR,DG,FS,IFD,OS,GSD,	REPLACE
8	Spec 5	SH_31X35	E	D	1	,IO,GSD,DS,OS,DG,EFD,	REPLACE
9	Spec 6	SH-CG_31X35	W	D	2	,O,IFD,GSD,BL,OS,EFD,FS,FR,DS,	REPLACE
10		2SH_71X60	E	MBR	1	,IO,O,BM,IFD,DS,FS,SF,	REPLACE
11		2SH_71X60	S	MBR	2	,O,NO,BM,IFD,FS,FS,DS,	REPLACE
12		2SH_71X60	S	MBR	3	,O,NO,SF,IFD,FS,DS,	REPLACE
13		SH_30X35	S	MBA	1	,NO,BM,DS,GSD,FR,IFD,FS,	REPLACE
14		SH-CG_31X35	N	MBA	2	,IO,BM,IFD,OS,SD,FS,DS,FOA,SF,	REPLACE
15		SH_29X34	E	LA	2	,NO,FS,GSD,IFD,MI,OS,DG,SD,FR,	REPLACE
16		SH_26X71	E	DR	1	,IFD,FS,DS,NO,MI,OS,GSD,EFD,	REPLACE
17		ED_PW-GI_36X79	N	K	1	,O,DG,IFD,BM,IM,FS,MI,OS,EFD,	REPLACE
18		2SH_70X59	E	LR	1	,SF,NO,FS,MI,OR,FR,IFD,DG,OS,GSD,ED,EFD,	REPLACE
19		2SH_70X59	E	LR	2	,SF,FS,OS,IFD,EFD,GSD,DG,MI,NO,OR,FR,ED,	REPLACE
20	Spec 2	2SH_70X59	E	LR	3	,OS,EFD,GSD,FS,FS,FR,SD,ED,	REPLACE
21	Spec 4	2SH_70X59	S	LR	4	,NO,IFD,MI,FS,DS,OS,OR,DG,EFD,GSD,ED,SF,	REPLACE
22		2SGD_72X80	S	LR	5	,LP,O,JM,AD,HM,IFD,DF,GI,FS,OS,FOA,	REPLACE
23		2SH_70X59	S	LR	6	,O,FS,DG,IO,BM,IFD,OS,EFD,GSD,ED,	REPLACE
24		2SH_70X59	S	LR	7	,OS,EFD,GSD,ED,OR,FS,DS,SD,IFD,	REPLACE
25	Spec 3	2SH_70X59	S	LR	8	,SF,NO,FS,OR,DG,DS,IFD,MI,OS,EFD,GSD,ED,	REPLACE
Not Physically Inspected	Spec 7	SH_34X58	W	3BR		REPAIR	4%
						REPLACE	96%
						NA	0%

Replace Determination –

Determination to Replace has been created based on excessive Frame Separation, Frame Rotation, Primary Seal Disruption, System Movement, Interior Finish Distress, Exterior Finish Distress, Deglazing, Glass Stop Damage, Spacer Disruption, Seal Failure, and Exposure to Moisture Intrusion witnessed on the systems inspected. The combination of these physical damages is indicative of the effects of [REDACTED] created buffeting with force, which has left these systems in a compromised state.

Repair Determination –

Determination to Repair has been created based on the fact that these systems did not show the same structural diminishment of capacity as the windows placed in the Replace group. Therefore it is possible for an Engineered Approved Repair Protocol to be created to repair these specimens.

Findings – Our professional opinion is that the physical damages witnessed on the glazed systems are consistent with an interaction with [REDACTED] created wind force, extensive buffeting, stress, and of common age, condition, or poor maintenance issues.

The physical damage profile notated during our Non-invasive Physical evaluation of the 25 window systems examined was further categorized by the Water Penetration witnessed during the E-1105 Water Penetration Resistance testing performed on the seven selected specimens.

The list below highlights the physical damage profile witness during our Non-Invasive Physical Evaluation:

Frame Separation	Exterior Finish Distress
Frame Rotation	Deglazing
Primary Seal Disruption	Glass Stop Damage
System Movement	Spacer Disruption
Interior Finish Distress	Seal Failure

These physical damages diminish a glazed system's ability to keep a congruent envelope of protection. This diminishment of capacity is a primary reason water would be allowed to penetrate through the damaged glazed systems framing members, glazing material, primary seal, and adherence to the building substrate.

The failure locations (Water Penetration) witnessed during the ASTM E-1105 Water Penetration Test are directly proportional to the physical damages witnessed during the TSSA Storm Safe DAC Inc Non-Invasive Physical Evaluation.

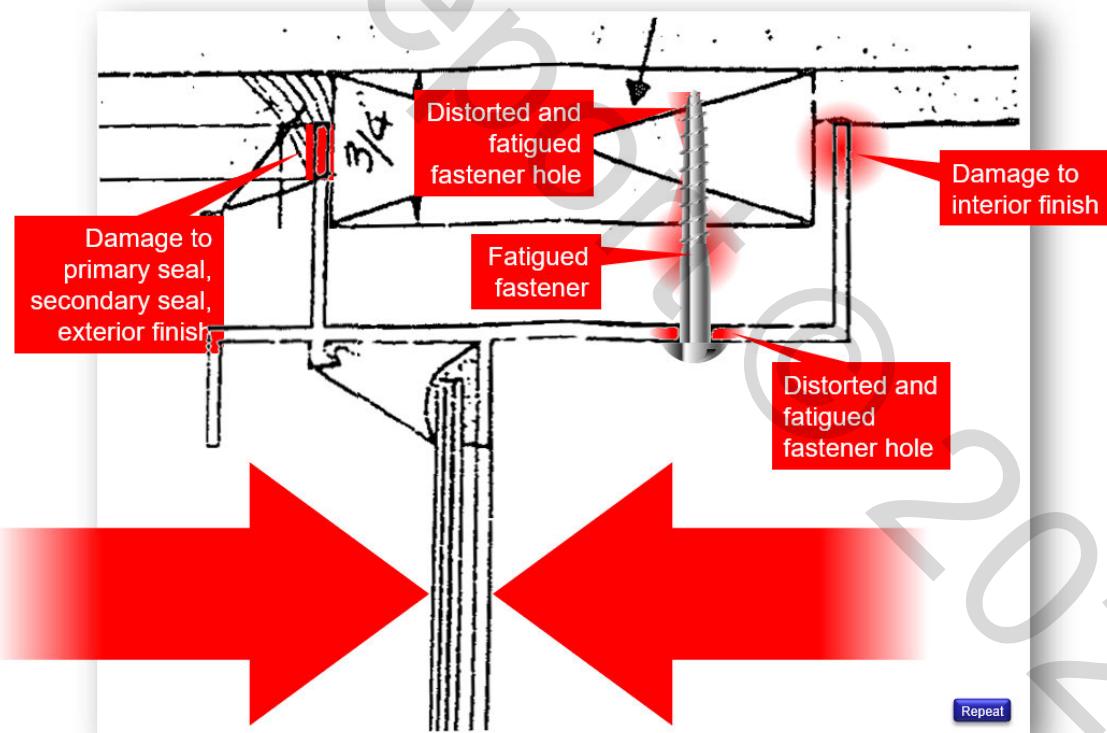
Failure Analysis:

Storm Created Pressure Damage on Glazed Systems

████████████████████ created wind speed, and subsequent pressure damage to the glazed system installed at the █████ Residence was exacerbated by the glazed systems' rapid wind buffering and cyclic movement.

████████████████████ defines Wind buffering as a "rapid change in either direction or magnitude such that the change is dramatically different from the immediately prior time step direction or immediately prior time step average wind speed."

Buffeting wind forces under load that have the ability to damage glazing systems, as well as other building envelope components well below design wind speeds:


According to Baskaran et al., frequently buffeting winds can cause materials and building envelope failures well below design wind speeds. ^[1]

The physical damages witnessed on the glazed system supported by the documented test cycle failure (wind speed and pressure), are indicative of windows systems that have been over-stressed and structurally damaged during their interaction with █████████████████████.

Below is a pictorial example of how a glazed system is damaged during an interaction with a prolonged cyclic high wind event.

This photograph was taken during a cyclic pressure test of a single hung window system. This photograph demonstrates how high wind speed, pressure, and buffeting force affects glazed systems during a Hurricane. The rapid positive and negative cyclic movement and high wind buffeting create separations and disruptions in a window system framing joints, installation fasteners, and glazing system causing failure in the components allowing water to penetrate through the exterior building envelope into the interior living space.

Copyright © 2021 TSSA Storm Safe DAC, Inc. All Rights Reserved

Physical damage created by Hurricane
High Wind Buffeting, Speed, and Pressure.

The professional opinion of TSSA Storm Safe DAC Inc. is that the glazed systems tested at the [REDACTED] Residence have been damaged to the point of being unable to adequately protect the interior living space from the exterior elements.

High Wind Speed, Pressure, and wind buffeting force from [REDACTED] caused the windows framing, installation, and glazing components to separate. The post-storm condition of the windows installed at the [REDACTED] Residence now sit in a compromised state and with a diminished capacity to keep a congruent envelope of protection. It is also important to note that the glazed systems are now in peril of failing during a less powerful wind event.

Due to the data collected and the rate of failure witnessed during the ASTM E-1105 testing activities performed onsite, it is the professional opinion of TSSA Storm Safe DAC Inc. that the glazed systems need to be replaced.

Limitations – The contents of this condition damage assessment letter are intended for the use of Mr. [REDACTED] and his associates or clients. TSSA Storm Safe Inc. assumes no liability for the misuse of this information by others. The professional opinions and recommendations included within this condition damage assessment letter are based on the results and interpretations of the non-invasive testing and data collection activities performed at the site. TSSA Storm Safe Inc. reserves the right to update this letter should additional information become available.

MOISTURE METER TECHNOLOGY – The Ryobi Model # E49MM01 Moisture Meter Gauge and General 4-in-1 Pin/Pad RH Moisture Meter Model # MMH800 were utilized for the sole purpose of the TSSA Storm Safe Inc. inspector to document the presence of moisture in and around the Glazed System specimen in order to validate his remarks on Moisture Intrusion, Damage, and Penetration. No Microbial, Bacterial, Environmental, or other scientific data was investigated intended, and otherwise implied by the testing, data gathering, and investigation completed with the Ryobi Model # E49MM01 Moisture Gauge or General 4-in-1 Pin/Pad RH Moisture Meter Model # MMH800.

Closing Statement - The opinions authored in this condition damage assessment letter are a direct result of Ivan Browner (TSSA's President) and TSSA Storm Safe Inc.'s background, training, and combined experience, which spans over 70 years in all facets of the glazing industry. TSSA Storm Safe DAC Inc. has inspected over 500,000 windows, sliding glass doors, curtain walls, storefront systems, and architectural products in multiple states.

As the author of this condition damage assessment letter, the basis for the opinions expressed herein are to a reasonable degree of professional certainty. However, TSSA Storm Safe DAC Inc. reserves the right to update this report should additional information become available.

The TSSA Storm Safe DAC Inc., glazed damage assessment investigation of the [REDACTED] Residence was performed by the TSSA Storm Safe Inc. Field Inspection Team under my direct supervision.

Attached to this Glazing Testing Report are the following exhibits:

- Exhibit A – Inspection Field Notes and Photographic Backup
- Exhibit B – ASTM E-105 Water Penetration Test Field Notes
- Exhibit C – Ivan Browner Curriculum Vitae
- Exhibit D – TSSA Storm Safe Inc. Curriculum Vitae
- Exhibit E – TSSA Storm Safe Inc. Expert Witness Fee Schedule
- Exhibit F – References

TSSA Storm Safe DAC Inc. appreciates this opportunity to have assisted Mr. [REDACTED] with this investigation. Please call if you have any questions concerning this information.

Sincerely,

[REDACTED]

Ivan Browner
President
TSSA Storm Safe DAC Inc.

Exhibit A

Field Inspection Notes and Photos

Structural Glazing Damage Assessment

Project: 1 Residence
Building #/Letter: 1 Stack: A
Floor: 1 Unit: [REDACTED]
Room: Foyer Specimen #: 1 Facing: E / Corner Unit: No

SYSTEM DISPOSITION:

- (ND) - NO DAMAGE
- (R) - REMOVED
- (NA) - NOT ACCESSIBLE
- (LA) - LIMITED ACCESS
- (NSI) - NEW SYSTEM INSTALLED
- (O) - OPERATIONAL
- (NO) - NOT OPERABLE
- (IO) - IMPAIRED OPERATION
- (BM) - BROKEN MECHANISM
- (ED) - EXCESSIVE DAMAGE
- (S) - SHUTTERS

EXPOSURE DAMAGE:

- ☒ (IFD) - INTERIOR FINISH DISTRESS
- ☒ (EFD) - EXTERIOR FINISH DISTRESS
- ☐ (MI) - MOISTURE INTRUSION
- ☐ (C) - CORROSION
- ☐ (SD) - SEALANT DISRUPTION

PHOTO START # 140

PHOTO FINISH # 198

FRAME DAMAGE:

- (FOA) - FRAME OUT OF ALIGNMENT
- (FS) - FRAME SEPARATION
- (FR) - FRAME ROTATION
- (HM) - HEADER MOVEMENT
- (JM) - JAMB MOVEMENT
- (FM) - FOOTER MOVEMENT
- (SM) - SILL MOVEMENT
- (MS) - MULL SEPARATION
- (MM) - MULL MOVEMENT
- (MR) - MULL ROTATION
- (AD) - ASTRAGAL DAMAGE
- (LP) - LOOSE PANEL
- (FD) - FRAME DEFLECTION

RELATIVE MOISTURE LEVEL:

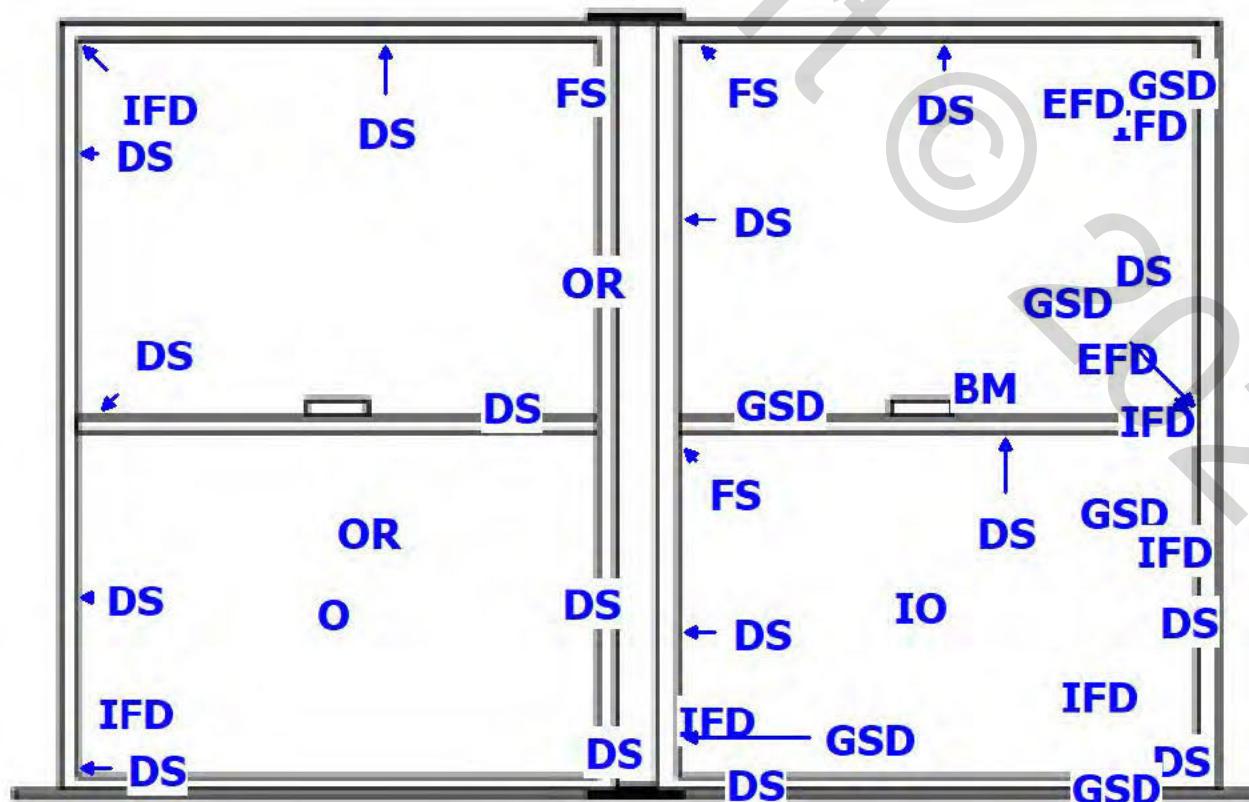
(L - JAMB) - _____% (R - JAMB) - _____%

(HEADER) - % (SILL) - %

(REFERENCE) -

SYSTEM DAMAGE:

- (DG) - VISUAL SIGNS OF DEGLAZING
- (GI) - GASKET INGESTED
- (GNS) - GASKET NOT SEATED
- (DS) - DAMAGED SPACER
- (DF) - DAMAGED FASTENER
- (MF) - MISSING FASTENER
- (GSD) - GLASS STOP DAMAGE
- (ASD) - ASSEMBLY SYSTEM DISTRESS
- (BL) - BROKEN LITE
- (WD) - WEATHER STRIP DAMAGE
- (SF) - SEAL FAILURE
- (CPD) - COVER PLATE DAMAGE


TEMPORARY REPAIRS:

- (FP) - FRESH PAINT
- (PF) - PAINTED FRAMES
- (WP) - WALLPAPER
- (SR) - SEALANT REPAIR
- (RG) - RE-GLAZED
- (NG) - NEW GASKET
- (NF) - NEW FASTENER
- (OR) - OTHER REPAIR

WINDOW TYPE: Double Mulled Single Hung

WINDOW CODE: 2SH_71X60

(OS) = OUTSIDE VIEW

Structural Glazing Damage Assessment

Project: 1 Residence
Building #/Letter: 1 Stack: A
Floor: 1 Unit: [REDACTED]
Room: Foyer / Specimen #: 2 Facing: E / Corner Unit: No

SYSTEM DISPOSITION:

- (ND) - NO DAMAGE
- (R) - REMOVED
- (NA) - NOT ACCESSIBLE
- (LA) - LIMITED ACCESS
- (NSI) - NEW SYSTEM INSTALLED
- (O) - OPERATIONAL
- (NO) - NOT OPERABLE
- (IO) - IMPAIRED OPERATION
- (BM) - BROKEN MECHANISM
- (ED) - EXCESSIVE DAMAGE
- (S) - SHUTTERS

EXPOSURE DAMAGE:

- (IFD) - INTERIOR FINISH DISTRESS
- (EFD) - EXTERIOR FINISH DISTRESS
- (MI) - MOISTURE INTRUSION
- (C) - CORROSION
- (SD) - SEALANT DISRUPTION

PHOTO START # 199

PHOTO FINISH # 252

FRAME DAMAGE:

- (FOA) - FRAME OUT OF ALIGNMENT
- (FS) - FRAME SEPARATION
- (FR) - FRAME ROTATION
- (HM) - HEADER MOVEMENT
- (JM) - JAMB MOVEMENT
- (FM) - FOOTER MOVEMENT
- (SM) - SILL MOVEMENT
- (MS) - MULL SEPARATION
- (MM) - MULL MOVEMENT
- (MR) - MULL ROTATION
- (AD) - ASTRAGAL DAMAGE
- (LP) - LOOSE PANEL
- (FD) - FRAME DEFLECTION

RELATIVE MOISTURE LEVEL:

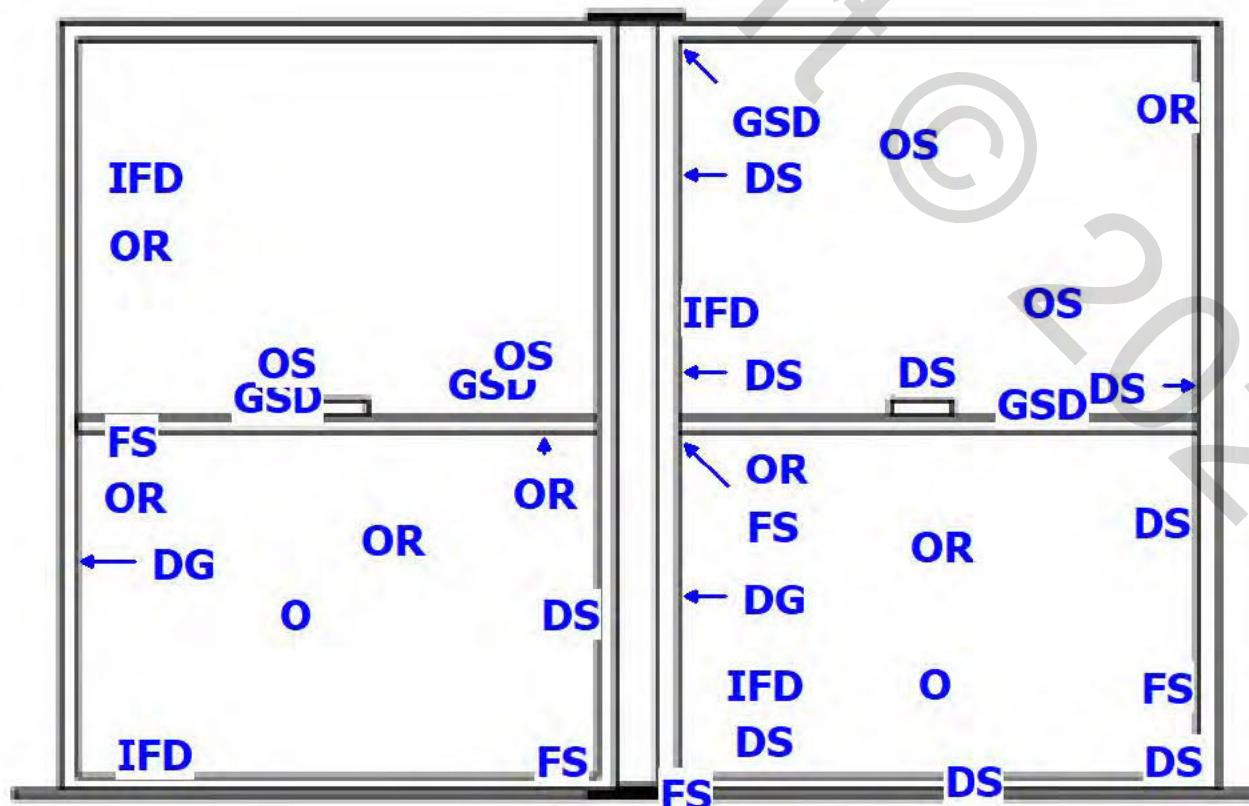
(L - JAMB) - _____% (R - JAMB) - _____%

(HEADER) - % (SILL) - %

(REFERENCE) -

SYSTEM DAMAGE:

- (DG) - VISUAL SIGNS OF DEGLAZING
- (GI) - GASKET INGESTED
- (GNS) - GASKET NOT SEATED
- (DS) - DAMAGED SPACER
- (DF) - DAMAGED FASTENER
- (MF) - MISSING FASTENER
- (GSD) - GLASS STOP DAMAGE
- (ASD) - ASSEMBLY SYSTEM DISTRESS
- (BL) - BROKEN LITE
- (WD) - WEATHER STRIP DAMAGE
- (SF) - SEAL FAILURE
- (CPD) - COVER PLATE DAMAGE


TEMPORARY REPAIRS:

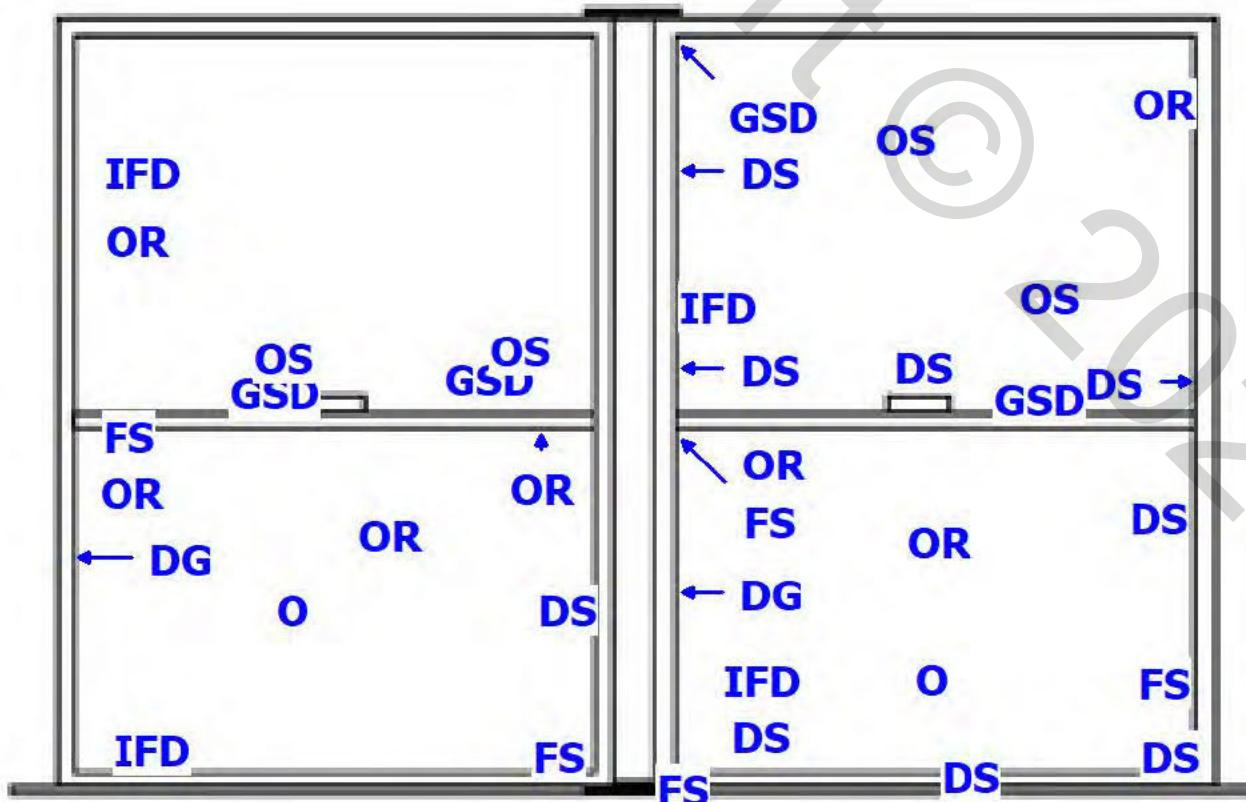
- (FP) - FRESH PAINT
- (PF) - PAINTED FRAMES
- (WP) - WALLPAPER
- (SR) - SEALANT REPAIR
- (RG) - RE-GLAZED
- (NG) - NEW GASKET
- (NF) - NEW FASTENER
- ☒ (QR) - OTHER REPAIR

WINDOW TYPE: Double Mulled Single Hung

WINDOW CODE: 2SH_71X60

(OS) = OUTSIDE VIEW

Structural Glazing Damage Assessment


Project: 1 Residence
Building #/Letter: 1 Stack: A
Floor: 1 Unit: XXXXXXXXXX
Room: Foyer / Specimen #: 2 Facing: E / Corner Unit: No

left operational sash exterior head glass stop fully evulsed

WINDOW TYPE: Double Mulled Single Hung

WINDOW CODE: 2SH_71X60

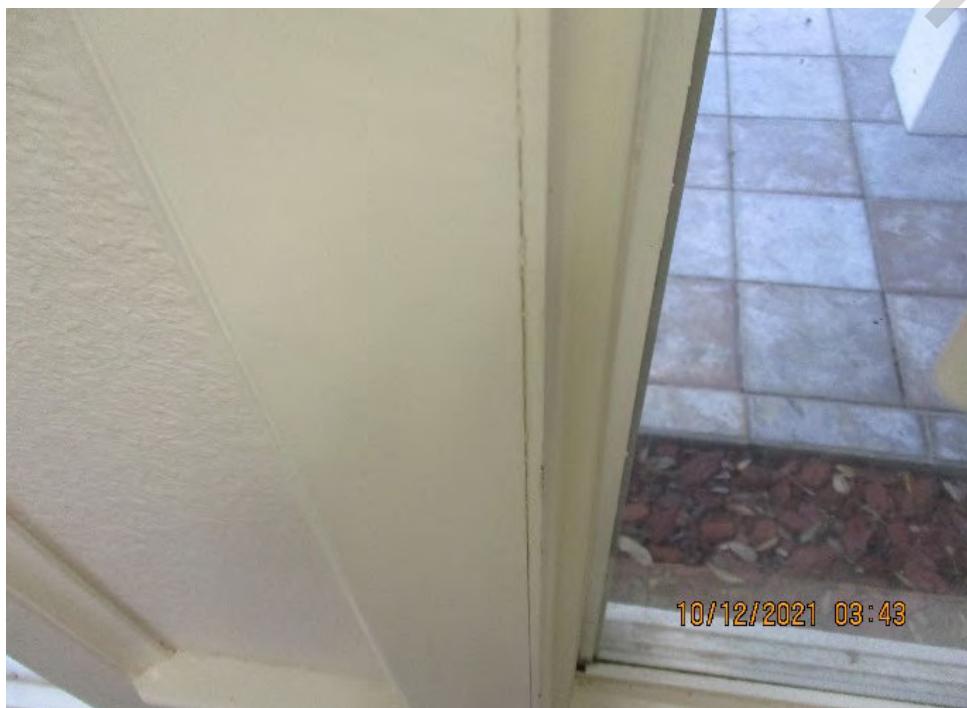
(OS) = OUTSIDE VIEW

10/12/2021 03:19

10/12/2021 03:21

10/12/2021 03:28

10/12/2021 03:30



10/12/2021 03:46

10/12/2021 03:47

Exhibit B

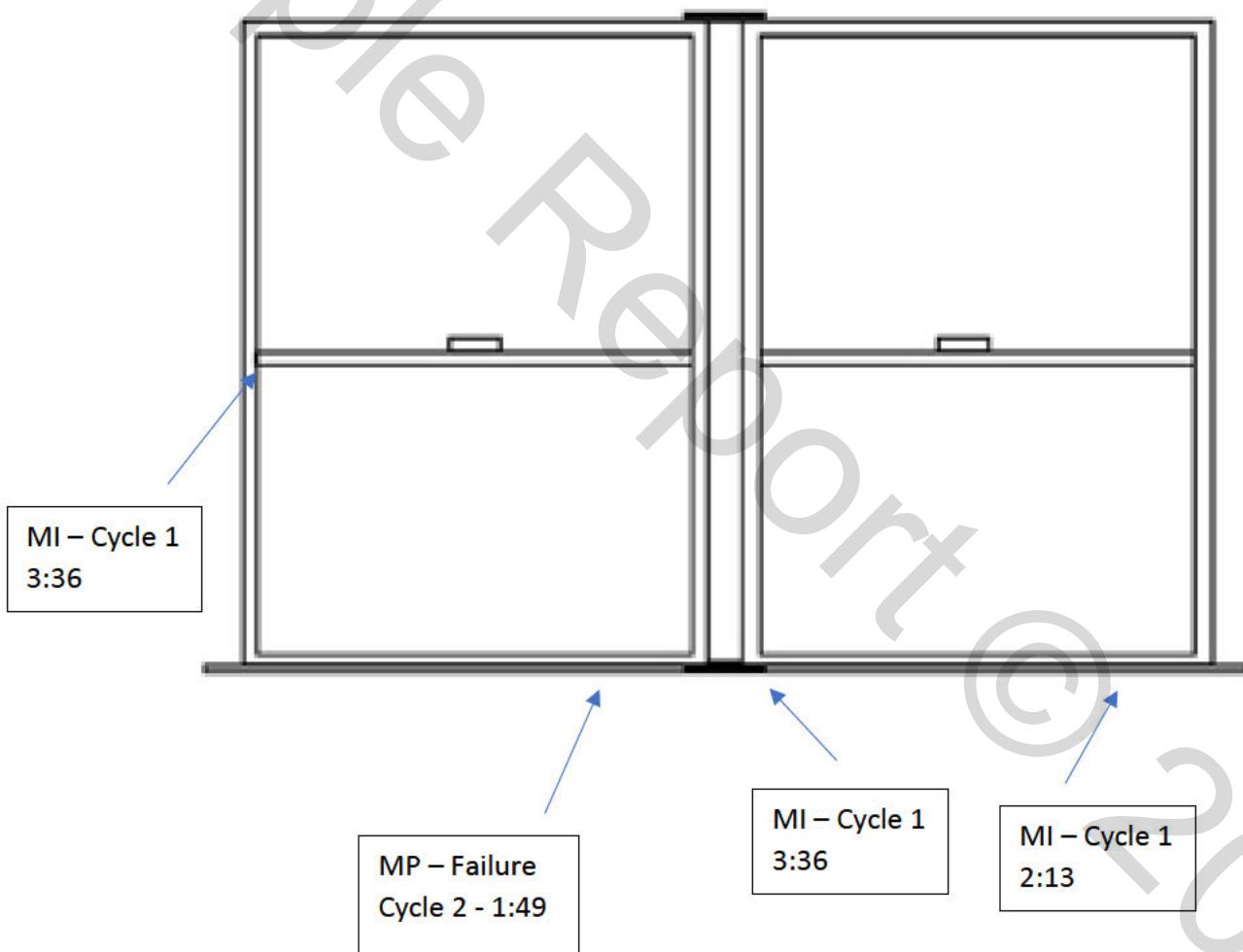
ASTM E-1105 Water Penetration Test Field Notes

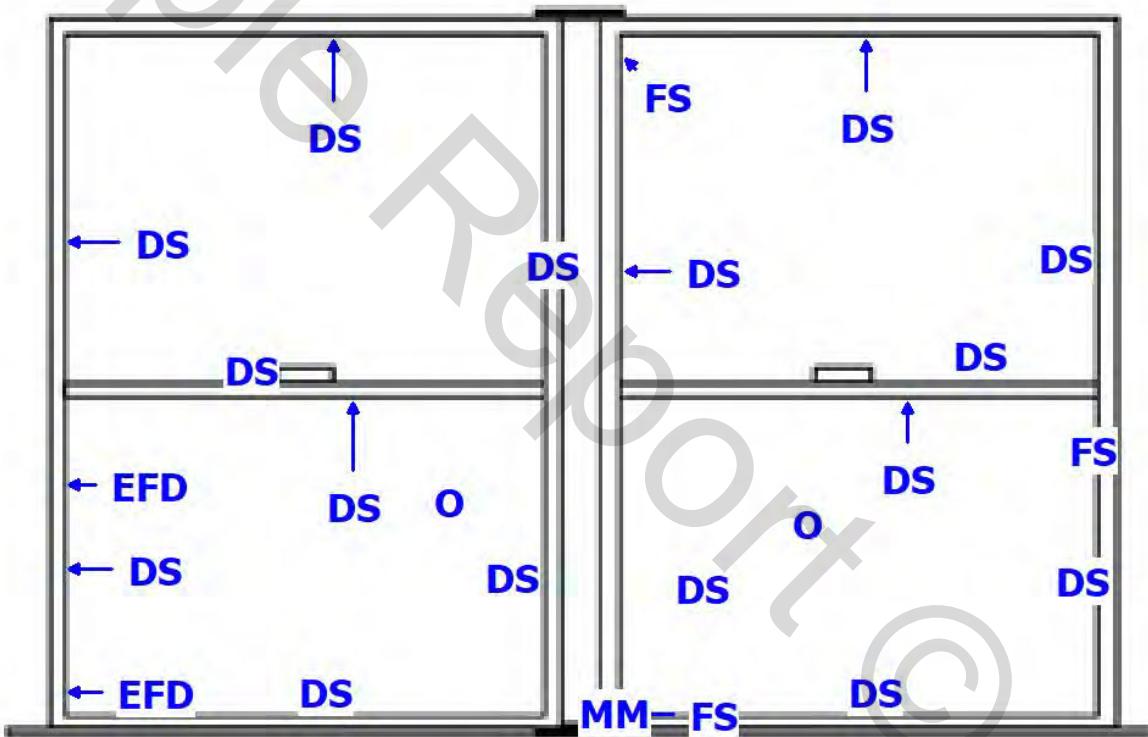
DATA COLLECTION FORM:

PROJECT NAME:	Residence	DATE:	10/12/21	
ADDRESS:		CLIENT:		
CITY, STATE, ZIP:				
		INSIDE Br. PRESSURE:	1014.3 hPa	
STANDARD FOLLOWED		WIND SPEED: (AT SPEC)	7.2 mph	
ASTM E-1105	X	RELATIVE HUMIDITY:	81 %	
METHOD A – UNIFORM STATIC		TEST SUBJECT SURFACE TEMP		
METHOD B – CYCLIC STATIC	X	INSIDE:		
AAMA 511		OUTSIDE:		
AAMA 501.2		OUTSIDE AIR TEMP:		
BLDG #		INSIDE:	77 F	
UNIT #		OUTSIDE:	77 F	
FLOOR #	1			
SAMPLE NUMBER:	1	START TIME:		
SAMPLE LOCATION	Garage	END TIME:		
SAMPLE FACING	N	PHOTO START		
PROJECT DIRECTOR	Ivan	PHOTO STOP		
TECH #1	Nick			
TECH #2	Steven			
TECH #3				

PHYSICAL EVALUATION

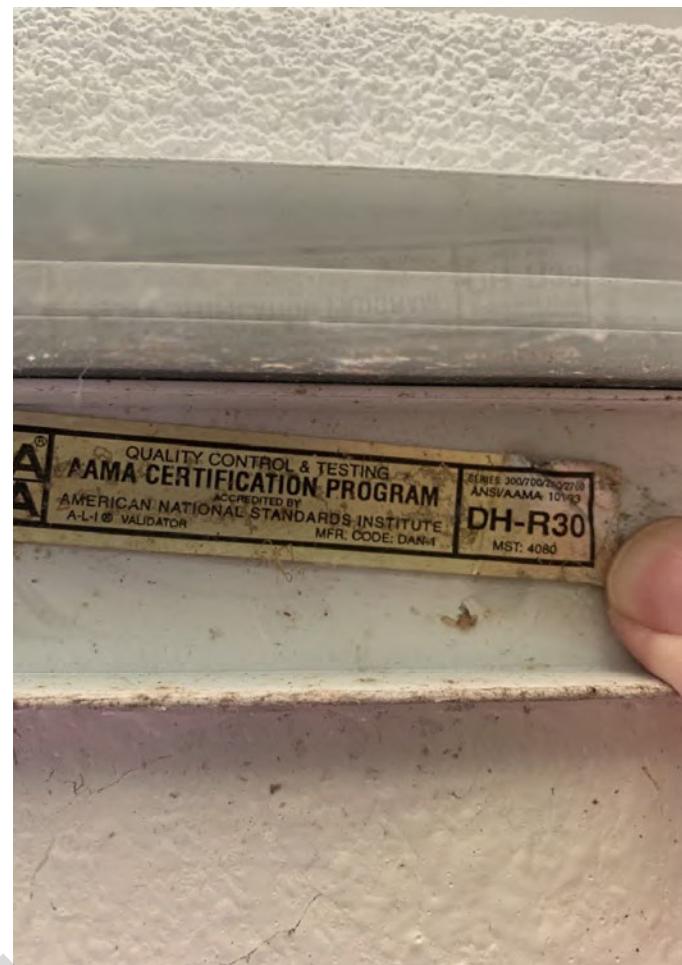
SPECIMEN #	1	SPECIMEN TYPE:	2SH		
OVERALL EXTERIOR PHOTO #		OVERALL INTERIOR PHOTO #		PHOTO START	
				PHOTO STOP	
DIAGONAL MEASURMENT	71	W 60	H	FENESTRATION OPERATED (5 TIMES)	Y N

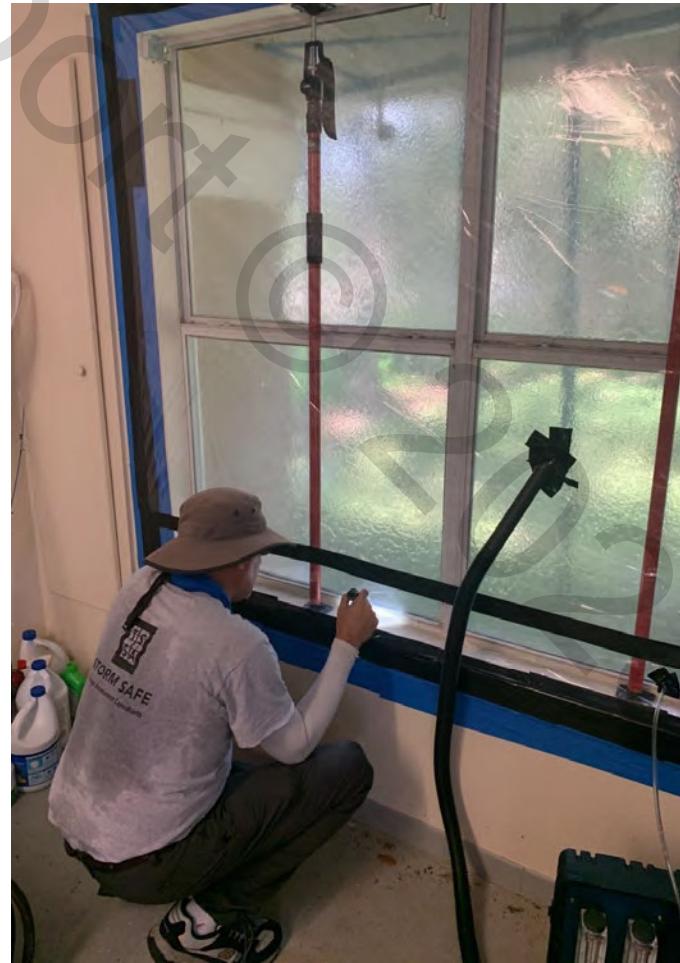

SYSTEM DISPOSITION: <input type="checkbox"/> (ND) - NO DAMAGE <input type="checkbox"/> (R) - REMOVED <input type="checkbox"/> (NA) - NOT ACCESSIBLE <input type="checkbox"/> (LA) - LIMITED ACCESS <input type="checkbox"/> (NSI) - NEW SYSTEM INSTALLED <input type="checkbox"/> (O) - OPERATIONAL <input type="checkbox"/> (NO) - NOT OPERABLE <input type="checkbox"/> (IO) - IMPAIRED OPERATION <input type="checkbox"/> (BM) - BROKEN MECHANISM <input type="checkbox"/> (ED) - EXCESSIVE DAMAGE <input type="checkbox"/> (S) - SHUTTERS EXPOSURE DAMAGE: <input type="checkbox"/> (IFD) - INTERIOR FINISH DISTRESS <input checked="" type="checkbox"/> (EFD) - EXTERIOR FINISH DISTRESS <input type="checkbox"/> (MI) - MOISTURE INTRUSION <input type="checkbox"/> (C) - CORROSION <input type="checkbox"/> (SD) - SEALANT DISRUPTION	FRAME DAMAGE: <input type="checkbox"/> (FOA) - FRAME OUT OF ALIGNMENT <input type="checkbox"/> (FS) - FRAME SEPARATION <input type="checkbox"/> (FR) - FRAME ROTATION <input type="checkbox"/> (HM) - HEADER MOVEMENT <input type="checkbox"/> (JM) - JAMB MOVEMENT <input type="checkbox"/> (FM) - FOOTER MOVEMENT <input type="checkbox"/> (SM) - SILL MOVEMENT <input type="checkbox"/> (MS) - MULL SEPARATION <input checked="" type="checkbox"/> (MM) - MULL MOVEMENT <input type="checkbox"/> (MR) - MULL ROTATION <input type="checkbox"/> (AD) - ASTRAGAL DAMAGE <input type="checkbox"/> (LP) - LOOSE PANEL <input type="checkbox"/> (FD) - FRAME DEFLECTION	SYSTEM DAMAGE: <input type="checkbox"/> (DG) - VISUAL SIGNS OF DEGLAZING <input type="checkbox"/> (GI) - GASKET INGESTED <input type="checkbox"/> (GNS) - GASKET NOT SEATED <input type="checkbox"/> (DS) - DAMAGED SPACER <input type="checkbox"/> (DF) - DAMAGED FASTENER <input type="checkbox"/> (MF) - MISSING FASTENER <input checked="" type="checkbox"/> (GSD) - GLASS STOP DAMAGE <input type="checkbox"/> (ASD) - ASSEMBLY SYSTEM DISTRESS <input type="checkbox"/> (BL) - BROKEN LITE <input type="checkbox"/> (WD) - WEATHER STRIP DAMAGE <input type="checkbox"/> (SF) - SEAL FAILURE <input type="checkbox"/> (CPD) - COVER PLATE DAMAGE TEMPORARY REPAIRS: <input type="checkbox"/> (FP) - FRESH PAINT <input type="checkbox"/> (PF) - PAINTED <input type="checkbox"/> FRAMES (WP) - <input type="checkbox"/> WALLPAPER <input type="checkbox"/> (SR) - SEALANT REPAIR <input type="checkbox"/> (RG) - RE-GLAZED <input type="checkbox"/> (NG) - NEW GASKET <input type="checkbox"/> (NF) - NEW FASTENER
---	---	---


TESTING DATA COLLECTION

WINDOW OBSERVATION CYCLE NUMBER	FLOW RATE (Gal/Hr./Sq Ft.)	WATER PRESSURE (PSI)	VACUUM PRESSURE (in of H ² O)	PASS/FAIL	Time
1	7.41 (g/h/sf)	12 psi	0	P	5:00 min
2	7.41 (g/h/sf)	12 psi	0.19	F	1:49 min
0	7.41 (g/h/sf)	12 psi	0		
3	7.41 (g/h/sf)	12 psi	0.39		
0	7.41 (g/h/sf)	12 psi	0		
4	7.41 (g/h/sf)	12 psi	0.58		

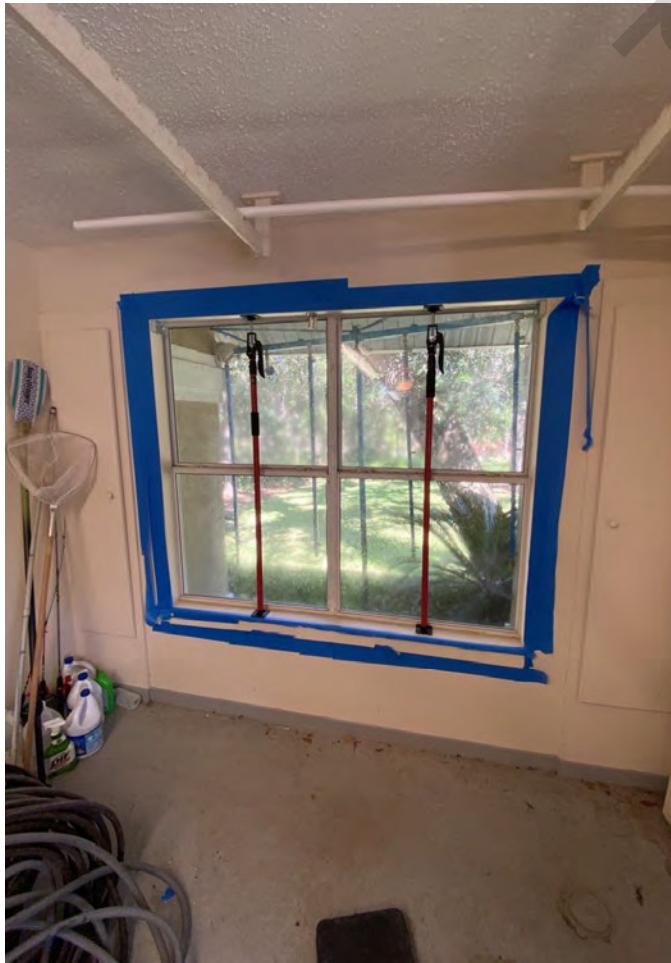
Water PENETRATION DIAGRAM

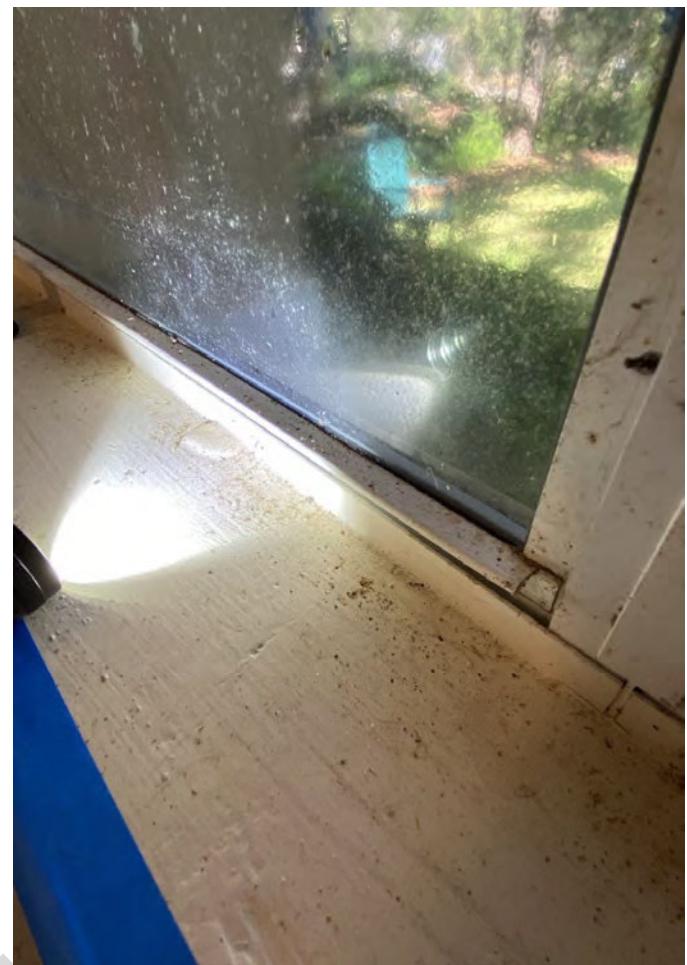
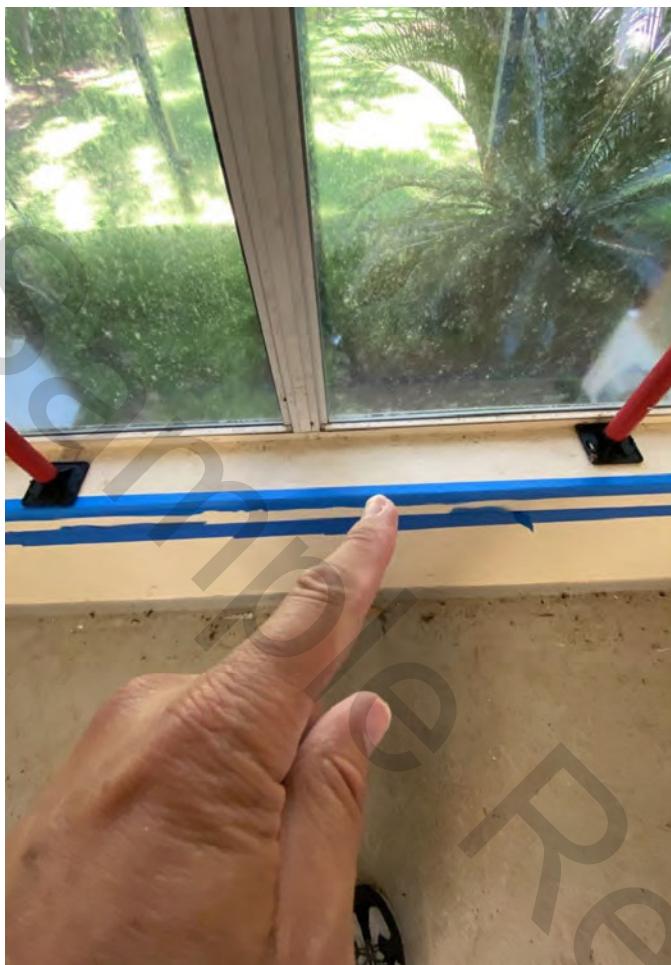

INSTRUCTIONS: Draw a pictorial diagram of the window system being tested and mark location of moisture penetration, test cycle, time of event and pass/fail

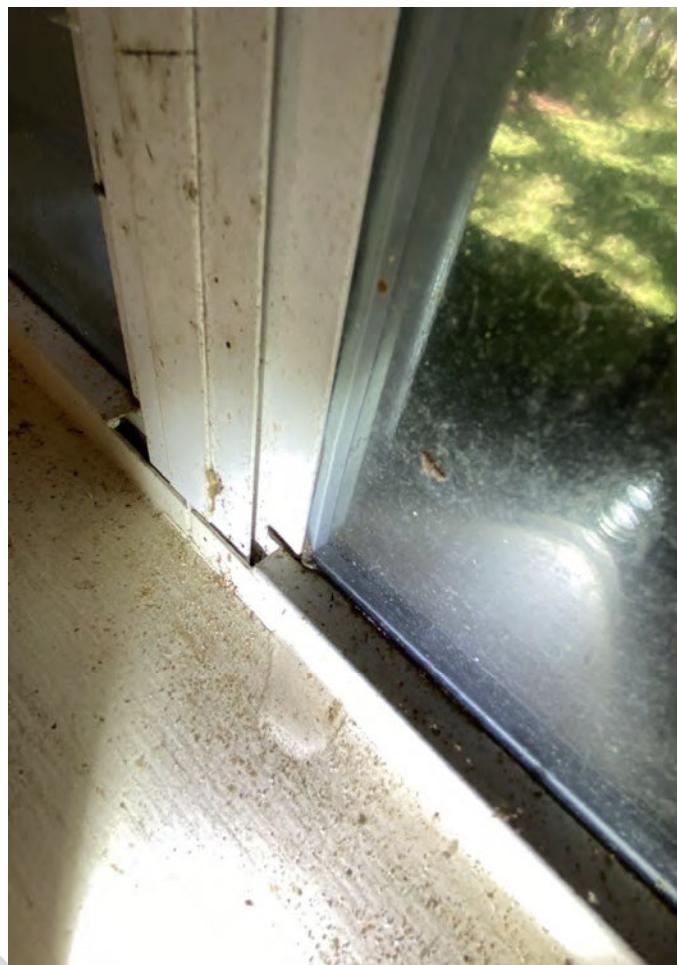


NOTES & OBSERVATIONS**Physical Damage Assessment**

NOTE – for complete Physical Damage Assessment – see Tabby inspection results for Ga age – Sp 1





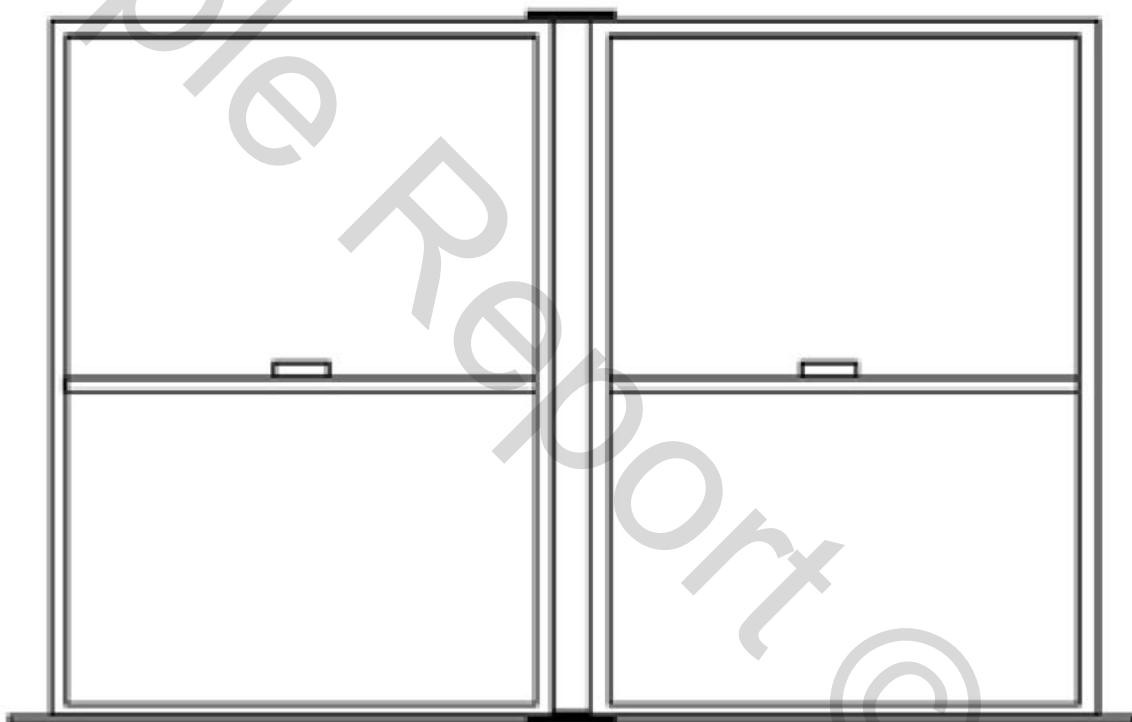
Sample Report © 2023

DATA COLLECTION FORM:

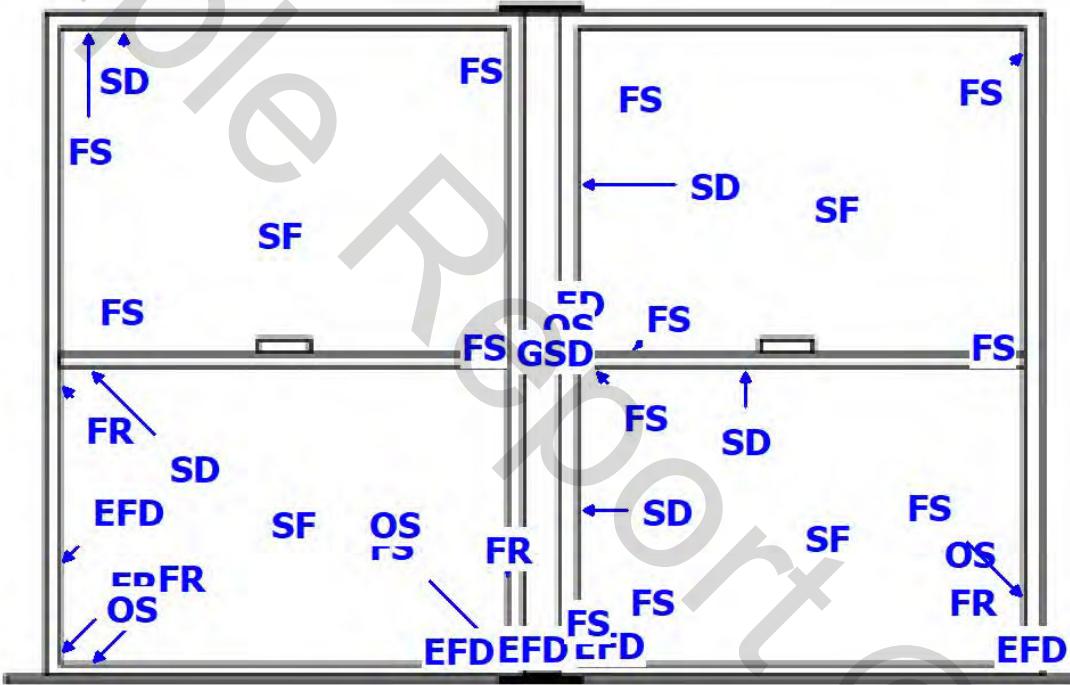
PROJECT NAME:	Residence	DATE:	10/12/21
ADDRESS:			
		INSIDE Br. PRESSURE:	1014.1 hPa
STANDARD FOLLOWED		WIND SPEED: (AT SPEC)	7.8 mph
ASTM E-1105	X	RELATIVE HUMIDITY:	76 %
METHOD A – UNIFORM STATIC		TEST SUBJECT SURFACE TEMP	
METHOD B – CYCLIC STATIC	X	INSIDE:	
AAMA 511		OUTSIDE:	
AAMA 501.2		OUTSIDE AIR TEMP:	
BLDG #		INSIDE:	74 F
UNIT #		OUTSIDE:	79 F
FLOOR #	1		
SAMPLE NUMBER:	2	START TIME:	
SAMPLE LOCATION	Living Room – Spec 3	END TIME:	
SAMPLE FACING	E	PHOTO START	
PROJECT DIRECTOR	Ivan	PHOTO STOP	
TECH #1	Nick		
TECH #2	Steven		
TECH #3			

PHYSICAL EVALUATION

SPECIMEN #	2	SPECIMEN TYPE:	2SH	
OVERALL EXTERIOR PHOTO #		OVERALL INTERIOR PHOTO #		PHOTO START
				PHOTO STOP
DIAGONAL MEASURMENT	70 W 59 H	FENESTRATION OPERATED (5 TIMES)	Y	N


SYSTEM DISPOSITION:		FRAME DAMAGE:		SYSTEM DAMAGE:	
<input type="checkbox"/>	(ND) - NO DAMAGE	<input type="checkbox"/>	(FOA) - FRAME OUT OF ALIGNMENT	<input type="checkbox"/>	(DG) - VISUAL SIGNS OF DEGLAZING
<input type="checkbox"/>	(R) - REMOVED	<input checked="" type="checkbox"/>	(FS) - FRAME SEPARATION	<input type="checkbox"/>	(GI) - GASKET INGESTED
<input type="checkbox"/>	(NA) - NOT ACCESSIBLE	<input checked="" type="checkbox"/>	(FR) - FRAME ROTATION	<input type="checkbox"/>	(GNS) - GASKET NOT SEATED
<input type="checkbox"/>	(LA) - LIMITED ACCESS	<input type="checkbox"/>	(HM) - HEADER MOVEMENT	<input type="checkbox"/>	(DS) - DAMAGED SPACER
<input type="checkbox"/>	(NSI) - NEW SYSTEM INSTALLED	<input type="checkbox"/>	(JM) - JAMB MOVEMENT	<input type="checkbox"/>	(DF) - DAMAGED FASTENER
<input checked="" type="checkbox"/>	(O) - OPERATIONAL	<input type="checkbox"/>	(FM) - FOOTER MOVEMENT	<input type="checkbox"/>	(MF) - MISSING FASTENER
<input type="checkbox"/>	(NO) - NOT OPERABLE	<input type="checkbox"/>	(SM) - SILL MOVEMENT	<input checked="" type="checkbox"/>	(GSD) - GLASS STOP DAMAGE
<input type="checkbox"/>	(IO) - IMPAIRED OPERATION	<input type="checkbox"/>	(MS) - MULL SEPARATION	<input type="checkbox"/>	(ASD) - ASSEMBLY SYSTEM DISTRESS
<input type="checkbox"/>	(BM) - BROKEN MECHANISM	<input checked="" type="checkbox"/>	(MM) - MULL MOVEMENT	<input type="checkbox"/>	(BL) - BROKEN LITE
<input checked="" type="checkbox"/>	(ED) - EXCESSIVE DAMAGE	<input type="checkbox"/>	(MR) - MULL ROTATION	<input type="checkbox"/>	(WD) - WEATHER STRIP DAMAGE
<input type="checkbox"/>	(S) - SHUTTERS	<input type="checkbox"/>	(AD) - ASTRAGAL DAMAGE	<input checked="" type="checkbox"/>	(SF) - SEAL FAILURE
EXPOSURE DAMAGE:		<input type="checkbox"/>	(LP) - LOOSE PANEL	<input type="checkbox"/>	(CPD) - COVER PLATE DAMAGE
<input type="checkbox"/>	(IFD) - INTERIOR FINISH DISTRESS	<input type="checkbox"/>	(FD) - FRAME DEFLECTION	TEMPORARY REPAIRS:	
<input checked="" type="checkbox"/>	(EFD) - EXTERIOR FINISH DISTRESS			<input type="checkbox"/>	(FP) - FRESH PAINT
<input type="checkbox"/>	(MI) - MOISTURE INTRUSION			<input type="checkbox"/>	(PF) - PAINTED
<input type="checkbox"/>	(C) - CORROSION			<input type="checkbox"/>	FRAMES (WP) -
<input checked="" type="checkbox"/>	(SD) - SEALANT DISRUPTION			<input type="checkbox"/>	WALLPAPER
				<input type="checkbox"/>	(SR) - SEALANT REPAIR
				<input type="checkbox"/>	(RG) - RE-GLAZED
				<input type="checkbox"/>	(NG) - NEW GASKET
				<input type="checkbox"/>	(NF) - NEW FASTENER

TESTING DATA COLLECTION


WINDOW OBSERVATION CYCLE NUMBER	FLOW RATE (Gal/Hr./Sq Ft.)	WATER PRESSURE (PSI)	VACUUM PRESSURE (in of H ² O)	PASS/FAIL	Time
1	7.41 (g/h/sf)	12 psi	0	F	1:48 min
2	7.41 (g/h/sf)	12 psi	0.19		
0	7.41 (g/h/sf)	12 psi	0		
3	7.41 (g/h/sf)	12 psi	0.39		
0	7.41 (g/h/sf)	12 psi	0		
4	7.41 (g/h/sf)	12 psi	0.58		

Water PENETRATION DIAGRAM

INSTRUCTIONS: Draw a pictorial diagram of the window system being tested and mark location of moisture penetration, test cycle, time of event and pass/fail

MP – Failure
Cycle 1 - 1:48

NOTES & OBSERVATIONS**Physical Damage Assessment**

NOTE – for complete Physical Damage Assessment – see Tabby inspection results for Living Room – Spec 3.

