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ABSTRACT : The most common form of incised-valle y system  develops during a lowerin g in base leve l associated wit h a fal l in relativ e
sea level .  Thi s form of incised-valle y system provide s the most complete ,  and at times ,  the only evidenc e of lowstan d to early-trans -
gressiv e deposition in shelf  and/or shallow ramp depositional settings .  Incised-valle y system s of this type are characterize d by a flu -
vially-eroded ,  elongate paleotopographi c low ,  generall y large r than a singl e channel,  whic h display s an abrupt basinwar d shif t of facie s
at its base.  The valle y fil l typicall y begins to accumulat e during base-leve l rise ,  and may contain deposits of the followin g highstand
and subsequent sea-leve l cycles .

Tw o major varietie s of incised valle y occur during a lowerin g of sea level :  (i) incised-valle y system s that have their headwater s in
a (mountainous) hinterlan d and cross a "fal l line"  (or knickpoint ) are here considered to be piedmont incised-valley  systems,  and (ii )
incised-valle y system s that are localize d withi n low-gradien t coastal plains and that do not cross a "fal l line"  are here termed coastal-
plain  incised-valley  systems.  An incised-valle y system that is fille d during one depositional sequence is termed a simple fill,  wherea s
a compound fill  records multipl e cycle s of incisio n and deposition.

The fil l of an incised-valle y system that forms in response to a lowerin g of base leve l is divisibl e into three segments :  (i) the seawar d
reaches of the incised valle y (SEGMEN T  1) is characterize d by backsteppin g (lowstan d to transgressive ) fluvia l and estuarin e deposits,
overlai n by transgressiv e marin e sands and shelf  muds;  (ii ) the middle reach of the incised valle y (SEGMEN T  2) consists of the drowned-
valle y estuarine  complex that is developed at the time of maximu m transgression ,  overlyin g a lowstan d to transgressiv e succession of
fluvia l and estuarin e deposits lik e those in segment 1;  and (iii ) the innermos t reach of the incised valle y (SEGMEN T  3) lies headwar d
of the transgressiv e estuarine limit ,  and extends to the point where changes in relativ e sea leve l no longer control fluvia l style .  Segmen t
3 is characterize d by fluvia l deposits throughout its depositional history ;  however ,  the fluvia l styl e may change systematicall y due to
changes in base leve l and the rate of creation of accommodation space.

The stratigraphi c organizatio n of these incised-valle y system s is characterize d by a number of stratigraphically-significan t surface s
that diffe r greatl y in their origin ,  geographi c extent ,  and chronostratigraphi c significance .  Fillin g of the valle y may begin during the
lowstand ,  but typicall y continues through the succeeding transgression .  Thus ,  the transgressive  surface  (i.e. ,  the flooding surfac e
separatin g the Lowstan d System s Trac t and the Transgressiv e System s Tract ) should be present in the lower portion of the fill .  It may
occur withi n fluvia l deposits or at the fluvial-estuarin e contact in segments 1 and 2,  and at a correlativ e change in fluvia l depositional
styl e in segment 3. Erosio n by tidal current s in tidal inlets or other tidal channels creates a tidal  ravinement  surface  whic h is confined
to the incised valle y in segment 1 and the seawar d part of segment 2.  More regiona l erosion by wave s at the retreatin g shorefac e
produces a wave  ravinement  surface  that separates fluvia l and/or estuarine sediments from overlyin g marine deposits in segment 1.
Bot h of these surface s are diachronous,  and could become amalgamate d wit h the sequence boundary.  In the idealize d case,  a maximum
flooding  surface  may extend throughout the incised-valle y fill ,  passing from its typica l position withi n marin e shales in segment 1,
through the center of the estuarin e deposits in segment 2,  into fluvia l sediments in segment 3.  However ,  rapid relativ e sea-leve l fal l
afte r the end of the transgression ,  or renewed sea-leve l rise after valle y fillin g (but before the onset of significan t progradation) ,  may
preven t developmen t of the maximu m flooding surface .  Compound valle y fill s may contain multipl e sets of these surfaces .

INTRODUCTIO N

An incised-valley  system consists of both an incised val -
ley and its depositional fill ,  and may provid e the most com-
plete (and at times ,  only) evidenc e of lowstand to trans-
gressiv e deposition in shelf-slop e and/or shallow-ramp ,
marin e depositional setting s (Sute r and others,  1987; Va n
Wagone r and others,  1990; Alle n and Posamentier ,  this
volume ; Belkna p and others,  this volume ;  Thomas and An-
derson,  this volume ;  Fig .  1).  Incise d valley s have been rec-
ognize d for many years (e.g. ,  Fisk ,  1944),  and are known
throughout the geologic record,  from the Precambria n (e.g. ,
Dyso n and von der Borch ,  this volume ;  Lev y and others,
this volume ) through to the Quaternary and modern units
(e.g. ,  Allen and Posamentier ,  this volume ;  Ashley and
Sheridan ,  this volume ;  Belkna p and others,  this volume ;
Kindinge r and others,  this volume ;  Roy ,  this volume ;  Thomas
and Anderson,  this volume) .  See Dairympl e and others (this
volume ) for a more complete historica l summary .

Interes t in incised-valle y system s is based upon their in-
creasin g significanc e in three related contexts .

1) Recen t applicatio n of sequence-stratigraphi c principle s
to the stratigraphi c record,  and the recognitio n of the
associatio n between incise d valley s and regionall y
mappabl e unconformit y (i.e. ,  sequence-bounding) sur-
faces .  Whe n recognized ,  these surface s are a major key
to the developmen t of a chronostratigraphi c framewor k
that provide s a better understanding of reservoi r distri -
bution in shallow-marin e and non-marine depositional
environment s (e.g. ,  Vai l and others,  1977; Weimer ,  1983,
1984; Posamentie r and Vail ,  1988; Posamentie r and oth-
ers ,  1988; Van Wagone r and others,  1988,  1990; Gal-
loway ,  1989).  Thus ,  the recognitio n of incised valley s
is an importan t tool in the correct subdivisio n of the
stratigraphi c record.

2) The recognitio n that economically-significan t quantitie s
of hydrocarbons are produced from reservoir s hosted by
the fil l of incised-valle y systems  (e.g. ,  Harms ,  1966;
Berg ,  1976; Va n Wagone r and others,  1990; Zaitli n and
Shultz ,  1990; Dolson and others,  1991; Brown ,  1993).
Indeed,  Brow n (1993) has estimate d that approximatel y
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FIG .  1.—Idealize d longitudina l section of a simpl e incised-valle y system showing the distributio n of:  (A) depositional environments ;  (B ) system
tracts ;  and (C) key stratigraphi c surfaces .  See text for discussio n of the segment s and surfaces .  Note that segment s 1 and 3 are typicall y much longer
than segment 2,  and are compressed here for ease of presentation .  LS T  = lowstan d system s tract ;  TS T  = transgressiv e system s tract ;  HS T  = highstand
system s tract .
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25%  of all off-structur e clasti c reservoir s containing
conventiona l hydrocarbons ,  world-wide ,  are produced
from lowstand to transgressive ,  incised-valle y deposits.
Thus ,  the interna l facie s architectur e of incised-valle y
fill s is of critica l importanc e to both the exploratio n for ,
and exploitatio n of,  hydrocarbon reserves .

3) Finally ,  there is heightened concern about global warm -
ing and the associated rise of sea leve l that wil l flood
low-lyin g and heavily-populated ,  coastal-valle y areas
(Koma r and Enfield ,  1987; Davi s and Clifton ,  1987;
Demares t and Kraft ,  1987).  An increase d understanding
of the evolutionar y changes that occur withi n incised -
valle y systems ,  based on the integrate d study of mod-
ern,  Quaternary and ancient analogs ,  may allow better
predictio n of the environmenta l effect s and permi t a bet-
ter response to futur e sea-leve l change.

Objectives

The factor s discussed above indicate that incised-valle y
system s are of greater importanc e than their volumetri c
contributio n to the stratigraphi c record would suggest .  De-
spite this,  there have been no attempts to develop a "gen -
eralized "  facie s model (cf .  Walker ,  1992) for the entire in-
cised-valley  system ; models that do exis t concentrate on
specifi c segments of,  or depositional style s within ,  incised-
valle y system s (e.g. ,  Roy ,  1984,  this volume ;  Allen ,  1991;
Alle n and Posamentier ,  1993,  this volume ; Dalrympl e and
others,  1992; Reinson ,  1992; Schum m and Ethridge ,  this
volume ;  Thomas and Anderson,  this volume) .  The aim of
this paper is to present an idealize d facie s model for an
incised-valle y system that is produced by fluvia l incisio n
associate d wit h a drop in relativ e sea leve l (Figs .  1,2).  The
model wil l be presented in a sequence-stratigraphi c context,
generall y followin g the methodology of Va n Wagone r and
others (1988,  1990).  The model wil l incorporate a synthesi s
of the papers published in this volume ,  and origina l work
stemmin g from researc h in modern and ancient incised-val -
ley systems .  W e recogniz e that our knowledg e of incised -
valle y system s is incomplete ,  and acknowledg e that our
model wil l requir e refinemen t as additional data become
available .

Tw o separate (but inter-connected) issues arise when one
is attempting to develop a generalize d model for incised-
valle y systems .  The firs t issue is the establishmen t of cri -
teri a by whic h an incised-valle y system may be recognize d
in the stratigraphi c record.  The second issue is the descrip -
tion of the (predictable ) stratigraphi c organizatio n of the in-
cised-valle y fill .  Thi s paper wil l start by definin g the nature
of an incised-valle y system ,  and wil l then summariz e the
recognitio n criteri a that stem from this definition ,  and ad-
dress the nature and stratigraphi c organizatio n of the in-
cised-valle y fill .  The paper wil l conclude by commentin g
on aspects of the variabilit y and preservatio n potential of
deposits withi n incised-valle y systems .

BASI C ATTRIBUTE S  OF  INCISED-VALLE Y  SYSTEM S

Schum m and Ethridg e (this volume ) and Thorne (this
volume ) have noted that severa l factor s promote fluvia l in-
cision ,  includin g (but not limite d to):  (i) eustatic  sea-level

fall  and (ii ) tectonic uplift,  both of whic h resul t in relativ e
base-leve l fal l (and commonly an increas e in stream gra-
dient) ;  (iii ) climatic  change resultin g in increased dis-
charge ;  and (iv ) stream  capture  that increase s discharg e in
the combined system .  Despit e the multiplicit y of causes of
incision ,  we wil l limi t our discussio n to incised-valle y sys-
tems that develop as a resul t of  fluvia l incisio n caused by
relativ e sea-leve l fal l (factor s (i) and (ii ) above) ,  because
such system s are associated wit h sequence boundaries and
appear to be the most common type preserve d in the geo-
logica l record.

Definition

In this context ,  an incised-valley system is here defined
as a "fluvially-eroded,  elongate  topographic  low that is typ-
ically  larger  than a single  channel  form,  and is character-
ized by an abrupt  seaward  shift of depositional  facies  across
a regionally  mappable  sequence boundary  at its base.  The
fill  typically  begins  to accumulate  during  the next base-level
rise,  and may contain deposits of the following  highstand
and subsequent sea-level  cycles."  Although exceptions may
exist ,  incised-valle y system s that occur in shallow-gradient ,
shelf/ram p setting s typicall y extend landwar d from a low-
stand delta at the mouth of the incised-valley ,  to a point
beyond whic h relativ e sea-leve l change no longer influ -
ences fluvia l erosion and deposition (Va n Wagone r and
others,  1990; Figs .  1,  2B) .  Above this point we consider
that no incised valle y (in the sense of the definitio n pro-
posed above) exists ;  instead,  a non-incised,  fluvial-channel
system feeds into the incised valley ,  producing a through-
going fluvia l network (Figs.  1,  2).  In the case where sea
leve l fall s below the shelf/slope break ,  the incised-valle y
may travers e the entire shelf/ram p and transpor t sediment
to the slope,  so that the mouth of the incised valle y feeds
directl y into a submarin e canyon-fa n complex (e.g. ,  Va n
Wagone r and others,  1988,  1990; Posamentie r and Erskin ,
1991).

Fundamental  Characteristics  of Incised-Valley  Systems

The criteri a for the recognitio n of an incised-valle y sys-
tem represen t the initia l step in definin g a generalize d facie s
model.  In ligh t of the definitio n and preceding discussion ,
the followin g criteri a can be identifie d (Fig .  3; Van  Wa-
goner and others,  1988,  1990).  (i) The valle y is a negativ e
(i.e. ,  erosional) paleotopographi c feature ,  the base of whic h
truncate s underlyin g strata includin g any regiona l marker s
that may be present ,  (ii ) The base and wall s of the incised-
valle y system represen t a sequence boundary that may be
correlate d to an erosional (or hiatal ) surfac e outside the val -
ley (i.e. ,  on the interfluv e areas) .  Thi s erosional surfac e
may be modifie d by later transgression ,  formin g an E/T
surfac e (Plin t and others,  1992),  or a combined flooding
surfac e and sequence boundary (an FS/S B  surface ;  Va n
Wagone r and others,  1990).  The sequence boundary may
be mantled by a pebble lag ,  and/or characterize d by bur-
row s belonging to the Glossifungites  ichnofacie s (Mac-
Eacher n and others,  1992; MacEacher n and Pemberton ,  this
volume) .  On the interfluves ,  the exposure surfac e may be
characterize d by a soil or rooted horizon (Lecki e and Singh ,
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1991).  (iii ) The base of the incised-valle y fil l exhibit s an
erosional juxtapositio n of more proxima l (landward ) facie s
over more distal deposits (i.e. ,  a "basinwar d shif t in fa-
cies, "  sensu Va n Wagone r and others,  1990).  Finally ,  (iv )
depositional marker s withi n the deposits of the incised-val -
ley fil l wil l onlap the valle y walls .

I t is critica l when identifyin g the extent of the incised-
valle y system to document the geometry of the sequence
boundary ,  both withi n and outside of the incised valley .
The paleotopography of the incised-valle y network may al-
low one to determine the paleodrainag e direction as an aid
in paleogeographi c reconstruction .  A variet y of techniques
have been employed to identif y and map paleovalleys ,  in-
cluding :  (i) seismi c or geologica l structura l mapping of the
erosional surfac e from wirelin e logs (e.g. ,  Zaitli n and Shultz ,
1984,  1990; Van Wagone r and others,  1990);  (ii ) third- or
higher-orde r residua l mapping of the erosional surfac e in
areas affecte d by post-depositional structurin g (e.g. ,  Zaitli n
and Shultz ,  1984,  1990);  and (iii ) detailed isopach mapping
of the interprete d fill ,  or of an interva l between the uncon-
formit y and an overlyin g horizontal marke r that extends over
the interfluves ,  to locate anomalously thick sections con-
fine d to the paleotopographi c lows (e.g. ,  Seiver ,  1951; Va n
Wagone r and others,  1990).

Piedmont  and Coastal  Plain  Incised-Valley  Systems

Incised-valle y system s may reach lengths in excess of 100's
of kilometers ,  width s to 10's of kilometers ,  and depths to
100's of meters (e.g. ,  Christie-Blic k and others,  1990; Lecki e
and Singh ,  1991; Ricketts ,  1991; Ashley and Sheriden ,  this
volume) .  These system s may cross physiographic ,  lithol-
ogic and/or tectonic boundaries whic h may have signifi -
cant affect s on fluvia l styl e (Miall ,  1992; Schumm , 1993,
Schum m and Ethridge ,  this volume) ,  but nevertheless ,  two
major physiographi c types of incised valle y occur in the
stratigraphi c record (Fig .  4).  Incised-valle y system s that have
their headwater s in a (mountainous) hinterland ,  and that cross
a "fal l line"  where there is a significan t reduction in gra-
dient,  are here considered to be piedmont incised-valley
systems.  Incised-valle y system s that are confined to low-
gradien t coastal plains and that do not cross a "fal l line"
are termed coastal-plain  incised-valley  systems.

Piedmon t incised-valle y system s are characterize d by a
longer fluvia l reach than coastal-plai n systems ,  and are
commonly associated spatiall y wit h underlyin g structura l
feature s in the hinterland .  As a result ,  these rive r system s
may be longer live d than coastal-plai n systems .  Also,  pied-
mont system s more commonly contain coarse-grained ,  im-
mature ,  fluvially-derive d sediment ,  wherea s coastal-plai n
system s are usuall y fille d by finer-graine d and more mature

deposits recycle d from coastal-plai n sediments .  In both
piedmont and coastal-plai n systems ,  marine-derive d sedi-
ment is preserve d in the estuarine portion of the valle y fil l
(see below) .  It is possible to have coastal-plai n and pied-
mont incised-valle y system s adjacent to each other in coastal
areas (e.g. ,  Hayes and Sexton ,  1989; Fig .  4).

Simple  and Compound Incised-V  alley  Fills
The fil l of any incised-valle y system may be classed as

either simple or compound depending on the absence or
presence ,  respectively ,  of multiple ,  interna l sequence
boundaries (Fig .  5;  see Dalrympl e and others,  this volume) .
If  the valle y is fille d completel y during one lowstand-trans -
gressive-highstan d sequence,  the fil l is termed a "simpl e
fill "  (e.g. ,  Rahmani ,  1988; Wood and Hopkins ,  1989; Fig .
5A).  A "compound fill "  records multipl e cycle s of incisio n
and deposition resultin g from fluctuation s in base level ,  and
is therefor e punctuated by one or more sequence boundaries
in addition to the main sequence boundary at the base of
the incised valle y (e.g. ,  Clark and Reinson ,  1990; Fig .  5B) .
Due to the presence of structura l control on their location,
piedmont rive r system s commonly exis t through more than
one sequence of sea-leve l fal l and rise ;  thus,  their incised
valley s commonly contain a compound fill .  Coastal-plai n
system s are more likel y to exis t through only one regres -
sive-transgressio n cycl e and typicall y have a simpl e fill .

MODE L  FOR  A SIMPL E  INCISED-VALLE Y  FIL L

Although many incised-valle y system s are characterize d
by compound fill s (e.g. ,  Sute r and Berryhill ,  1985; Suter
and others,  1987; Ainswort h and Walker ,  this volume ;  Archer
and others,  this volume ;  Clifton ,  this volume) ,  for sim-
plicit y and ease of discussio n we wil l consider here the case
of a piedmont incised-valle y system ,  whic h is cut and fille d
in a singl e cycl e of 4th or 5th order (Va n Wagone r and
others,  1988,  1990).  W e wil l also assume that fluvia l sed-
iment supply and the rate of transgressio n are constant.  These
assumption s wil l allow us to model an idealize d fil l without
adding unnecessary complexity .  W e believ e that,  by un-
derstandin g the geometry of this type of fill ,  it wil l then be
easier to appreciat e and predict variation s in facie s archi -
tecture associated wit h more complex ,  compound fills .  In
addition,  we assume that wave s are more significan t than
tides in the coastal zone,  and that any estuarie s that develop
are wave-dominate d (sensu Dalrympl e and others,  1992),
as this is the situation most commonly documented in an-
cient incised-valle y systems .

Stratigraphic  Organization:  Overview
Followin g Dalrympl e and others (this volume) ,  a three-

fold ,  longitudina l subdivisio n is proposed for the incised-

FIG .  2.—Idealize d plan vie w of a simple ,  piedmont incised-valle y system showing its evolutio n over one complete sea-leve l cycl e (sea-leve l fal l
to subsequent highstand) .  (A) Lowstan d (fan ) time showing the incised-valle y system passing headward into a non-incised fluvial-channe l system .
The junction between the two is the knickpoint .  (B ) Lowstan d (wedge ) time showing a lowstan d delta at the mouth of the incised valley ,  and the
beginnin g of fluvia l deposition throughout the incised-valle y system .  (C) Transgressiv e system s tract time showing developmen t of a tripartite ,  wave -
dominated estuarine system withi n the incised valley .  (D) Highstan d time wit h a progradationa l shoreface and alluvia l plain that extends beyond the
margin s of the buried incised valley .
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FIG .  4.—Schemati c view of a coastal zone showing the distinctio n between piedmont and coastal-plai n incised-valle y systems .  Modifie d after
Rosentha l (1988) paleogeographi c interpretatio n of the Lowe r Cretaceous Glauconiti c Sandstone in Alberta ,  Canada.

valle y fil l (Figs .  1,  2,  6).  Thi s three-fol d subdivisio n re-
flect s the unique depositional/stratigraphi c organizatio n
whic h result s from transgressio n followe d by highstand
deposition.

As relativ e sea leve l falls ,  the entire length of the incise d
valle y is characterize d by (net) fluvia l erosion whic h cre-
ates the basal sequence boundary (Fig .  2A).  Whe n relativ e
sea leve l reaches its lowes t leve l and starts to rise ,  fluvia l
deposition begins at the mouth of the incised-valle y system
(Fig .  2B) ,  and wil l extend progressivel y furthe r up the val -
ley as the transgressio n proceeds (e.g. ,  Belkna p and others,
this volume ; Thomas and Anderson,  this volume) .  It is pos-
sible ,  therefore ,  to have continuing erosion and sediment
bypas s in the upper (headward ) regions of the incised valle y
as deposition is occurrin g in the lower (seaward ) reaches
during "lowstan d time. "

Ideally ,  the fil l of the seawar d portion of the incised -
valle y (Fig .  1,  segment 1) is characterize d by backsteppin g
(lowstan d to transgressive ) fluvia l and estuarin e deposits,
overlai n by transgressiv e marin e sands and/or shelf  muds
(e.g. ,  Thomas and Anderson,  this volume) .  The middle reach
of the incised valle y (Fig .  1,  segment 2) consists of the

drowned-valle y estuarin e complex that existe d at the time
of maximu m transgression ,  overlyin g a lowstan d to trans-
gressiv e succession of fluvia l and estuarin e deposits lik e
those in segment 1.  The innermos t reach of the incised val -
ley (Fig .  1,  segment 3) is developed headwar d of the trans-
gressiv e estuarine limi t and extends to the landwar d limi t
of fluvia l incisio n (i.e. ,  the knickpoint ;  Schumm , 1993).
Thi s segment is characterize d by fluvia l deposits through-
out its depositional history ;  however ,  the fluvia l styl e wil l
change systematicall y due to changes in the rate of change
of base leve l (Gibling ,  1991; Wrigh t and Marriott ,  1993).
Th e effec t of base-leve l change wil l decrease inland until
eventuall y climatic ,  tectonic and sediment-suppl y factor s
become the dominant controls on the nature of the fluvia l
system .  The followin g sections wil l present in more detail
the characteristic s of each of these three segment s (Figs .  1,
2 ,6) .

Segment  1—Outer  Incised  Valley

The outer incised valle y (segmen t 1) extends from the
lowstan d mouth of the incised valle y to the point where the

FIG .  3.—Schemati c diagram illustratin g the criteri a for the recognitio n of an incised-valle y system :  1—truncatio n of underlyin g regiona l marker s
by a sequence boundary;  2—regiona l correlatio n of the sequence boundary from the base of the incised valle y onto the interfluves ;  3— a basinwar d
("downward" ) shif t in facie s across sequence boundary;  and 4—onla p of surface s withi n the incise d valle y onto the sequence boundary .  SB  =
sequence boundary;  FS  = flooding surface ;  P.S .  = parasequence ; E/T  = surfac e of subaeria l erosion and transgression ; FS/S B  = flooding surface /
sequence boundary;  TS  —  transgressiv e surface ;  TR S  = tidal ravinemen t surface ;  BH D = bayhead delta;  HCS  = hummock y cross-stratification .
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FIG .  5.—Schemati c diagram illustratin g (A) simpl e and (B ) compound incised-valle y systems .  Numbers 1-3 refe r to successiv e episodes of erosion
and deposition withi n the incised valley .  PS  = parasequence ;  FS  - flooding surface .

shorelin e stabilize s at the beginning of highstand progra -
dation (Figs .  1,  6).  As in the other segments ,  this reach of
the valle y initiall y undergoes fluvia l incision wit h the low-
ering of base leve l (Figs .  2A,  B) .  Sedimen t is by-passed to
the mouth of the valle y where it is deposited as either a
lowstan d delta and/or progradin g shoreline (Fig .  2B) .  Withi n
segmen t 1,  this period is represented by the sequence
boundary ,  whic h may be overlai n by lowstand fluvia l de-
posits (Fig .  6,  profil e 1).  As sea leve l begins to rise and
the lower reaches of the system are transgressed ,  the in-
cised valle y changes from being a conduit for fluvially-erode d
sediment ,  to the site of fluvial ,  and (subsequently ) estuarine
deposition (Fig .  2C).  Fluvia l deposition,  although initiate d
during the late lowstand ,  continues during the early stages
of transgression ,  wit h the locus of deposition shiftin g land-
war d as relativ e sea leve l rises and the shoreline trans-
gresse s (Wrigh t and Marriott ,  1993; Wescott ,  1993).  Thus ,
the boundary between the lowstand and transgressiv e sys-
tems tracts (i.e. ,  the transgressiv e surface ) may lie withi n
the fluvia l deposits rather than at their top (cf .  Alle n and
Posamentier ,  1993,  this volume) .

Th e fluvia l styl e (i.e. ,  braided,  meandering ,  anasto-
mosed,  or straight ) withi n the incised valle y is dependent
on a variet y of factor s including the sediment supply ,  grai n
size ,  discharge ,  valle y gradient ,  and rate of transgressio n
(Schumm , 1977,  1993;  Schum m and Ethridge ,  this vol-
ume) .  These variable s wil l likel y change during the rise in
sea leve l associated wit h the marine transgressio n (Gibling ,
1991; Wrigh t and Marriott ,  1993;  Torquist ,  1993).  Thus ,
in the simples t case where all other factor s remai n constant,
the characte r of the lowstand to transgressiv e fluvia l sedi-
ments should change verticall y as the depositional gradien t
and capacit y of the fluvia l system decreases as the shoreline
approaches .  Thi s change would most likel y resul t in an
overal l upward-finin g fluvia l succession ,  wit h a change from
higher-energ y (sandy braided? ) to lower-energ y (mixe d sand/
mud meandering? ) fluvia l deposits.  An excellen t exampl e
of this is provide d by the Quaternary sediments in the Mis-
sissipp i Rive r incised valle y (Fisk ,  1944).  Abrupt changes
in styl e withi n this succession may correlat e wit h marin e
flooding surface s developed farthe r seawar d in the valley .

The thicknes s of the basal fluvia l succession ,  and the ex-
tent to whic h the predicted changes in fluvia l styl e are de-
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veloped ,  may be variabl e along the length of segment 1.
The ultimat e thicknes s is controlled by the accommodation
space developed during the rise in sea leve l (Jervey ,  1988),
wit h the major factor being the ratio between the rate of
fluvial-sedimen t input and the rate of sea-leve l rise .  In the
situatio n where sea-leve l rise greatl y outpaces fluvia l input,
transgressio n is rapid,  and the thicknes s of the fluvia l de-
posits wil l be less than in the case wher e rapid fluvia l input
occurs during a slow rise in sea level .  In the special case
wher e sediment input matches sea-leve l rise ,  the fluvia l de-
posits wil l aggrade vertically .  In all cases,  the preserve d
thicknes s of the fluvia l succession may be affecte d by sub-
sequent erosion associated wit h transgression .

As the transgressio n proceeds,  the estuarine conditions
whic h are establishe d in the seawar d end of the valle y mi-
grat e landward .  In a wave-dominate d estuarine setting ,  the
firs t estuarine deposits over the fluvia l sediments wil l be
bayhead-delta  (distributar y channel,  levee ,  and inter-dis -
tributar y bay) deposits (Figs .  2,  6,  profil e 1).  Due to con-
tinued transgression ,  central-basin  deposits wil l then over-
lie the bayhead delta wit h a gradationa l facie s contact.  The
central-basi n deposits wil l in turn be overlai n by the estu-
arine  barrier  (cf .  Boy d and others,  1992;  Dalrympl e and
others,  1992).  Thi s contact may be gradational ,  but is equally
likel y to coincide wit h the erosional base of a tidal (inlet )
channel .  In the latter case,  it is referre d to as a tidal  ra-
vinement  surface  (Alle n and Posamentier ,  1993).

As transgressio n proceeds,  the shorefac e passes the for-
mer location of the estuary .  Wav e erosion associated wit h
shorefac e retreat produces a wave  ravinement  surface  which
wil l truncate the underlyin g estuarine deposits (e.g. ,  Ashley
and Sheridan ,  this volume ;  Belkna p and others,  this vol-
ume;  Kindinge r and others,  this volume ; Thomas and An-
derson,  this volume ; Fig .  6,  profil e 1).  Thi s surfac e may
then be overlai n by transgressiv e shorefac e to nearshore
sands.  Finally ,  the valle y wil l be capped by open-marine
mudstones associated wit h the succeeding highstand .  The
landwar d limi t of these mudstones is an indicator of the
inner end of segment 1.

Segment  2—Middle  Incised  Valley

Segmen t 2 lies between the inner end of segment 1 and
the marine/estuarin e limi t at the time of maximu m flooding
(Figs .  1,  6);  it therefor e corresponds to the area occupied
by the drowned-valle y estuary at the end of the transgres -
sion (Fig .  2C).  In this segment ,  the sequence boundary is
overlai n by lowstan d to early transgressiv e fluvia l deposits
simila r to those in segment 1 (Fig .  6).  These are in turn
overlai n by transgressiv e estuarine facies ,  but in this seg-
ment the nature of the overlyin g estuarine succession varie s
along the length of the segment (cf .  Dalrympl e and others,
1992,  their Figur e 13) because the estuarin e facie s are (ide-
ally ) preserve d wit h the spatial distributio n they would have
had in the contemporaneous estuary .

Near its seawar d end,  the succession is simila r to that in
segmen t 1,  wit h bayhead-delta sediments overlai n by cen-
tral-basi n deposits that are in turn capped by estuary-mouth ,
barrie r sands.  Becaus e open-marine conditions do not trans-
gres s into this segment ,  the barrie r sediments are overlai n

by highstand fluvia l deposits (Fig .  6,  profil e 2).  In the mid-
dle portion of segment 2,  barrie r sands are absent,  and cen-
tral-basi n deposits coarsen upward s into progradational ,
bayhead delta and fluvia l sediments of the succeeding high-
stand (Fig .  6,  profil e 3).  At the headward end of segment
2,  central-basi n sediments are absent,  and the bayhead delta
is overlai n directl y by highstand fluvia l deposits (Fig .  6,
profil e 4).  The most landwar d limi t of detectable marine
influenc e (tidal feature s or brackish-wate r traces) is taken
as the inner end of segment 2.  Thi s point corresponds wit h
the inner end of the estuary as defined by Dalrympl e and
others (1992),  and also wit h the "bayline "  of Posamentie r
and others (1988) and Allen and Posamentie r (1993).

Segment  3—Inner  Incised  Valley

The innermos t segment (Segmen t 3) of the incised-valle y
system lies between the transgressiv e marine/estuarin e limi t
and the landwar d limi t of incisio n (Figs .  1,  2,  6).  Thi s seg-
ment may extend for 10's to 100's of kilometer s above the
limi t of marine/estuarin e influenc e (Shanle y and others,
1992; Schumm , 1993;  Lev y and others,  this volume) .  The
fil l of this segment wil l be entirel y fluvial ,  and may be
braided ,  meandering ,  anastomosed and/or straigh t in char-
acter ,  depending on a variet y of factor s includin g sediment
supply ,  gradient ,  discharge ,  sediment size ,  etc. .  However ,
relativ e sea-leve l and accommodation changes associated
wit h the lowstand-transgression-highstan d cycl e influenc e
sedimentation ,  and may produce a predictabl e vertica l
successio n of fluvia l style s (Fig .  6,  profil e 5;  Gibling ,  1991;
Wrigh t and Marriott ,  1993).  Lowstan d fluvia l deposits would
be expected to be relativel y thin as the fluvia l system would
have been erosional ,  or have acted as a transpor t conduit
(a bypass zone) at that time.  Lat e lowstand to early trans-
gressiv e deposits at the base of the fil l may be characterize d
by relativel y coarse-grained ,  amalgamate d channel depos-
its .  As transgressio n proceeds,  an overal l upward-finin g
successio n would be expected to develop as the gradien t
and stream capacit y decrease.  The deposits whic h accu-
mulated during times of risin g base leve l should contain
more isolated,  channel-sandstone bodies,  interbedded wit h
a higher percentage of overbank deposits (e.g. ,  Torquist ,
1993).  Freshwate r organic facie s (e.g. ,  peat or lacustrin e
carbonates ) migh t be abundant and the soils less mature
than those associated wit h the lowstand (Cross ,  1988).  The
overlyin g highstand deposits may be expected to coarsen
upward ,  due to progradatio n in response to decreasing rates
of base-leve l rise and accommodation creation (Schumm ,
1993).

Summary

As the foregoin g idealize d model illustrates ,  the fill  of an
incised  valley  may be extremely  complex,  even in the case
wher e many simplifyin g assumption s are introduced.  No
singl e facie s succession (i.e. ,  upward-coarsening ,  upward -
fining ,  blocky ,  etc. ) occurs along the entire length of the
syste m (Fig .  6).  Data compiled by J .  Barcla y and F .  Kraus e
(pers ,  commun. ,  1993) sugges t that transgressiv e succes-
sions containing estuarine deposits capped by marin e shales
are the most common expressio n of an incised-valle y fill .
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Possibl e reasons for this are:  (i) segment 1,  wher e such
succession s form ,  is longer than segment s 2 and 3 in most
cases and (ii ) the deposits of segment 3 have not been full y
recognize d as incised-valle y deposits.

STRATIGRAPHI C SURFACE S

Th e infil l of incised-valle y system s is characterize d by a
number of stratigraphically-significan t surface s (Figs .  1C,
6).  The surfac e that defines the valle y form is the most
regionall y extensiv e of these.  It is the sequence boundary,
whic h develops through a combination of fluvia l incisio n
withi n the valle y form and subaeria l exposure of the inter-
fluves .  The specifi c facie s expressio n of the sequence
boundary depends,  in part,  on the location wit h respect to
the valle y form (see Va n Wagoner  and others,  1988,  1990).

In the general case,  the sediments immediatel y overlyin g
the sequence boundary consist of lowstan d fluvia l deposits.
Commonly ,  however ,  a larg e part of the valle y fil l is de-
posited in response to risin g base levels ,  and thus belongs
to the transgressiv e system s tract .  Consequently ,  the trans-
gressive  surface,  whic h is defined as the flooding surfac e
separatin g the progradationa l or aggradational ,  lowstan d
system s tract from the retrogradational ,  transgressiv e sys-
tems tract (Va n Wagone r and others,  1988),  should occur
low in the incised-valle y fill .  Thi s transgressiv e surfac e may
lie withi n the basal fluvia l deposits,  especiall y in cases where
these deposits are relativel y thick (e.g. ,  Nichols and others,
this volume ;  Thomas and Anderson,  this volume) .  Another
importan t horizon low in the fil l in segments 1 and 2 is the
estuarine-fluvia l contact,  whic h commonly represent s the
first ,  or initial  flooding surface.  Allen and Posamentie r (1993,
this volume ) have utilize d this surfac e as the transgressiv e
surfac e because littl e fluvia l sediment accumulate d in the
Gironde valle y during the rapid Holocene transgression .  In
the general case,  however ,  this surfac e is a facie s boundary
(Figs .  1 ,6 ),  and has limite d chronostratigraphi c signifi -
cance.  Thus ,  great care is needed to define the transgressiv e
surfac e withi n incised-valle y systems .

I f  the transgressio n was intermittent ,  due to variation s in
the rate of sea-leve l rise or sediment supply ,  backsteppin g
parasequence s may be developed withi n the transgressiv e
estuarin e and marin e portions of the valle y fil l in segment s
1 and 2 (Thoma s and Anderson,  this volume) .  These "still -
stand, "  progradationa l episodes wil l be separated by addi-
tional flooding surfaces,  whic h may or may not be recog-
nizabl e in the fluvia l deposits of segment 3.

In segment 1 and the seawar d portion of segment 2 of
the incised valley ,  the next higher surfac e is the tidal  ra-
vinement  surface  (Allen ,  1991; Allen and Posamentier ,  1993,
this volume ;  Belkna p and others,  this volume ;  "tidal-inle t
diastem "  of Nichols and others,  this volume) ,  whic h is pro-
duced by erosion in the base of the deepest tidal inlet or

other tidal channel.  Typically ,  these channels are associated
wit h the estuary-mouth ,  barrier/flood-tidal-delt a complex
of wave-dominate d estuaries ,  or wit h the sand bars and flat s
whic h extend along the length of tide-dominated estuaries .
In tide-dominated shelf  settings ,  tidal ravinemen t may also
take place on the shelf  (Dairymple ,  1992; Harris ,  this vol-
ume) .  Note that this surfac e is diachronous,  becoming
younge r up the valley .  Specia l care is needed not to confuse
this surfac e wit h a fluvially-incise d sequence boundary.
Unlik e the sequence boundary ,  this surfac e is generall y
confine d to the incised valle y (Alle n and Posamentier ,  this
volume ) and cannot be correlate d regionally .

As transgressio n continues,  the wave  ravinement  surface
is developed as the shoreface migrate s up-system and erodes
pre-existin g barrie r sediments (Swift ,  1968),  and perhaps
also central-basin ,  bay head-delta and fluvia l deposits if  wav e
base is sufficientl y deep (Alle n and Posamentier ,  this vol -
ume;  Ashley and Sheridan ,  this volume ;  Belkna p and oth-
ers ,  this volume) .  Unlik e the tidal ravinemen t surfac e whic h
has a channelize d morphology and is generall y localize d
withi n the incised valley ,  the wav e ravinemen t surfac e is
relativel y planar and of regiona l extent ,  extending over both
the incised valle y and the interfluve s (Fig .  1).  Thi s surfac e
is typicall y overlai n by an upward-finin g (transgressive )
succession ,  possibly containing retrogradationally-stacke d
parasequences .  Becaus e the wav e ravinemen t surfac e forms
at the shoreface ,  it is only present in segment 1.  It is not
present in tide-dominated settings ,  although a tidal erosion
surfac e formed on the shelf  may take its place (Dalrymple ,
1992).

The maximum flooding surface  (MPS) ,  whicrt;corre -
sponds to the time of maximu m transgression ,  is the next
highe r surfac e in the succession (Fig .  1C,  6).  Its physica l
expressio n varie s markedl y between the three segments .  In
segmen t 1,  it occurs withi n the marin e shales whic h overli e
the wav e ravinemen t surface .  As discussed by Louti t and
others (1988),  the MPS  on the shelf  is commonly a con-
densed section,  wit h abundant biogenic carbonate,  phos-
phate and above-norma l level s of radioactiv e material .  The
MF S  passes landwar d through the sands of the estuary-mout h
barrie r and initia l highstand shoreline ,  and into the estua-
rin e deposits of segment 2.  In the central part of segment
2,  it lies withi n the central-basi n deposits where they are
sandwiche d between the underlyin g transgressive ,  and
overlyin g regressive ,  bayhead-delt a sediments (Fig .  6,  pro-
fil e 3).  Withi n segment 3,  the MF S  may be difficul t to rec-
ognize ,  but it may be associated wit h the fluvia l sediments
that have the most distal characte r and are the fines t grained
(Fig .  6,  profil e 5).

Nichol and others (this volume ) and Roy (this volume )
describ e a fluvial-channel  diastem (or bay-head diastem) lo-
cated at the base of the distributar y channels in the bayhead

FIG .  6.—(A ) Idealize d longitudina l section of a simple ,  incised-valle y system showing the location of the schemati c vertica l profile s illustrate d
in (B) .  LS T  = lowstan d system s tract ;  TS T  = transgressiv e system s tract ;  HS T  = highstand system s tract ;  SB  = sequence boundary ;  TS  = trans-
gressiv e surface ;  WR S  = wav e ravinemen t surface ;  MF S  = maximu m flooding surface ;  FCD  —  fluvia l channel diastem ; TR S  = tidal ravinemen t
surface ;  BH D = bayhead delta.  No particula r horizonta l or vertica l scale intended.
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delta (Figs .  1C,  6,  profile s 2-4).  The fluvia l erosion whic h
produces this surfac e can cause coarse-graine d fluvia l sed-
iment s to directly  overli e bayhead-delta or central-basi n es-
tuarin e deposits.  In the extrem e case,  this surfac e can cut
down through transgressiv e and lowstan d fluvia l deposits
and amalgamat e with ,  or modify ,  the sequence boundary.
Thi s surfac e may occur in the landwar d parts of backstep -
ping parasequence s in segment 1,  or beneath fluvia l de-
posits of the early highstand in segment 2.  Channel switch -
ing may not be 100%  effectiv e in cutting down to a common
leve l so that this surfac e may have significan t topographic
relie f  and limite d latera l continuity .  Thus ,  it may be dif -
ficul t to correlate .

PRESERVATIO N POTENTIA L

Tw o separate issues exis t when considerin g the preser -
vatio n potential of incised-valle y systems:  (1) the preser -
vatio n of the variou s facie s withi n the incised valle y and
(2) the preservatio n potential of the incised valle y itself .

In segment 1 of any incised-valle y system ,  erosion by
tidal - and wave-ravinemen t processes during transgressio n
is a major control on preservatio n potential of transgressiv e
estuarin e and lowstand to early transgressiv e fluvia l depos-
its .  Scour in tidal inlets and channels may remov e some or
all of the underlying ,  transgressive ,  central-basi n sedi-
ments ,  and may extend deeply enough to remov e bayhead-
delta and underlyin g fluvia l deposits.  In extrem e cases,  the
tidal ravinemen t surfac e may amalgamat e wit h the basal se-
quence boundary and modif y it.  The factor s determinin g
the depth of tidal incisio n are not completel y understood,
but it is likel y that incisio n is greates t in mixed-energ y set-
ting s such as the Gironde estuary (Alle n and Posamentier ,
1993,  this volume) ;  in strongl y wave-dominate d estuarine
systems ,  there may be insufficien t tidal energy to cause ero-
sion,  whil e in strongl y tide-dominated estuarie s a constric -
tion is not created by wave s and the tidal flow is spread
over a wide r area (Dalrympl e and others,  1990).

Wav e ravinemen t in segment 1 commonly remove s all
but the deepest portions (e.g. ,  tidal-inle t fills ) of the estu-
ary-mout h barrie r complex .  The underlyin g deposits of the
centra l basin,  bay head delta and fluvia l system typicall y es-
cape erosion in deeper valleys ,  provided they not been eroded
previousl y by tidal scour,  but may be removed from shal-
low valley s in easily-eroded ,  coastal-plai n areas (see above) .
Marin e erosion may also occur in tidally-dominate d shelf
areas (Dalrymple ,  1992).  For example ,  Harri s (this vol-
ume) discusse s the possibilit y that tidal current s have ex-
humed incised-valle y systems ,  removin g fluvial ,  estuarine
and deltaic deposits,  leavin g the valle y open,  to be fille d
later by shelf  sands and muds.

In wave-dominan t settings ,  the preservatio n potential of
the incised valle y itsel f  is dependent primaril y on the ef-
fectivenes s and depth of the wave-ravinemen t process dur-
ing transgressio n (Ashle y and Sheridan ,  this volume ;  Belk -
nap and others,  this volume) .  The depth of the incised valle y
relativ e to the depth of wav e base wil l determine how much
(i f  any) of the valle y form wil l be preserve d (Swift ,  1968).
In cases where the incised valle y has been eroded into soft
or semi-consolidate d sediment ,  as is commonly the case in

coastal-plai n settings ,  it is easier for the wave-ravinemen t
process to completel y erode the incised valley .  Thi s is com-
mon in areas lik e the Texa s Gulf Coast (Thoma s and An-
derson,  this volume) ,  the Louisian a coast (Sute r and Ber -
ryhill ,  1985,  Sute r and others,  1987),  or the portions of the
U.  S .  east coast that are not bedrock controlled (Ashle y and
Sheridan ,  this volume ;  Belkna p and others,  this volume) .
The preservatio n potential of incised-valle y system s is greater
in areas of bedrock control because the interfluve s are not
as easil y eroded.  Example s of this occur along the modern
Easter n Shore of Nova Scoti a (Boy d and Honig,  1992),  the
New Englan d Coast (Belkna p and Kraft ,  1981; Belkna p and
others,  this volume) ,  and the coast of New South Wale s
(Roy ,  1984,  this volume) .  Tida l ravinemen t may also occur
on the shelf  (Dalrymple ,  1992;  Harris ,  this volume) ,  but
tidal current s are usuall y channelize d paralle l to the axis of
the incised valley ,  as opposed to being spread uniforml y
along the shoreline as wav e action is.  Thus ,  tidal ravine -
ment on the shelf  tends not to obliterat e valleys ,  and may
even enhance the valle y form .

In compound incised-valle y fills ,  the multipl e cut-and-
fil l events associated wit h differen t orders of lowstand flu -
via l incisio n are an importan t additional control on pres-
ervatio n potential (Fig .  5B) .  As shown by Thomas and
Anderson (this volume) ,  incised-valle y systems  formed by
high-frequenc y lowstand s in the early stages of an overal l
sea-leve l fal l are subject to erosional remova l during sub-
sequent,  lower lowstands .  In comparison ,  preservatio n of
paleovalle y system s and their infil l is enhanced during overal l
risin g sea level ,  because accommodation space is being cre-
ated (rather than lost) .  Thus ,  compound incised-valle y fill s
are more likel y to be preserve d in low-order ,  transgressiv e
system s tracts .

VARIATION S  ON TH E  PROPOSE D MODE L

The model proposed above corresponds closely to the es-
sentia l feature s of most simple ,  incised-valle y system s that
have been described ;  however ,  many incised-valle y sys-
tems exhibi t deviation s from this model,  as would be ex-
pected because of differin g site- and time-specifi c factor s
(Walker ,  1992).  In this section,  we wil l examin e some of
the effect s of valle y shape,  depositional gradient ,  sediment
supply and magnitude of sea-leve l change,  in order to il-
lustrate  the variation s that can be accommodated in the
model.

Valley  Shape  and the Relative  Influence  of Waves
and Tides

The shape of the incised valle y has an importan t control
on the zonation,  extent and depositional styl e of each seg-
ment,  particularl y in the early stages of infilling ,  prior to
depositional modificatio n of the origina l geometry (e.g. ,
Dalrympl e and others,  1992).  The shape of the incised val -
ley may resul t in the amplificatio n or damping of tidal ac-
tion during transgressio n of the paleovalle y (Salomo n and
Allen ,  1983;  Nichols and Biggs ,  1985).  In situations of ir-
regula r valle y morphology ,  tidal amplificatio n is unlikel y
and the estuarie s tend to be hyposynchronou s and wave -
dominated (Dalrympl e and others,  1992),  wit h the forma -
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tion of a barrie r bar at a local constrictio n (Boy d and others,
1987).  Incised-valle y system s whic h have a more regular ,
funnel-shape d geometry are more likel y to be hypersyn -
chronous (Salomo n and Allen ,  1983) and tide-dominated
(Dalrympl e and others,  1992).  Thus ,  the nature of the es-
tuarine component of segments 1 and 2 is controlled in part
by the origina l shape of the valley .  Thi s in turn influence s
the nature of the facie s and stratigraphi c surfaces ,  and the
extent to whic h the fil l escapes erosion by wav e and tidal
ravinemen t processes .

As tidal range increases ,  the widesprea d distributio n of
strong tidal current s may modif y the shape of the incised
valle y to form the funnel shape whic h typifie s macrotida l
system s such as the Cobequid Bay-Salmo n Rive r Estuar y
(Dalrympl e and Zaitlin ,  1989; Dalrympl e and others,  1990).
Durin g transgression ,  this estuarine funnel wil l deepen and
widen ,  and migrat e up the valley .  Thi s wil l be accompanied
by erosion of adjacent and underlyin g sediments by tidal
current s in the channels .  As a result ,  the transgressin g es-
tuarin e funnel wil l be bounded on its sides and base by a
tidal ravinemen t surfac e whic h has a ver y differen t geom-
etry and greater extent than the equivalen t surfac e in wave -
dominated systems .

Depositional  Gradient,  Sea-level  Change
and Sediment  Supply

The length of the entire incised valle y is a function of
the magnitude and duration of the sea-leve l fall ,  and of the
coastal-zone gradient .  Larg e sea-leve l fall s are more likel y
to take the shoreline beyond the shelf  edge,  thereby in-
creasin g rive r gradient s and promoting incision .  Longer-du -
ration fall s provid e more time for incisio n and headward
retrea t of any knickpoint ;  consequently ,  incised valley s as-
sociated wit h longer fall s may have a greater length than
those associated wit h short falls .  Coastal zones wit h steep
gradient s are more prone to incisio n than gently-incline d
coastal plains (Schumm , 1993),  but the coastal zone is typ-
icall y narrowe r in the forme r case,  and the incised valley s
may be shorter than those on broad coastal plains .

The length of segment 2 is as long as the estuary whic h
exist s at the end of the transgression ,  which in turn is strongly
dependent on the coastal-zone gradient ,  wit h longer estu-
aries occurrin g in lower-gradien t setting s (Dalrympl e and
others,  1992).  The rate of fluvia l sediment input,  relativ e
to the rate of sea-leve l rise ,  also has an influence ,  the es-
tuary being shorter as the abilit y of the fluvia l system to
offse t transgressio n increases .  The relativ e lengths of seg-
ments 1 and 3 are influence d primaril y by the amount of
transgressio n (segmen t 1 lengthens at the expense of seg-
ment 3 as the transgressio n proceeds) ,  whic h is in turn a
functio n of the amount of relativ e sea-leve l rise ,  wit h large r
rise s producing a longer segment 1,  all other factor s being
equal ,  than smalle r rises .

In addition,  however ,  the ratio between the rates of sea-
leve l rise and fluvia l sedimentatio n has a significan t influ -
ence on the length of the segments .  In the case where sed-
iment supply by the rive r equals or exceeds the amount of
relativ e sea-leve l rise ,  it is possible for the entire fil l of the
incise d valle y to be fluvia l and aggradationa l in character .

Transgressio n would not occur until the interfluve s were
inundated,  and an incised-valle y estuary would not be de-
veloped .  Thus ,  the tidal and wav e ravinemen t surface s would
not be present withi n the incised-valle y fill ,  and the wav e
ravinemen t surfac e and transgressiv e surfac e would coin-
cide wit h the top of the incised-valle y system .  On the other
hand,  if  the fluvia l sediment supply is smal l relativ e to the
rate of sea-leve l rise ,  then there would be significan t flood-
ing of the valle y and the proportion of estuarine and marin e
deposits in the fil l would increas e as the amount of fluvia l
input decreases .  The situation shown in Figure s 1 and 6,
whic h typifie s many Holocene and Cretaceous incised-val -
ley system s we have examined ,  is representativ e of situa-
tions wit h relativel y low fluvia l input and/or a rapid sea-
leve l rise .

SUMMAR Y  AND CONCLUSION S

The majorit y of incised valley s preserve d in the strati -
graphi c record have formed in response either to a fal l of
relativ e sea leve l caused by a eustatic fal l or tectonic uplift ,
or to an increas e in fluvia l discharg e due to climati c change
or stream capture (Schumm , 1993).  Changes in discharg e
do not involv e a change in relativ e sea level ,  and the re-
sultin g incised valley s are probably fille d entirel y wit h flu -
via l sediments .  Relativel y few incised valley s have been
attribute d to this cause.  In contrast ,  many modern and an-
cient incised-valle y system s are known or believe d to have
resulte d from a lowerin g of relativ e sea level .  Thus ,  in this
paper,  we have considered only this type of incised valley ,
whic h is,  by definition ,  associated wit h the developmen t of
a sequence boundary.  Such incised valley s are eroded by
fluvia l action during the relativ e sea-leve l fal l and lowstand
(Fig .  2C).  Infillin g commences during the late lowstand and/
or early transgression ,  as relativ e sea leve l rises and the
shorelin e transgresse s up the valle y system .  If  the valle y is
completel y fille d during the transgressio n and succeeding
highstand ,  the fil l is here termed simple because it consists
of a singl e sequence (Fig .  5A).  If  the valle y is re-incise d
during one or more subsequent sea-leve l fall s so that the
fil l contains two or more sequence,  the fil l is termed com-
pound (Fig .  5B) .  Compound fill s are more likel y to occur
in larger ,  piedmont rive r systems ,  whose position is com-
monly controlled by structure ,  than in smaller ,  coastal-plai n
systems  (Fig .  4).

In a simpl e incised-valle y fill ,  or in one phase of a com-
pound fill ,  the incised valle y can be subdivide d into three
idealize d segments (Figs .  1,6).  The inner (landward ) seg-
ment of the incised valle y (segmen t 3) never experience s
marin e influenc e and remain s fluvia l throughout infilling .
Thi s segment reflect s changes in relativ e sea leve l through
changes in the styl e of fluvia l deposition.  The middle seg-
ment (segmen t 2) corresponds to the incised-valle y estuary
at the time of maximu m transgression .  Here,  lowstand to
transgressiv e fluvia l and estuarine deposits are overlai n by
progradationa l (highstand ) fluvia l sediments .  The outer
segmen t (segmen t 1) of the incised valle y is transgresse d
by the shoreline and contains a transgressiv e succession of
fluvia l and estuarin e facies ,  overlai n by marin e sands and
shales .
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The absolute and relativ e length of these segment s de-
pends on a complex interactio n of severa l variables ,  the
most importan t being the particula r sea-leve l history ,  the
coastal-zon e gradien t and the rate of fluvia l sediment input.
Th e relativ e intensit y of wave s and tidal current s deter-
mines the nature of the facies ,  and the physica l expressio n
of the stratigraphically-significan t surface s withi n the in-
cised-valle y fill .

Th e variou s surface s diffe r greatl y in their origin ,  geo-
graphi c extent (Figs .  1C,  6),  and chronostratigraphi c sig-
nificance .  A sequence boundary  is present at the base of
the incised valle y throughout its length ,  and is correlativ e
wit h the exposure surfac e on the interfluves .  In situations
wher e fluvia l sediment supply is moderate to low relativ e
to the rate of transgression ,  the transgressive  surface  typ-
icall y lies low in the incised-valle y fill .  The fluvial-estua -
rine contact,  whic h is commonly the initial  flooding sur-
face,  is a diachronous facie s boundary,  and may not provid e
a useful boundary between the lowstan d and transgressiv e
system s tracts along its entire length .  The stackin g pattern
of parasequence-scal e units may be the only reliabl e cri -
terion for recognizin g system s tracts ,  especiall y in segment
3.  In system s wit h mixe d wav e and tidal influence ,  two
differen t ravinemen t surface s may occur higher in the fill ,
but only in segment 1 and the outer portion of segment 2.
Erosio n by tidal current s in tidal inlets or other tidal chan-
nels creates a tidal  ravinement  surface  whic h is typicall y
confine d to the incised valley .  It could be mistake n for a
second sequence boundary because it is typicall y overlai n
by coarse-grained ,  channel deposits.  More regiona l erosion
by wave s at the retreatin g shorefac e produces a wave  ra -
vinement  surface  that separates fluvia l and/or estuarin e
sedimen t below from overlyin g marin e deposits.  Bot h of
these surface s are diachronous,  and could become amal-
gamated wit h the sequence boundary .  In the idealize d case,
a maximum flooding surface  may extend throughout the in-
cised-valle y fill ,  passing from its typica l position withi n
marin e shales in segment 1,  through the center of the es-
tuarin e deposits in segment 2,  into fluvia l sediments in seg-
ment 3.  However ,  rapid relativ e sea-leve l fal l after the end
of the transgression ,  or renewed sea-leve l rise after valle y
fillin g (but before the onset of significan t progradation) ,  may
preclud e developmen t of the maximu m flooding surface .
Compound valle y fill s contain multipl e sets of surfaces .
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