
Agile:
An Overview

Narayanan Subramaniam
LinkedIn: http://www.linkedin.com/in/cnsubramaniam

@credits for images thanks to various internet sources

http://www.linkedin.com/in/cnsubramaniam

(1)
Development

(2) Validation

(3)
Deployment

(4)
Production

(5)
Support

@copyright: Narayanan Subramaniam (9341969647)@credit: Boeing SW … https://apps.dtic.mil/dtic/tr/fulltext/u2/a558044.pdf

https://apps.dtic.mil/dtic/tr/fulltext/u2/a558044.pdf

ü Agile attempts to break the barriers between Dev and Test and focuses on small
increments while failing fast with emphasis on openly communicating feature
behaviours, expectations and results

ü Agile is NOT development engineers doing QA full time, or Architecting /
Designing on the fly WITHOUT initial thought/groundwork or reviews - such
misinterpretations usually lead to disasters. Cross-pollination helps a lot but is with
the purpose of creating heightened awareness.

ü The core principles of taking more ownership, automation of test, as key to
survival, are often missed out or partially adopted.

ü It is a different question whether every project is amenable to Agile or not ...
certain projects may not be suited for Agile at the outset.

ü Focus on the principles, not just the structure of teams, meetings etc.

DevOps:
An Overview

Narayanan Subramaniam
LinkedIn: http://www.linkedin.com/in/cnsubramaniam

(+91-9341969647)

http://www.linkedin.com/in/cnsubramaniam

Agenda:

ü DevOps …. is it all about Tools, PagerDuty and the Cloud ?

(1)
Development

(2) Validation

(3)
Deployment

(4)
Production

(5)
Support

Challenges:

ü How do I fix my bug, and quickly roll it out ?

ü How can I pilot my new feature “carefully” ?

Challenges:

ü What are the eco-systems my software is deployed in ?
o Configuration combinations

o Interop combinations

o …….

Challenges:

ü How is my software used ?
o What features are used ?

o Who uses it and when/why ?

o What is the UE (User Experience) ?

Challenges:

ü Is the software “vulnerable” ?
o How well does it perform ?

o Does it scale as expected ?

o Is the software being “attacked” ?

Challenges:

ü How do I know if the design is “future-proof” ?
o Will it run out of capacity soon ?

o How many more users can it support - SLA ?

o How do I plan for “breaking” changes ?

(1)
Development

(2) Validation

(3)
Deployment

(4)
Production

(5)
Support

ü How do I fix my bug, and quickly roll it out ?

ü How can I pilot my new feature “carefully” ?

o Continuous Integration & Deployment (CI/CD)
Ø Plan Big, Execute Small - Architecture/Design is key
Ø Incremental Code Development & Test – AGILE

ü How do I fix my bug, and quickly roll it out ?

ü How can I pilot my new feature “carefully” ?

o Continuous Integration & Deployment (CI/CD)
Ø Preferably one source tree

Ø Automate – builds, installs, tests, configuration

ü How can I pilot my new feature “carefully” ?

o Continuous Integration & Deployment (CI/CD)
Ø Highly Available – Microservices architecture/design

Ø Fail-fast and Fail-forward

ü How can I pilot my new feature “carefully” ?

o Continuous Integration & Deployment (CI/CD)
Ø Feature Toggles – Canary Releases

ü What are the eco-systems my software is deployed in ?

o Multiple Data-Center, Regions/Geographies ?

o Self versus Partner Hosted ?

ü How is my software used ?

ü Is the software “vulnerable” ?

ü How do I know if the design is “future-proof” ?
Alarms, Events

Raw Counters, Thresholding

Debug, Trace Logs, Backtrace

Health Checks

Event/Alert
Management

Systems
Performance
Management

Systems
Log Analysis

Systems

Management
Platform

Metrics & Analytics
System

Application
Software Composite Metrics

ü Metrics are Ever Changing !!
o Leverage CI/CD not for features alone, but for metrics

ü Automated Orchestration based on Metrics and Events

ü DataScience and Machine Learning for Scale

ü Regulation
o Data Export: Data crossing regions, countries

o Data At Rest: Data retention policy, access control

o Legal Intercept

ü PII (Personally Identifiable Information):
o Obfuscation, RBAC to Operations/Admins to reverse-map PII data

ü SRE as a Gatekeeper to SLA’s

ü Two Backlogs !!

o Feature Backlog – Product Management driven

o DevOps Backlog – Metrics and Automation driven

o Team Rotation helps

Takeaway:

ü DevOps:
o Mindset – E2E
o Agile execution
o Automation
o Metrics, ML
o Regulation, PII
o Multiple Backlogs

ü Focus on the Principles, Tools are incidental

ü SME, Architects, Product Management remain key stakeholders

ü DevOps Principles applicable beyond Cloud based products

ü DevOps attempts break the barrier between Dev, Test and Operations with ever
increasing emphasis on automation not just of test but of operations as a whole.

ü Metrics based design is the key paradigm for DevOps. It usually builds on the
goodness of Agile TDD.

ü Agile is NOT about development engineers doing Operations or Operations folk
writing feature code. Cross-pollination helps a lot but is with the purpose of
creating heightened awareness. Such misinterpretations usually lead to disasters.

ü The core principles of taking more ownership, metrics based design to quantify
SW quality/usability, automation of operations and support, as key to survival, are
often missed out or partially adopted

ü Focus on the principles, “culture, measure and share”, and not just on “automate”

THANK YOU !

