

(<u>http://ieee-isssc.in/</u>)

Software Architecture/Design for Electric Mobility Battery Charging/Swapping Stations

Narayanan Subramaniam

Technical Director of Engineering, Nutanix

IEEE Bangalore Execom 2020,2021 – Co-Chair for Humanitarian Technologies

LinkedIn: <u>http://www.linkedin.com/in/cnsubramaniam</u>

@copyright: Narayanan Subramaniam

High Level Solution Architecture for Electric Mobility

A Physical Overview of Charge/Swap Station Design

Considerations for Edge Computing in Charge/Swap Stations

Near Real Time Processing, Autonomous Operations vs Cloud Latency/Availability

- Operations:
 - Multiple streams of sensor and embedded based data e.g. Power Delivery, Charging, Braking
 - Thermal, Energy, Policy Management
 - Metrics Aggregation and localized Decision Algorithms, A/B Testing
- Safety and Security
 - Anomaly Detection and Isolation
 - Fire Detection and Suppression
 - Video-analytics theft, environment
- Availability
 - Fault Patterns and Redundancy
 - Security Denial of Service issues
- Personalization
 - Secure content caching, offline modes for Billing/Payment

Cost of Computing-In and Connectivity-To the Cloud, Vendor Lock-In

- 3-5 Year Cost Analysis:
 - Storage and Archival
 - Connectivity and Data Transit (APIs)
 - Computing (Serverless and Server Based) with ever increasing Data
- Technology Lock-In
 - Lock-In to vendor extensions
 - Data extraction and portability costs
- Delicate Balance
 - Skills vs Recurring Non Core Cost
 - How critical is Autonomy ?

Privacy, Data Retention, Regulations/Compliance

- Data Retention:
 - Locally Managed push only what is needed in the Cloud
- Privacy
 - Cloud Data Storage Privacy versus local Aggregation and/or Anonymization/Pseudonymisation of PII Data
 - Explicit Opt-In/Out Costs
- Data Sovereignty
 - Geo-location of Data At Rest

Reference Architecture for Edge Computing

Performance & Scale (RT, QoS, etc.)	Application Services						on, Operations, Discovery,)	i trol igines, Cognition, etc.	og Applications
	Application Support					cation,			
	Node Management (IB) & Software Backplane					Authentic			
	Hardware Virtualization					on, l	tratio	Ss Er	SSF
	OpenFog Node Management (OOB)					stati	ches	Rule	Cro
	OpenFog Node Security – HW security					Atte	, or	rtics ing,	2
	Network TSN, TCC, Comms,	Accelerators FPGA, GPGPU,	Compute	Storage		curity HW-RoT, horization,	nageabil S, Alerting	ta, Analy hine Learr	Business
	Hardware Platform infrastructure Classis, Mechanical, Power, Cooling,					Sec (ID, Auth	Ma (RA	Dat	F
	Protocol Abstraction Layer (Legacy Protocol Bridge)					0	\$	8	
	Sensors, Actuators, & Control								

Credits: Reference from OpenFog Consortium: <u>https://www.openfogconsortium.org/wp-</u> <u>content/uploads/OpenFog_Reference_Architecture_2_09_17-FINAL.pdf</u>

Edge Computing Architecture on a Charge/Swap Station

Wireless (Bluetooth, Wifi, GPRS, GPS, NFC)

Station Sensor and Battery Pack Interfaces

> Wired (CAN2.0, Modbus, Ethernet, TCP/IP, USB, GPIO, SPI)

Protocol Adaptation, Model Adaptation Device Addressing and Routing **Station Application Stack:**

- SWAP and Charge Orchestration
- Station Monitoring
- Energy Management
- Safety and Security Management
- Charging and Thermal Management
- Diagnostics
- Configuration and Provisioning
- SW/FW Management
- Entitlement and Billing
- UI/UX
- Containers
- Localized ML, Analytics

Cloud/IoT Interfaces (MQTT, REST)

Database:

- Metrics
- Alarm/Alert
- Audit, Transactions
- Event/Logs
- Configuration
- Toggle, A/B
- Diagnostics
- Security
- Algorithms/Policies

High Availability Messaging

Software Technology Choices on a Charge/Swap Station

High Availability Messaging

Key Challenges

Skills and Cost

- Skills:
 - Multidisciplinary Agile Software Engineering, DevOps, PC, Storage technologies, Networking/Telecom, Cloud, Machine Learning experience
 - Full Stack, Embedded Developers, need retraining in orthogonal skills
- Cost:
 - Buy vs Build results in vendor lock-in versus skills challenges
 - Multidisciplinary skills to use or build the Edge Platform effectively in a Buy vs. Build approach
 - Cost Effective Industrial Grade components for a range of Thermal, Environmental, Serviceability needs

Communication Interfaces for (Big) Data

- Data Is Key:
 - Protocols like CAN and Modbus not appropriate for Bulk Data Transfer
 - Lower Cost Industrial Ethernet/Wifi and Convertor components to facilitate exploding Data requirements
- Clear separation of Control, Management and Data Plane with Enterprise grade Security

Domain Specific Data Standardization

- Standardized Data Models that are Domain specific for common API level Orchestration and off the shelf Software components to solve baseline Use Cases
- Data Model Extension constructs for business differentiation and competitive benefits
- Design for Privacy

THANK YOU !

@copyright: Narayanan Subramaniam