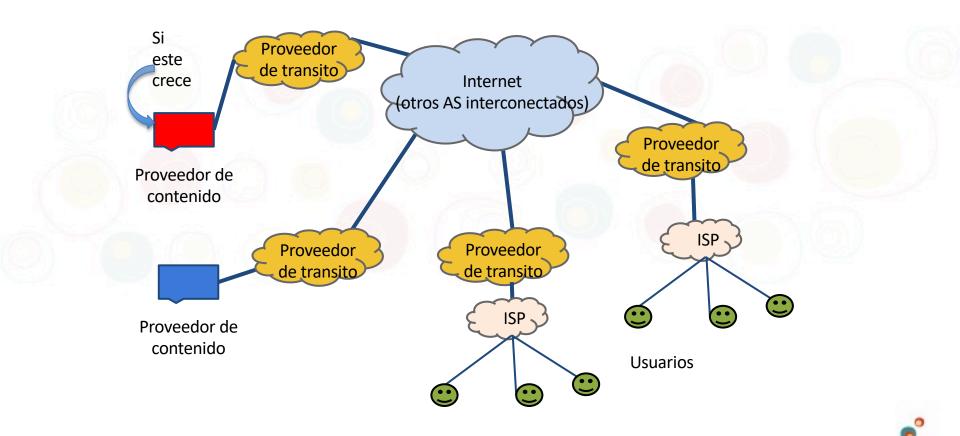
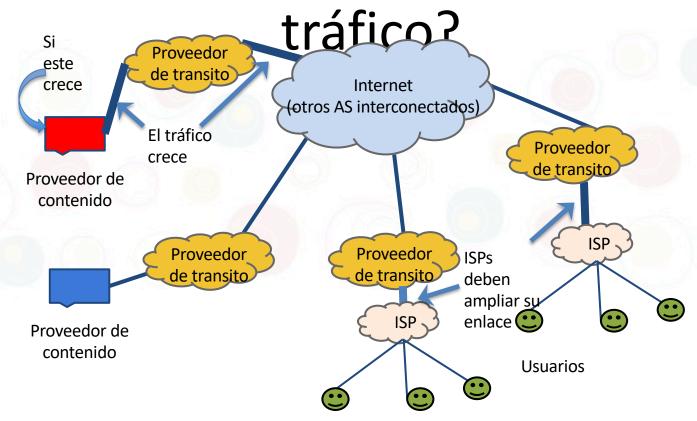

Hacia una interconexión y peering más seguros

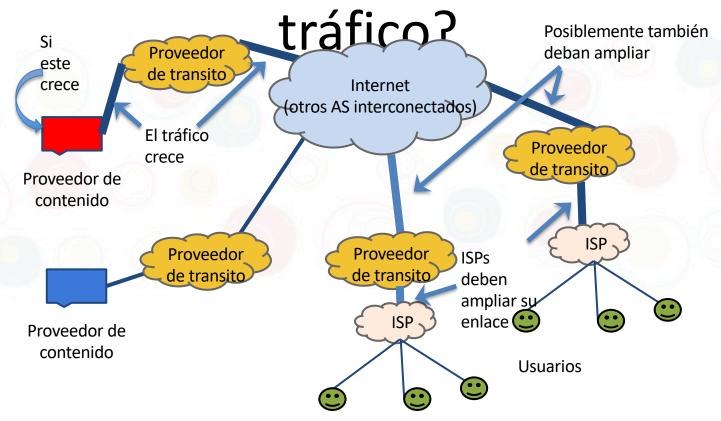

Mauricio Oviedo <u>mauricio@socium.cr</u> Alejandro Acosta Alejandro@lacnic.net

¿Cómo se encamina el tráfico?

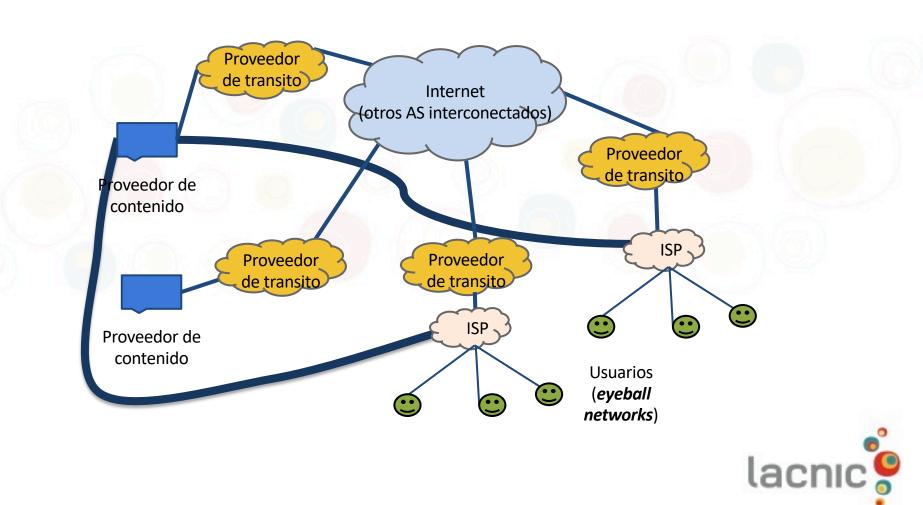
¿Cómo se encamina el tráfico?



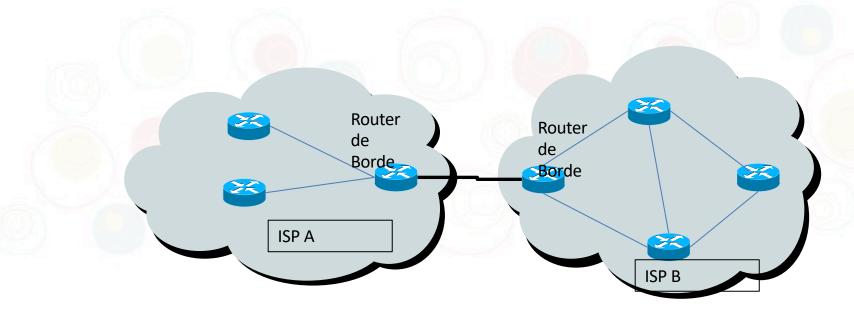
¿Cómo se encamina el



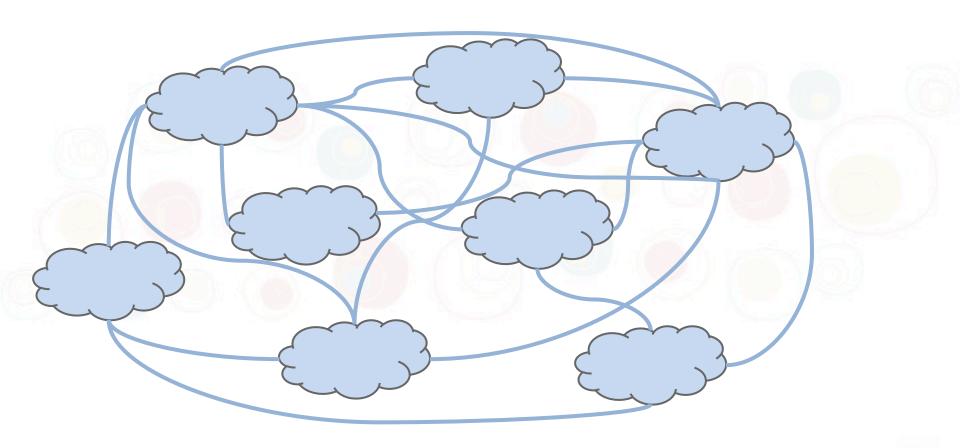
¿Cómo se encamina el



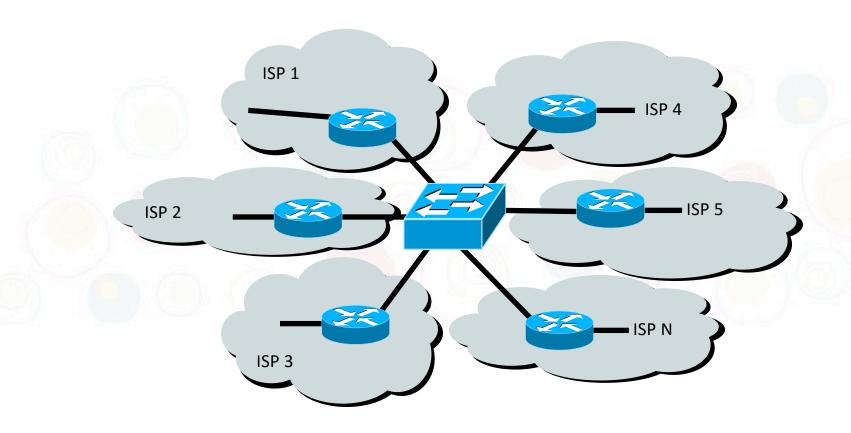
¿Cómo se encamina el


Alternativa: peering

MODALIDADES DE INTERCONEXIÓN

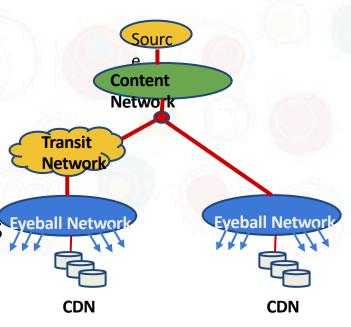


Interconexión directa: Peering



Interconexión directa: puede ser compleja

Interconexión pública

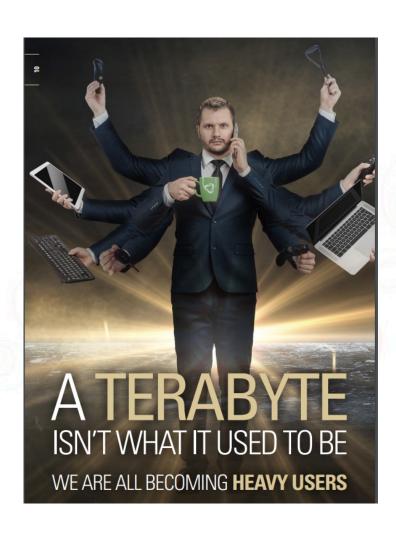

Qué es una CDN (Content Delivery Network)?

 Plataforma distribuida para entrega de contenido

 Sirve contenido más cerca de los usuarios

 Mejora el desempeño de los servicios a los usuarios Eyeball Network

 Menor costo para el proveedor de contenido y el ISP


Ejemplos de CDNs

- CDNs Tradicionales y Telco
 - Akamai
 - Cloudflare
 - Level3
 - Limelight Networks
- Content Provider own-CDNs
 - Google
 - Netflix
 - Facebook

REALIDAD DEL TRÁFICO DE INTERNET EN LA ACTUALIDAD

- El uso global de BW aumentó un 34% de 2019 a 2020 y un 29% más en 2021
- La transmisión de vídeo, representa el 53,72% del total de tráfico

	Category	Total Volume
1	Video	53.72%
2	Social	12.69%
3	Web	9.86%
4	Gaming	5.67%
5	Messaging	5.35%
6	Marketplace	4.54%
7	File Sharing	3.74%
8	Cloud	2.73%
9	VPN	1.39%
10	Audio	0.31%

Plataformas OTT

Cantidad <mark>de u</mark>suarios en Internet

Contenido de Streaming

Calidad de video 4k- 16 k

Video		Games	Social	Messaging	Enterprise Conferencing
YouTu	ре	Player Unknown's Battlegrounds	Facebook	WhatsApp	Zoom
Netflix		ROBLOX	TikTok	Discord	Microsoft Teams
Faceb	ook video	League of Legends	Instagram	Facebook Messenger	Webex
TikTok		Fortnite	Wordpress	LINE	Blackboard Collaborate
HTTP	media stream	Minecraft	Snapchat	Skype	Amazon Chime
Disne	/+	Garena Free Fire	Twitter	Zoom	Canva
Amazo	on Prime	Call of Duty	Reddit	Microsoft Teams	Udemy
Twitch		Mobile Legends	Wattpad	Telegram	Cisco Spark
Hulu		Candy Crush	Pinterest	WebEx	GoToMeeting
O HBO		War Thunder	GIPHY	WeChat	Steam

Modelos de entrega de contenido en las CDN

DEFINICIONES BÁSICAS

Definiciones

Tránsito

 Transmisión de tráfico a través de una red, regularmente por un costo

Peering

 Intercambio de información de enrutamiento y tráfico

Default Free Zone (DFZ)

 Sistemas autónomos que no requierer una ruta default para alcanzar cualquier destino en Internet

Tránsito vs Transporte

Tránsito

- Usualmente servicio en capa 3 (IP).
 - Puede ser BGP o no
- Costo en base a Mbps
- Utilizado para enviar tráfico a muchos sitios
- El tráfico depende de quien da el servicio como upstream provider

Transporte

- Usualmente servicio en capa 2: Metro Ethernet, SDH, etc.
- Costo fijo por capacidad de enlace (1Gbps, 10 Gbps).
- Utilizado para conectar dos sitios
- El tráfico queda acotado entre las organizaciones que establecen el transporte

Importancia y Beneficios

PUNTOS DE INTERCAMBIO DE TRÁFICO: IXPs

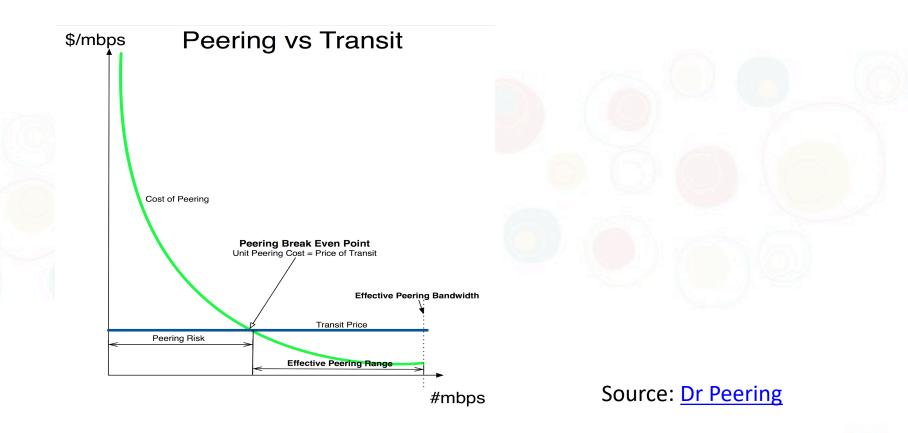
Características de un IXP

Un IXP es un sitio donde los *operadores de red* se interconectan

- Otros nombres: PIT, PTT, NAP (anteriormente)
- Infraestructura compartida intercambiar tráfico:
 - ISPs, Proveedores de Contenido, Universidades, Medios, Bancos, etc.
- Normalmente habrá varios AS que se interconectan, lo que lo distingue de un peering privado que se hace entre dos redes.
- Un IXP es distinto de una red de acceso y de una red de tránsito/carrier
 - La función del IXP es interconectar redes, no proveer acceso ni actuar como un proveedor de tránsito o carrier.
 - Un IXP permite interconectar redes que son organizaciones separadas: sistemas autónomos independientes.
 - Un IXP no requiere que el tráfico entre dos AS pase por un tercero

Algunas ventajas de los IXPs (*estabilidad* y *resiliencia*)

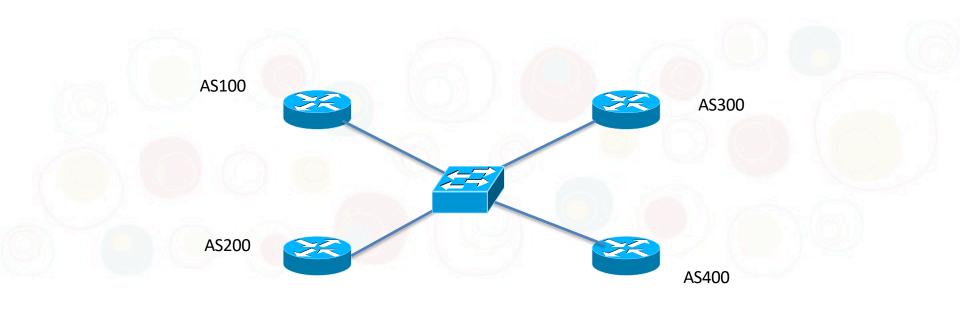
- Tráfico local se rutea localmente
- Menor latencia para las aplicaciones
- Menores costos
- Posibilidad de CDNs
- El tráfico de una región/pais/zona no es visto desde otras regiones/paises
- Introduccion de nuevas tecnologias (IPv6, RPKI, etc)
- Acciones coordinadas ante incidentes de seguridad, problemas técnicos, etc.
- Sentido de "comunidad"
 - Compartir problemas, estrategias, acciones en común


Comparación de costos

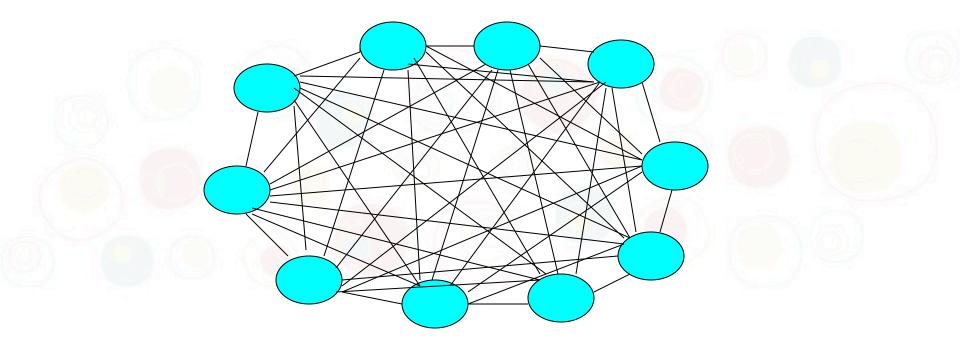
Transporte al sitio del IX	Costo fijo por cierta capacidad
Colocation	Fijo
Hardware	Fijo
X-connect	Fijo
IXP fee	Fijo

Transito	Basado en el uso

Peering vs. Transito: costos comparados

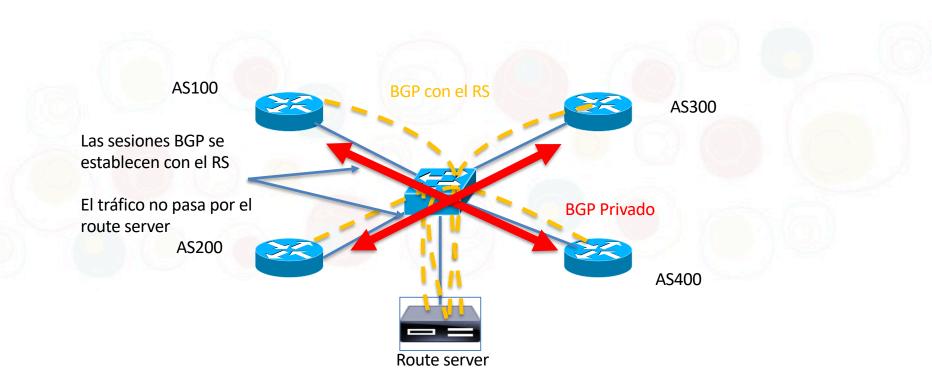


ESQUEMA BÁSICO DE UN IXP



Esquema básico de un IXP

Sin route-server: malla N-cuadrado



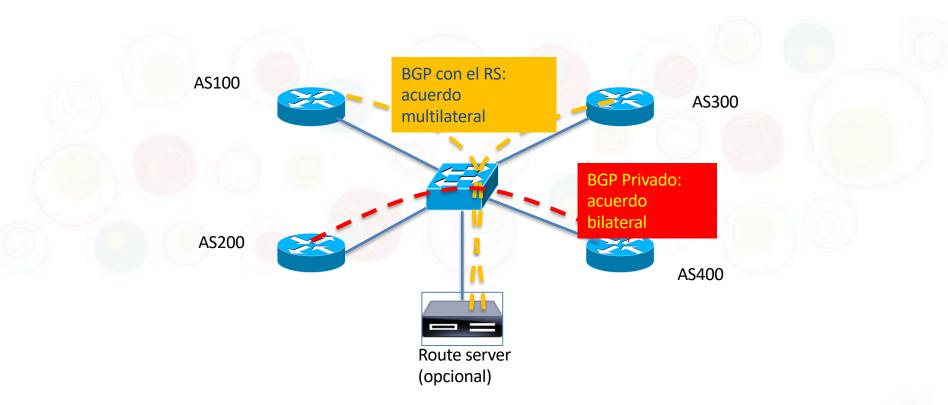
ROUTE SERVERS (RS)

Uso de route server en un IXP

Route Servers ¿Qué es?

- Normalmente es un Servidor Unix que corre software de Enrutamiento.
 - Existen soluciones Open Source para esto
- Ruteador que activa la funcionalidad de BGP
- Intercambia la información de ruteo con ruteadores de proveedores de servicio en un IXP basado en políticas
- No envía paquetes unicamente maneja la lógica de ruteo
- Evita una enorme cantidad de sesiones de BGP
 - Número de seciones = n(n-1)

Seguridad: ventajas de un route server


- Medidas básicas: filtrado de ASNs y prefijos bogon, filtros por cliente, etc.
- Evita route-leaks que pueden provenir de errores de configuración
 - Ejemplo: si se filtra una full-table al RS
 - Es un beneficio aún para ISPs que no hacen peering con el RS: sus rutas no se fugarán al resto de los ISPs.
- Posibilidad de implementar filtros por RPKI, por IRR, whois, etc.

Ejemplos de route-servers por software

- arouteserver: http://arouteserver.readthedocs.io
 - Herramienta en Python para generar configuración para route servers
 - Produce configuraciones para BIRD y OpenBGPd
 - Soporta IRR, RPKI, WHOIS
 - Soporta PeeringDB para obtener los AS-SETs
 - Simple de integrar con otros sistemas
- IXP manager: https://www.ixpmanager.org
 - Es un Sistema de administración completo para IX
 - Incluye un portal para administración del IXP y para los miembros
 - Produce configuraciones para BIRD

Interconexión en un IXP

Tipos de Acuerdo

Acuerdos Bilaterales

- Cada proveedor establece la relación que necesite con otros proveedores en el IXP
- Los enrutadores de borde de los ISP establecen sesiones de BGP con los enrutadores de borde de otros proveedores

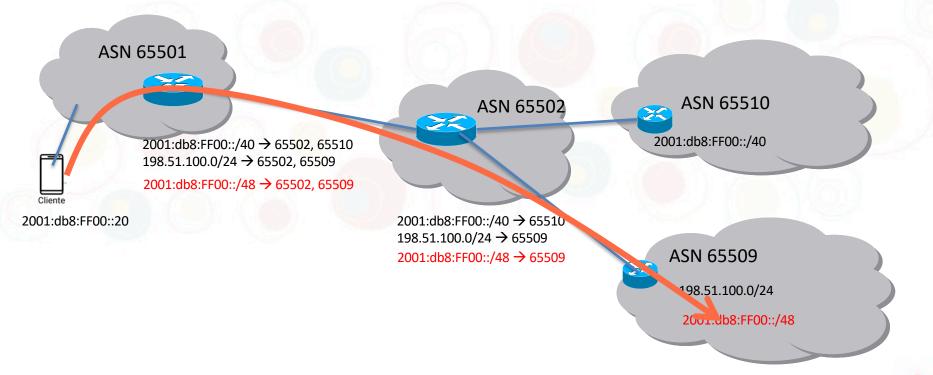
Acuerdos Multilaterales

- Cada proveedor establece sesiones con el concentrador
- Los enrutadores de borde de los ISP tienen como vecino al IXP

Referencias

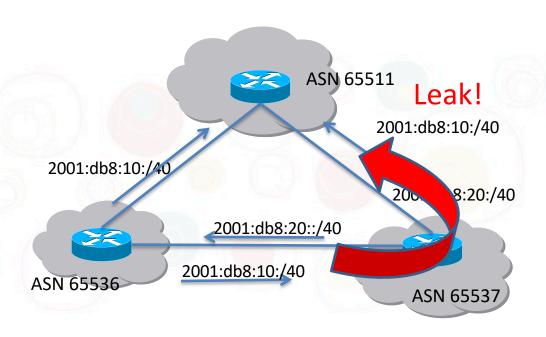
- Cursos de Campus de LACNIC: <u>https://campus.lacnic.net</u> (BGP y RPKI)
- Tutorial de BGP y RPKI de LACNIC32: https://www.lacnic.net/3900/52/evento/tutoriales
- Internet Exchange BGP Route Server https://tools.ietf.org/html/rfc7947
- Internet Exchange BGP Route Server Operations https://tools.ietf.org/html/rfc7948
- A Border Gateway Protocol 4 (BGP-4) https://tools.ietf.org/html/rfc4271

¿Preguntas hasta acá?

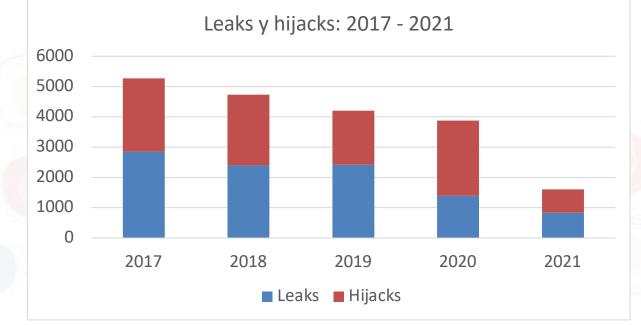

SEGURIDAD EN RUTEO

Secuestro de rutas

Secuestro de rutas:
Acción de anunciar
prefijos NO autorizados


Por error en la operación.

Route leaks – fuga de rutas

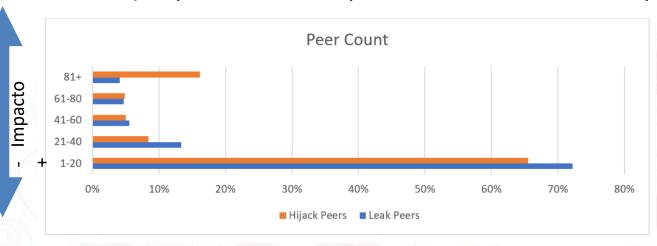

- Prefijos aprendidos del proveedor no deben anunciarse a otro peer o a otro proveedor
- Prefijos aprendidos de un peer tampoco se anuncian a otros peers ni al proveedor
- Esos prefijos solo deberían anunciarse a clientes

Si no hay filtros configurados, esto trae problemas

Principales incidentes de seguridad

Fuentes:

Informe sobre seguridad en el ruteo de LAC – Augusto Mathurín, 2019 https://www.lacnic.net/innovaportal/file/4297/1/fort-informe-seguridad-ruteo-es.pdf


MANRS: https://www.manrs.org/2021/02/bgp-rpki-and-manrs-2020-in-review/

MANRS: https://www.manrs.org/2022/02/bgp-security-in-2021/

Alcance de los incidentes

(mayor número de peers afectados indica mayor impacto)

https://www.manrs.org/2022/02/bgp-security-in-2021/

En cuántos peers de colectores BGP se detectan estos hijacks/leaks?

- Más del 70% de los incidentes fueron detectados por 1 a 20 peers
- Menos peers recibieron las rutas incorrectas: fueron filtradas antes
- Las medidas de seguridad parecen estar funcionando

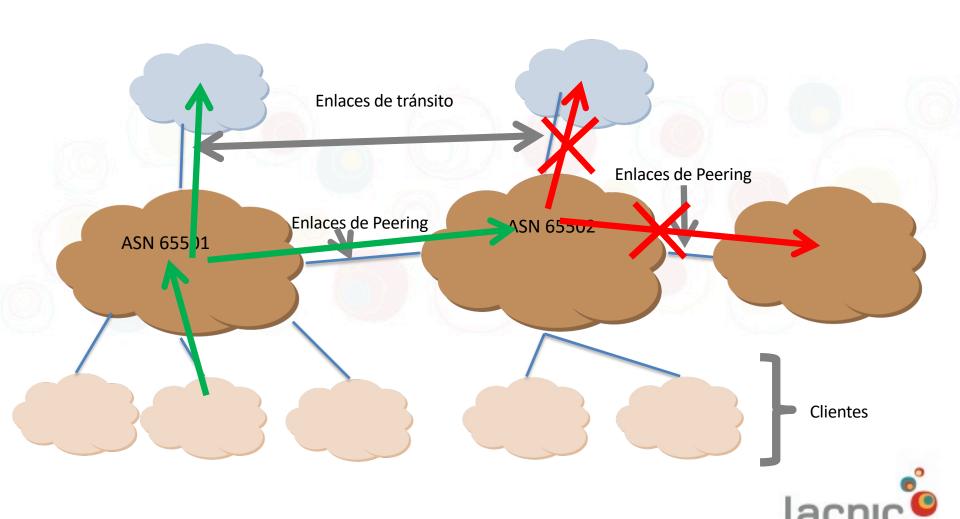
Acciones acordadas para promover la seguridad del ruteo

¿QUÉ PODEMOS HACER PARA MITIGAR LOS INCIDENTES?

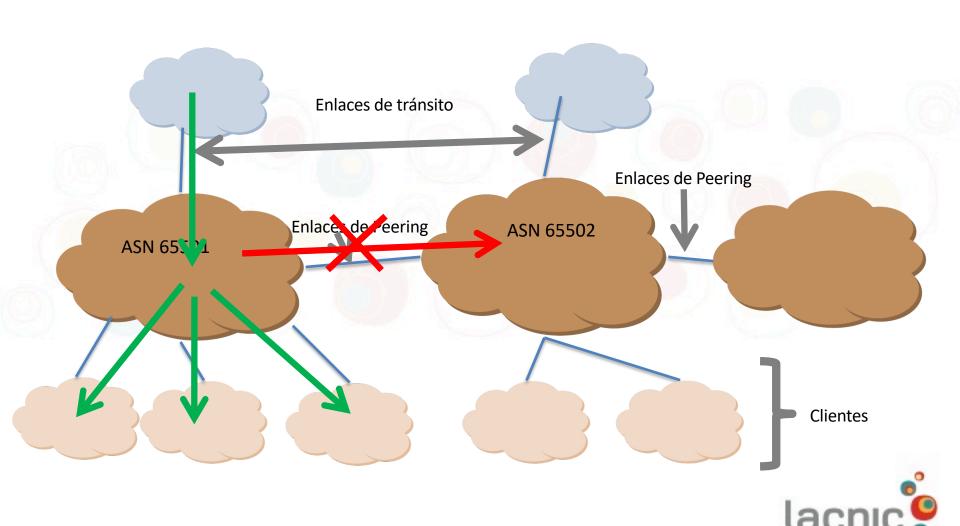
MANRS – Mejores prácticas

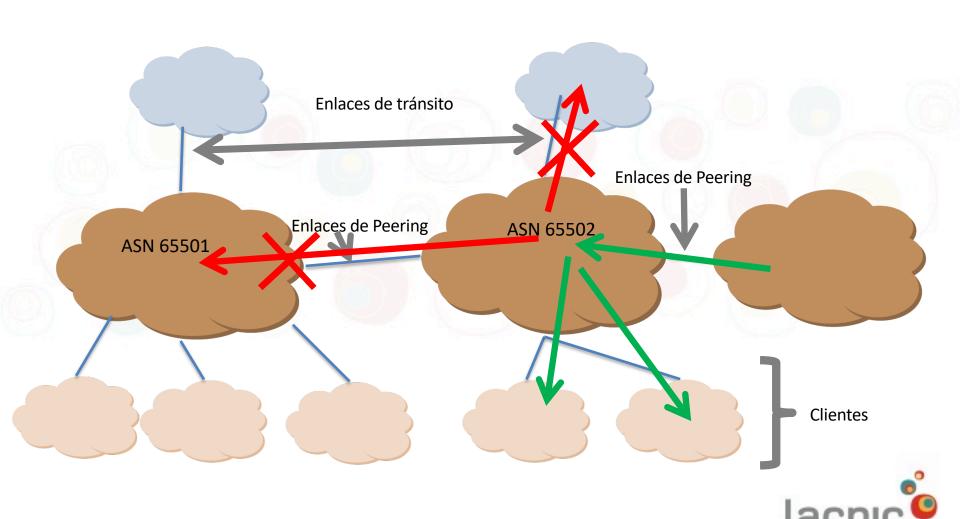
MANRS es un conjunto de "Normas Mutuamente Acordadas para la Seguridad del Enrutamiento" Acciones propuestas por MANRS para **operadores**:

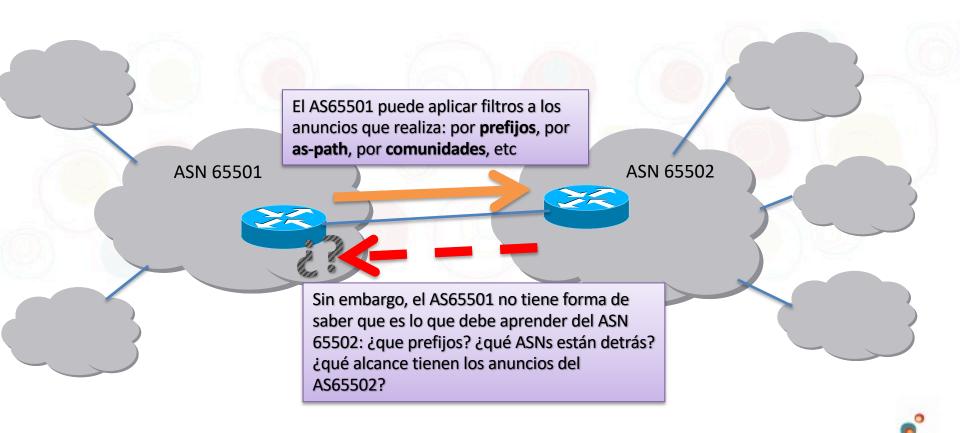
- Filtrado
- Anti-spoofing
- Coordinación
- Validación global


Veremos estas acciones en más detalle a continuación

Hay también un programa específico para IXPs y para CDNs


https://www.manrs.org


BGP: qué debemos anunciar y qué no


BGP: qué debemos anunciar y qué no

BGP: qué debemos anunciar y qué no

BGP: filtros de salida y entrada

IRRs vs RPKI

- Cómo chequear que la información que recibimos por BGP es correcta?
 - BGP no tiene mecanismos intrínsecos que permitan verificar esto
 - Se deben contrastar los anuncios recibidos por IRR: Internet Routing BGP contra fuentes exteriores

• Existen dos formas: RPKI: Resource Public Key Infrastructure

IRR – Internet Routing Registries

- Existe una gran cantidad de IRRs
 - El más conocido es RADB
 - RADB replica todos los demas IRRs
- Las organizaciones definen sus políticas de ruteo en un IRR
- Los operadores (ISP) utilizan esa información para generar filtros para BGP, muchas veces en forma automática
- Existen herramientas para utilizar esa información y configurar los routers: bgpq3/bgpq4, etc.

 CANARIE NESTEGG RGNET EASYNET NTTCOM RIPE EPOCH OPENFACE RISQ GT OTTIX ROGERS TC PANIX JPIRR RADB LEVEL3 REACH

Ahora también LACNIC

Ejemplo s de registros

whois -h whois.radb.net -- '-s radb -i mnt-by MAINT-AS6057'

route: 201.221.32.0/19

descr: ANTEL origin: AS6057

notify: noc@antel.net.uy
mnt-by: MAINT-AS6057

changed: nantoniello@antel.net.uy 20080903

changed: nantoniello@antel.net.uy 20080903 #19:20:32Z

source: RADB

route: 201.217.128.0/18

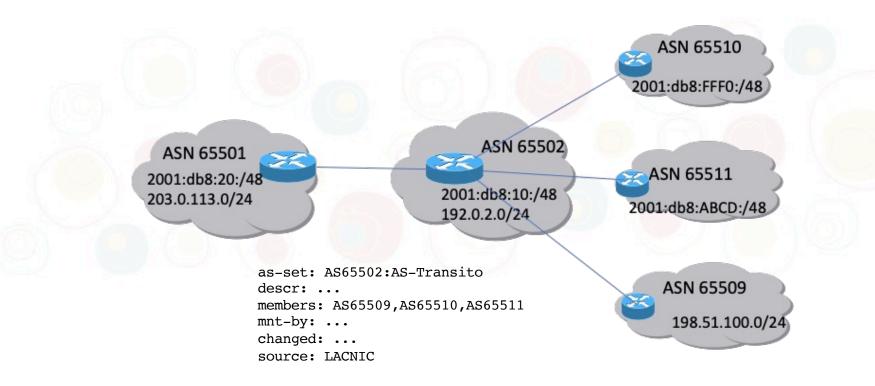
descr: ANTEL origin: AS6057

notify: noc@antel.net.uy

mnt-by: MAINT-AS6057

changed: nantoniello@antel.net.uy 20080903

changed: nantoniello@antel.net.uy 20080903 #19:21:34Z


source: RADB

CÓMO USAR LA INFORMACIÓN

Ejemplo de tránsito

Utilizando bgpq3/bgpq4

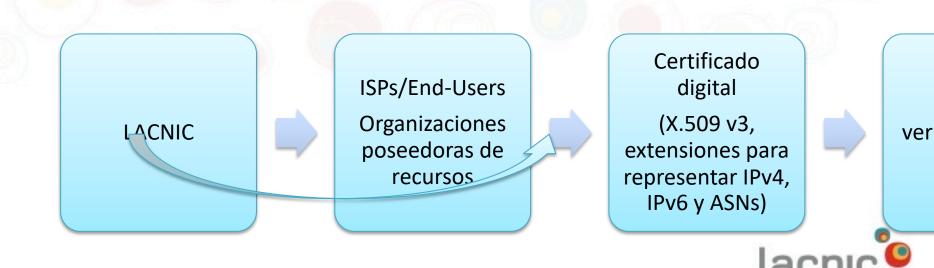
- En este caso, usamos el as-set:
- Prefijos IPv4

```
$ bgpq4 -h irr.lacnic.net -l clientes-as65502 AS65502:AS-Transito
no ip prefix-list clientes-as65502
ip prefix-list clientes-as65502 permit 198.51.100.0/24
```

Prefijos IPv6

```
$ bgpq4 -h irr.lacnic.net -6 -l clientes-as65502 AS65502:AS-Transito
no ipv6 prefix-list clientes-as65502
ipv6 prefix-list clientes-as65502 permit 2001:db8:FFF0:/48
ipv6 prefix-list clientes-as65502 permit 2001:db8:ABCD:/48
```

 Ver más información sobre bgpq4 en https://github.com/bgp/bgpq4

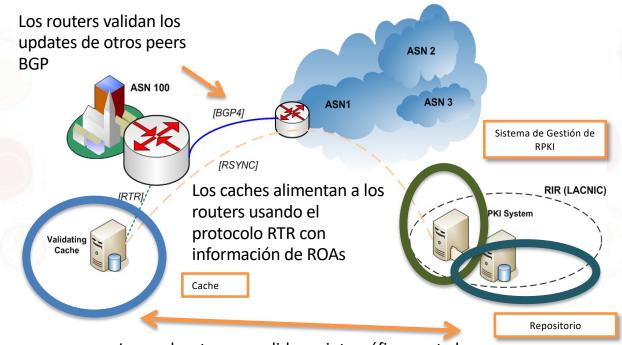

Referencias

- IRR de LACNIC: https://labs.lacnic.net/Uso-de-IRR-LACNIC/
- Peering, IRR y AS-SET: https://www.labs.lacnic.net/Peering-IRR/
- Bgpq4: https://github.com/bgp/bgpq4
- IRRd v4: https://irrd4.readthedocs.io/en/master/users/queries.html
- Documentación Mi LACNIC:
 - General: https://lacnic.zendesk.com/hc/es/categories/360002625214-
 Internet-Routing-Registry
 - RPKI: https://lacnic.zendesk.com/hc/es/sections/206490008-RPKI
 - IRR: https://lacnic.zendesk.com/hc/es/categories/203940327-Soporte-Mi-LACNIC

RPKI

- Define una infraestructura de clave pública especializada para ser aplicada al enrutamiento
 - En particular, para BGP

¿Qué compone la solución RPKI?


- ROA: Objetos firmados digitalmente para soportar seguridad del enrutamiento
 - Equivalentes a route o route6 objects de un IRR
 - Los ISPs u organizaciones pueden definir y certificar los anuncios de rutas que autorizan realizar
 - Los ROAs permiten definir el AS de origen para nuestros prefijos
 - Firmados con la clave privada del certificado
 - Toda la información es copiada en un repositorio públicamente accesible
- Un mecanismo de validación de prefijos
 - Validación de origen

VALIDACIÓN DE ORIGEN

RPKI en acción

Los caches traen y validan criptográficamente los certificados y ROAs de los repositorios

Validación de Origen

 Una vez que los routers reciben la información de los caches, tendrán una tabla con:

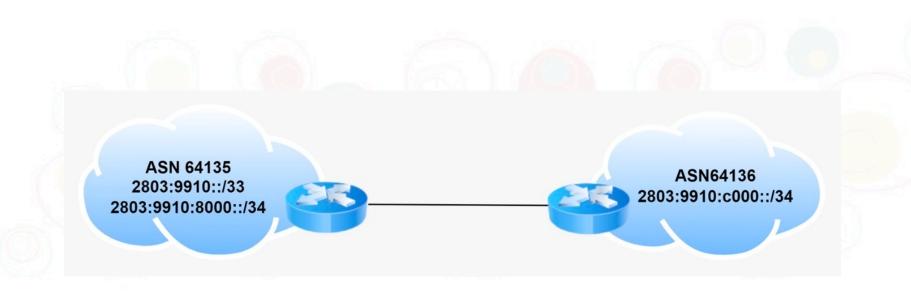
Prefix	Length	Max length	Origin-AS
200.0.112.0	22	24	65501

- Con esto es posible asignar un estado de validez a cada UPDATE de BGP
- El estado de validez puede ser:
 - Válido: El AS de origen y el Largo Máximo coinciden con la información del ROA
 - Inválido: La información del ROA no coincide
 - No encontrado: No hay un ROA para el prefijo dado

RPKI EN LA PRÁCTICA

¿Cómo definir los ROA?

- Un ROA es semánticamente equivalente a un route(6) object:
 - Asocia un prefijo a un ASN de origen
 - Con esta información es posible hacer chequeo de un anuncio BGP
- Quienes tienen recursos IPv4, IPv6, ASN:
 - Pueden hacerlo desde el sistema de administración de recursos de LACNIC (MiLACNIC)
 - Se necesita para eso los datos de usuario y contraseña de administración de recursos
- Quienes no tienen recursos propios, dependerán del ISP
- Puede haber organizaciones con recursos IP pero no ASN
 - Deben crear los ROA permitiendo a cada ASN (upstream) anunciar los prefijos
 - La creación la realiza quien posee los recursos (diferente modelo que en el IRR en el que lo hace el que posee el ASN)



¿Qué tener en cuenta?

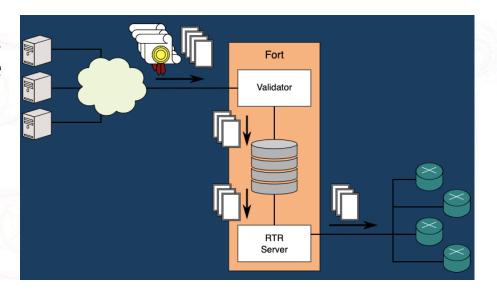
- Verificar cómo estamos realizando los anuncios
- Ejemplo: red 203.0.112.0/22
 - La estamos publicando sumarizada?
 - La estamos publicando desagregada?
 - En bloques de qué tamaño? /23? /24?
 - Con qué sistema autónomo se originan las publicaciones?
 - Siempre es el mismos ASN?
 - Los distintos bloques se anuncian siempre con un mismo ASN?
- Importante: los ROA que creamos deben respetar esta política
- De lo contrario, estaremos invalidando nuestras publicaciones

Ejemplo de peering

VALIDADORES

Software disponible

- RIPE NCC's RPKI Validator 3
 - Uno de los primeros validadores disponibles, muy utilizado, buena interfaz gráfica
 - RIPE ha dejado de mantenerlo desde Julio 2021
- Cloudflare: OctoRPKI & GoRTR
 - Soporte para uso en CDNs, separación clara entre la validación y el protocolo RTR
- NLnetLabs: Routinator 3000
 - Una versión con soporte profesional, muy eficiente en términos de RAM y CPU
- RPKI-client
 - Implementación libre para facilitar la validación de origen de los anuncios BGP.
 Genera configuración para OpenBGPD o BIRD, pero también otros formatos como CSV o JSON para ser consumidos por otros programas
- LACNIC y NIC.MX: Validador FORT
 - Proyecto FORT incluye el validador y el Monitoreo FORT. El Validador está desarrollado en C y es muy eficiente, muy liviano para ejecutar en una VM


Validador FORT

El validador FORT es un validador RPKI de código abierto

- Es parte del Proyecto FORT, iniciativa conjunta entre LACNIC y NIC.MX
- Soporte para Linux y BSD
- Desarrollado en C

Documentación general: https://nicmx.github.io/FORT-validator/

Descargar el validador: https://github.com/NICMx/FORT-validator/releases

Herramientas útiles

- Mi LACNIC: https://milacnic.lacnic.net
- LACNIC Tools: https://tools.labs.lacnic.net/
 - Información de los repositorios de RPKI, consultas a RDAP, WHOIS y preguntas directas a servidores de nombres
- Inforedes: https://inforedes.labs.lacnic.net/
 - Información de recursos de numeración, ruteo, conectividad, DNS, RPKI
- Monitoreo FORT: https://monitor.fortproject.net/
 - Cobertura de ROAs, validez de los updates BGP, anomalías en la información de ruteo, etc
- RIPE RIS: https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris
- BGP HE.NET https://bgp.he.net
- Cursos de Campus de LACNIC: https://campus.lacnic.net (BGP y RPKI)
- Documentación RPKI: https://rpki.readthedocs.io/en/latest/

¿Preguntas?

