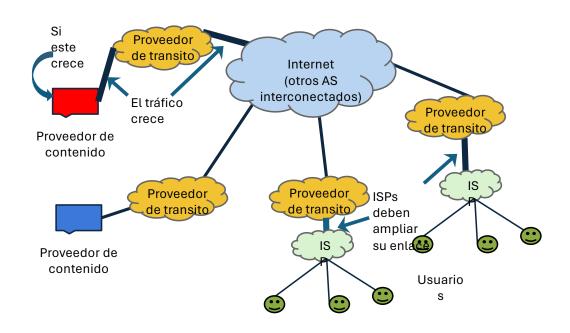
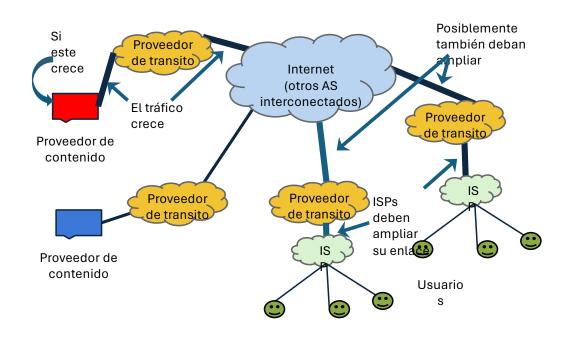
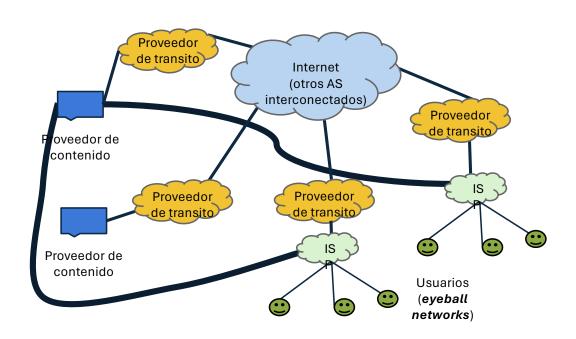
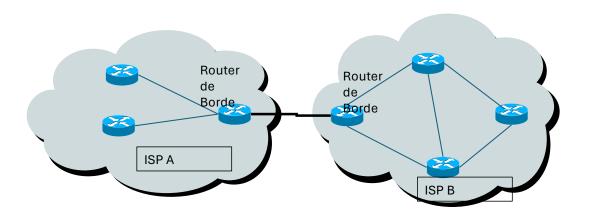

Tutorial de Peering

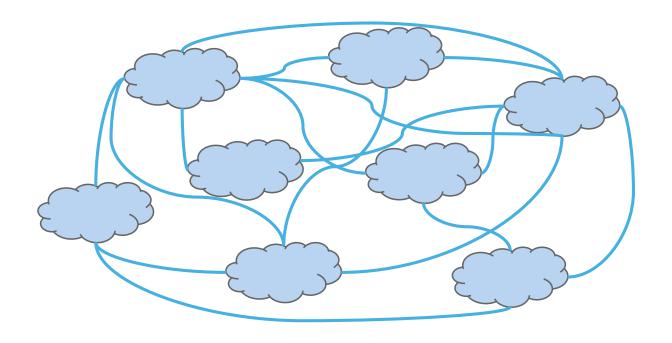

IXSY Meeting 2024


Mauricio Oviedo mauricio@socium.cr

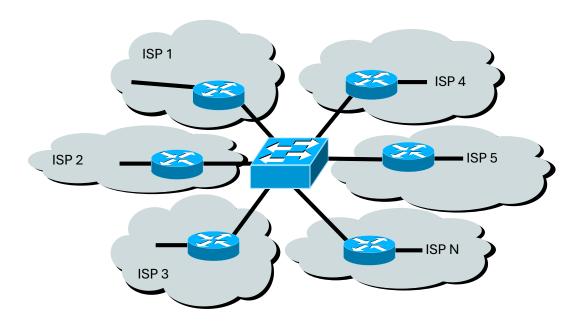




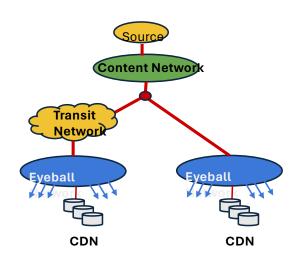
Alternativa: peering



Modalidades de interconexión

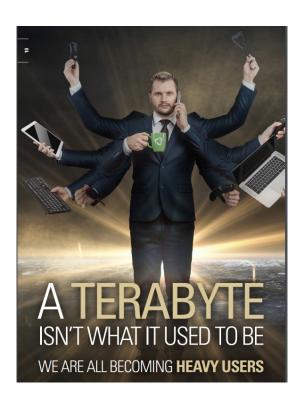

Interconexión directa: Peering

Interconexión directa: puede ser compleja



Interconexión pública

Qué es una CDN (Content Delivery Network)?


- Plataforma distribuida para entrega de contenido
- Sirve contenido más cerca de los usuarios
- Mejora el desempeño de los servicios a los usuarios
- Menor costo para el proveedor de contenido y el ISP

Ejemplos de CDNs

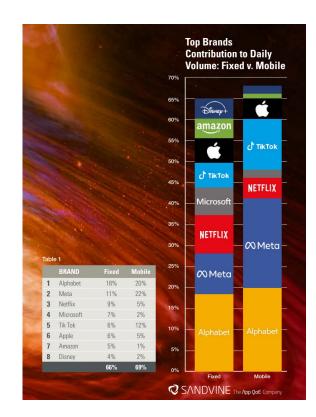
- CDNs Tradicionales y Telco
 - Akamai
 - Cloudflare
 - Level3
 - Limelight Networks
- Content Provider own-CDNs
 - Google
 - Netflix
 - Facebook

Realidad del tráfico de Internet en la actualidad

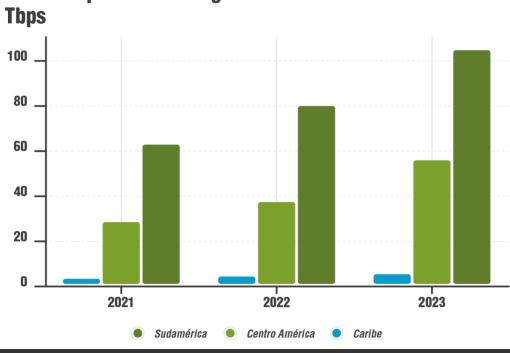
- El uso global de BW aumentó un 23% en 2023.
- El ancho de banda de Internet internacional total ahora asciende a 1217 Tbps, lo que representa una tasa compuesta anual de 4 años del 28%.

Fuente: Telegeography

Estudio Sandvine


Regional Phenomena Americas

negional i		טווכ
Table 20		Tab
Ton Ann Cotonovice by Dec	unetroom Volume 2022 Americae	To


Top App Categories by Downstream Volume 2023 – Americas			
	Downstream Volume		
	Application Category	% DS Vol	Sub. Volume
1	Video	48%	5.643 GB
2	Television	17%	1.978 GB
3	Social Media	10%	1.122 GB
4	Device Gaming	9%	1.086 GB
5	File Sharing	6%	726 MB
6	General Web Apps	3%	352 MB
7	VPN	1%	173 MB
8	Communication	1%	130 MB
9	Audio	0.9%	110 MB
10	Conferencing	0.3%	36 MB
11	Cloud Gaming	0.1%	13 MB
12	Peer To Peer	0.08%	9 MB
13	IoT	0.04%	5 MB
14	Other Apps	3%	405 MB

Top App Categories by Upstream Volume 2023 – Americas			
	Upstream Volume		
	Application Category	% US Vol	Sub. Volume
1	File Sharing	27%	205 MB
2	Communication	14%	101 MB
3	Video	11%	85 MB
4	General Web Apps	7%	54 MB
5	Social Media	6%	44 MB
6	VPN	4%	27 MB
7	Device Gaming	4%	27 MB
8	Television	3%	24 MB
9	loT	3%	21 MB
10	Conferencing	3%	20 MB
11	Peer To Peer	1%	9 MB
12	Audio	0.4%	3 MB
13	Cloud Gaming	0.04%	323 KB
14	Other Apps	17%	129 MB

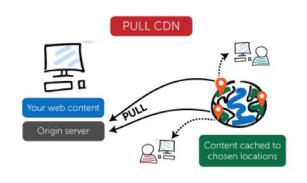
https://www.sandvine.com/hubfs/Sandvine_Redesign_2019 /Downloads/2024/GIPR/GIPR%202024.pdf

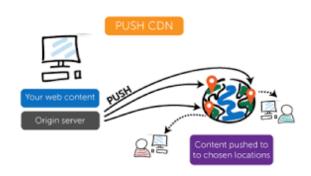
Ancho de banda internacional de Internet para las subregiones latinoamericanas

(Fuente: Telegeography)

Plataformas OTT

Cantidad de usuarios en Internet


Contenido de Streaming



Calidad de video 4k- 16 k

	Video	Games	Social	Messaging	Enterprise Conferencing
1	YouTube	Player Unknown's Battlegrounds	Facebook	WhatsApp	Zoom
2	Netflix	ROBLOX	TikTok	Discord	Microsoft Teams
	Facebook video	League of Legends	Instagram	Facebook Messenger	Webex
4	TikTok	Fortnite	Wordpress	LINE	Blackboard Collaborate
5	HTTP media stream	Minecraft	Snapchat	Skype	Amazon Chime
â	Disney+	Garena Free Fire	Twitter	Zoom	Canva
7	Amazon Prime	Call of Duty	Reddit	Microsoft Teams	Udemy
В	Twitch	Mobile Legends	Wattpad	Telegram	Cisco Spark
9	Hulu	Candy Crush	Pinterest	WebEx	GoToMeeting
0	HB0	War Thunder	GIPHY	WeChat	Steam

Modelos de entrega de contenido en las CDN

Definiciones básicas

Definiciones

Tránsito vs Transporte

Tránsito

- Usualmente servicio en capa 3 (IP).
 - Puede ser BGP o no
- Costo en base a Mbps
- Utilizado para enviar tráfico a muchos sitios
- El tráfico depende de quien da el servicio como upstream provider

Transporte

- Usualmente servicio en capa
 2: Metro Ethernet, SDH, etc.
- Costo fijo por capacidad de enlace (1Gbps, 10 Gbps).
- Utilizado para conectar dos sitios
- El tráfico queda acotado entre las organizaciones que establecen el transporte

Puntos de Intercambio de tráfico: IXPs

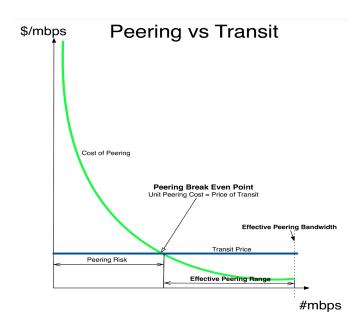
Importancia y Beneficios

Características de un IXP

Un IXP es un sitio donde los *operadores de red* se interconectan

- Otros nombres: PIT, PTT, NAP (anteriormente)
- Infraestructura compartida intercambiar tráfico:
 - ISPs, Proveedores de Contenido, Universidades, Medios, Bancos, etc.
- Normalmente habrá varios AS que se interconectan, lo que lo distingue de un peering privado que se hace entre dos redes.
- Un IXP es distinto de una red de acceso y de una red de tránsito/carrier
 - La función del IXP es interconectar redes, no proveer acceso ni actuar como un proveedor de tránsito o carrier.
 - Un IXP permite interconectar redes que son organizaciones separadas: sistemas autónomos independientes.
 - Un IXP no requiere que el tráfico entre dos AS pase por un tercero

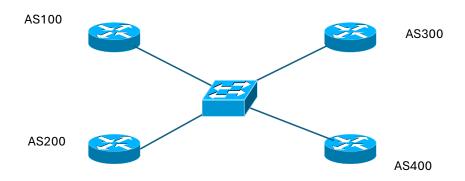
Algunas ventajas de los IXPs (**estabilidad** y **resiliencia**)

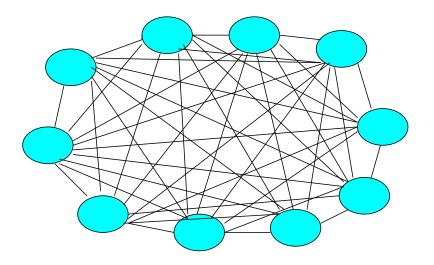

- Tráfico local se rutea localmente
- Menor latencia para las aplicaciones
- Menores costos
- Posibilidad de CDNs
- El tráfico de una región/pais/zona no es visto desde otras regiones/paises
- Introduccion de nuevas tecnologias (IPv6, RPKI, etc)
- Acciones coordinadas ante incidentes de seguridad, problemas técnicos, etc.
- Sentido de "comunidad"
 - Compartir problemas, estrategias, acciones en común

Comparación de costos

Transporte al sitio del IX	Costo fijo por cierta capacidad
Colocation	Fijo
Hardware	Fijo
X-connect	Fijo
IXP fee	Fijo

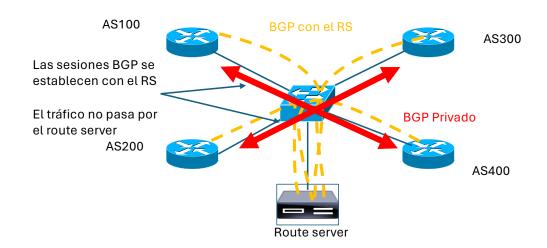
Transito	Basado en el uso	


Peering vs. Transito: costos comparados


Source: Dr Peering

Esquema básico de un IXP

Esquema básico de un IXP



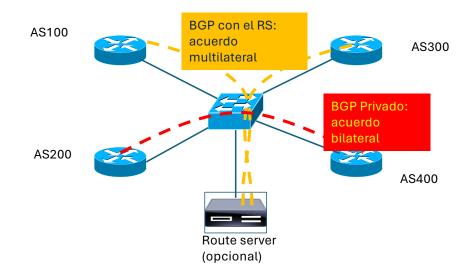
Sin route-server: malla N-cuadrado

ROUTE SERVERS (RS)

Uso de route server en un IXP

Route Servers ¿Qué es?

- Normalmente es un Servidor Unix que corre software de Enrutamiento.
 - Existen soluciones Open Source para esto
- Ruteador que activa la funcionalidad de BGP
- Intercambia la información de ruteo con ruteadores de proveedores de servicio en un IXP basado en políticas
- No envía paquetes unicamente maneja la lógica de ruteo
- Evita una enorme cantidad de sesiones de BGP
 - Número de segiones = n(n-1)


Seguridad: ventajas de un route server

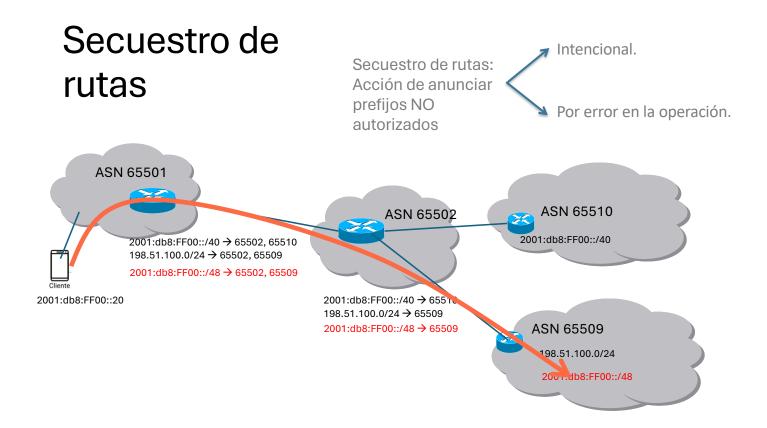
- Medidas básicas: filtrado de ASNs y prefijos bogon, filtros por cliente, etc.
- Evita route-leaks que pueden provenir de errores de configuración
 - Ejemplo: si se filtra una full-table al RS
 - Es un beneficio aún para ISPs que no hacen peering con el RS: sus rutas no se fugarán al resto de los ISPs.
- Posibilidad de implementar filtros por RPKI, por IRR, whois, etc.

Ejemplos de route-servers por software

- arouteserver: http://arouteserver.readthedocs.io
 - Herramienta en Python para generar configuración para route servers
 - Produce configuraciones para BIRD y OpenBGPd
 - Soporta IRR, RPKI, WHOIS
 - Soporta PeeringDB para obtener los AS-SETs
 - Simple de integrar con otros sistemas
- IXP manager: https://www.ixpmanager.org
 - Es un Sistema de administración completo para IX
 - Incluye un portal para administración del IXP y para los miembros
 - Produce configuraciones para BIRD

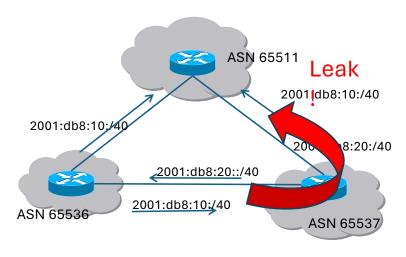
Interconexión en un IXP

Tipos de Acuerdo

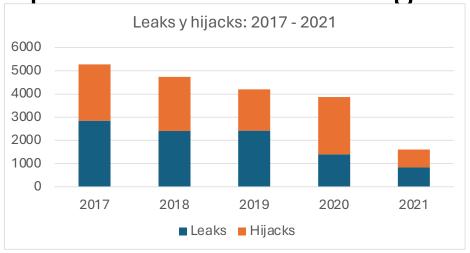

Referencias

- Cursos de Campus de LACNIC: https://campus.lacnic.net (BGP y RPKI)
- Tutorial de BGP y RPKI de LACNIC32: <u>https://www.lacnic.net/3900/52/evento/tutoriales</u>
- Internet Exchange BGP Route Server <u>https://tools.ietf.org/html/rfc7947</u>
- Internet Exchange BGP Route Server Operations https://tools.ietf.org/html/rfc7948
- A Border Gateway Protocol 4 (BGP-4) -<u>https://tools.ietf.org/html/rfc4271</u>

¿Preguntas hasta acá?



Seguridad en ruteo


Route leaks – fuga de rutas

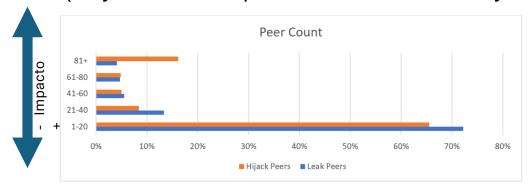
- Prefijos aprendidos del *proveedor* no deben anunciarse a otro *peer* o a otro *proveedor*
- Prefijos aprendidos de un peer tampoco se anuncian a otros peers ni al proveedor
- Esos prefijos solo deberían anunciarse a clientes

Si no hay filtros configurados, esto trae problemas

Principales incidentes de seguridad

Fuentes:

Informe sobre seguridad en el ruteo de LAC – Augusto Mathurín, 2019


https://www.lacnic.net/innovaportal/file/4297/1/fort-informe-seguridad-ruteo-es.pdf

MANRS: https://www.manrs.org/2021/02/bgp-rpki-and-manrs-2020-in-review/

MANRS: https://www.manrs.org/2022/02/bgp-security-in-2021/

Alcance de los incidentes

(mayor número de peers afectados indica mayor impacto)

https://www.manrs.org/2022/02/bgp-security-in-2021/

En cuántos peers de colectores BGP se detectan estos hijacks/leaks?

- Más del 70% de los incidentes fueron detectados por 1 a 20 peers
- Menos peers recibieron las rutas incorrectas: fueron filtradas antes
- Las medidas de seguridad parecen estar funcionando

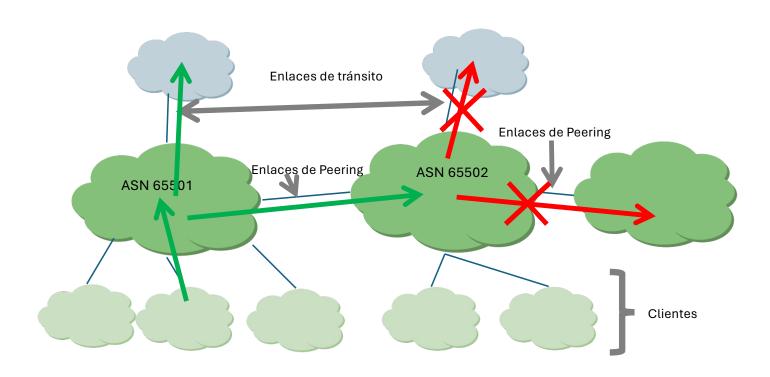
¿Qué podemos hacer para mitigar los incidentes?

Acciones acordadas para promover la seguridad del ruteo

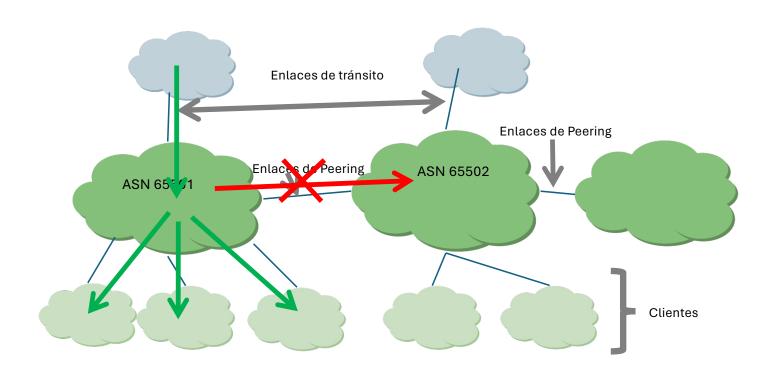
MANRS – Mejores prácticas

MANRS es un conjunto de "Normas Mutuamente Acordadas para la Seguridad del Enrutamiento"

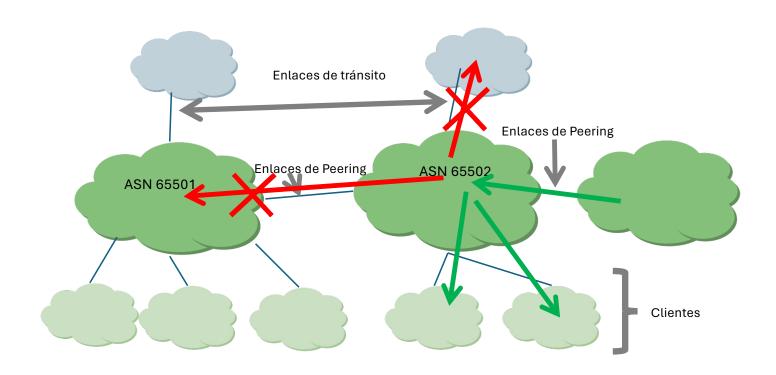
Acciones propuestas por MANRS para operadores:

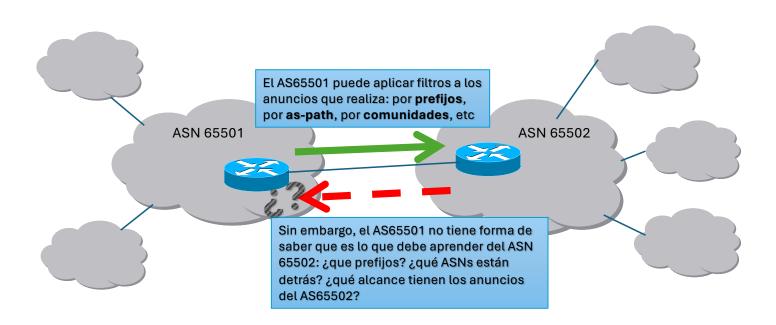

- Filtrado
- Anti-spoofing
- Coordinación
- Validación global

Hay también un programa específico para **IXPs** y para **CDNs**


Veremos estas acciones en más detalle a continuación

https://www.manrs.org


BGP: qué debemos anunciar y qué no


BGP: qué debemos anunciar y qué no

BGP: qué debemos anunciar y qué no

BGP: filtros de salida y entrada

IRRs vs RPKI

- Cómo chequear que la información que recibimos por BGP es correcta?
 - BGP no tiene mecanismos intrínsecos que permitan verificar esto
 - Se deben contrastar los anuncios recibidos por BGP contra fuentes externas
- Existen dos formas:

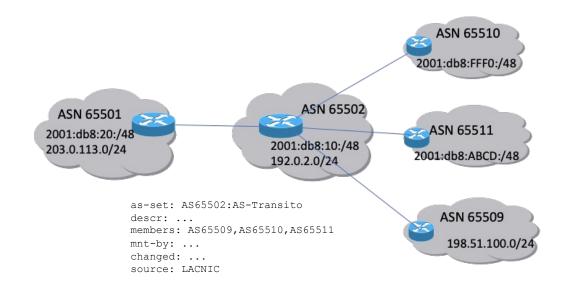
IRR – Internet Routing Registries

- Existe una gran cantidad de IRRs
 - El más conocido es RADB
 - RADB replica todos los demas IRRs
- Las organizaciones definen sus políticas de ruteo en un IRR
- Los operadores (ISP) utilizan esa información para generar filtros para BGP, muchas veces en forma automática
- Existen herramientas para utilizar esa información y configurar los routers: bgpq3/bgpq4, etc.

 AFRINIC RGNET NESTEGG ALTDB EASYNET NTTCOM RIPE RISQ AOLTW EPOCH OPENFACE APNIC OTTIX ROGERS ARIN PANIX TC HOST BELL JPIRR RADB BBOI REACH

Ahora también LACNIC

Ejemplos de registros


source:

RADB

```
whois -h whois.radb.net -- '-s radb -i mnt-by MAINT-AS6057'
            201.221.32.0/19
route:
descr:
            ANTEL
            AS6057
origin:
notify:
            noc@antel.net.uy
mnt-by:
            MAINT-AS6057
changed:
            nantoniello@antel.net.uy 20080903
changed:
            nantoniello@antel.net.uy 20080903 #19:20:32Z
source:
            RADB
route:
            201.217.128.0/18
descr:
            ANTEL
origin:
            AS6057
notify:
            noc@antel.net.uy
mnt-by:
            MAINT-AS6057
            nantoniello@antel.net.uy 20080903
changed:
changed:
            nantoniello@antel.net.uy 20080903 #19:21:34Z
```

Cómo usar la información

Ejemplo de tránsito

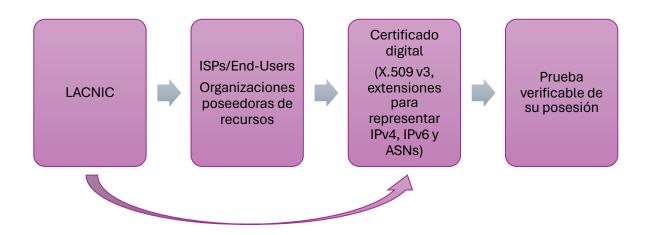
Utilizando bgpq3/bgpq4

- En este caso, usamos el as-set:
- Prefijos IPv4

```
$ bgpq4 -h irr.lacnic.net -l clientes-as65502 AS65502:AS-Transito
no ip prefix-list clientes-as65502
ip prefix-list clientes-as65502 permit 198.51.100.0/24
```

Prefijos IPv6

```
$ bgpq4 -h irr.lacnic.net -6 -l clientes-as65502 AS65502:AS-Transito
no ipv6 prefix-list clientes-as65502
ipv6 prefix-list clientes-as65502 permit 2001:db8:FFF0:/48
ipv6 prefix-list clientes-as65502 permit 2001:db8:ABCD:/48
```

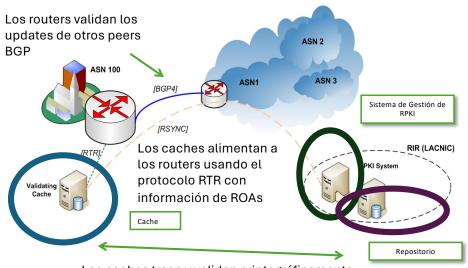

• Ver más información sobre bgpq4 en https://github.com/bgp/bgpq4

Referencias

- IRR de LACNIC: https://labs.lacnic.net/Uso-de-IRR-LACNIC/
- Peering, IRR y AS-SET: https://www.labs.lacnic.net/Peering-IRR/
- Bgpq4: https://github.com/bgp/bgpq4
- IRRd v4: https://irrd4.readthedocs.io/en/master/users/queries.html
- Documentación Mi LACNIC:
 - General: https://lacnic.zendesk.com/hc/es/categories/360002625214-Internet-Routing-Registry
 - RPKI: https://lacnic.zendesk.com/hc/es/sections/206490008-RPKI
 - IRR: https://lacnic.zendesk.com/hc/es/categories/203940327-Soporte-Mi-LACNIC

RPKI

- Define una infraestructura de clave pública especializada para ser aplicada al enrutamiento
 - En particular, para BGP



¿Qué compone la solución RPKI?

- **ROA**: Objetos firmados digitalmente para soportar seguridad del enrutamiento
 - Equivalentes a route o route6 objects de un IRR
 - Los ISPs u organizaciones pueden *definir y certificar los anuncios de rutas que autorizan* realizar
 - Los **ROAs** permiten definir el AS de origen para nuestros prefijos
 - Firmados con la clave privada del certificado
 - Toda la información es copiada en un repositorio públicamente accesible
- Un mecanismo de validación de prefijos
 - Validación de origen

Validación de Origen

RPKI en acción

Los caches traen y validan criptográficamente los certificados y ROAs de los repositorios

Validación de Origen

• Una vez que los routers reciben la información de los caches, tendrán una tabla con:

Prefix	Length	Max length	Origin-AS
200.0.112.0	22	24	65501

- Con esto es posible asignar un estado de validez a cada UPDATE de BGP
- El estado de validez puede ser:
 - Válido: El AS de origen y el Largo Máximo coinciden con la información del ROA
 - Inválido: La información del ROA no coincide
 - No encontrado: No hay un ROA para el prefijo dado

RPKI en la práctica

¿Cómo definir los ROA?

- Un ROA es semánticamente equivalente a un route(6) object:
 - · Asocia un prefijo a un ASN de origen
 - Con esta información es posible hacer chequeo de un anuncio BGP
- Quienes tienen recursos IPv4, IPv6, ASN:
 - Pueden hacerlo desde el sistema de administración de recursos de LACNIC (MiLACNIC)
 - Se necesita para eso los datos de usuario y contraseña de administración de recursos
- Quienes no tienen recursos propios, dependerán del ISP
- Puede haber organizaciones con recursos IP pero no ASN
 - Deben crear los ROA permitiendo a cada ASN (upstream) anunciar los prefijos
 - La creación la realiza quien posee los recursos (diferente modelo que en el IRR en el que lo hace el que posee el ASN)

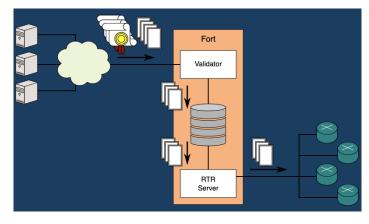
¿Qué tener en cuenta?

- Verificar cómo estamos realizando los anuncios
- Ejemplo: red 203.0.112.0/22
 - La estamos publicando sumarizada?
 - La estamos publicando desagregada?
 - En bloques de qué tamaño? /23? /24?
 - Con qué sistema autónomo se originan las publicaciones?
 - Siempre es el mismos ASN?
 - Los distintos bloques se anuncian siempre con un mismo ASN?
- Importante: los ROA que creamos deben respetar esta política
- De lo contrario, estaremos invalidando nuestras publicaciones

Validadores

Software disponible

- RIPE NCC's RPKI Validator 3
 - Uno de los primeros validadores disponibles, muy utilizado, buena interfaz gráfica
 - RIPE ha dejado de mantenerlo desde Julio 2021
- Cloudflare: OctoRPKI & GoRTR
 - Soporte para uso en CDNs, separación clara entre la validación y el protocolo RTR
- NLnetLabs: Routinator 3000
 - Una versión con soporte profesional, muy eficiente en términos de RAM y CPU
- RPKI-client
 - Implementación libre para facilitar la validación de origen de los anuncios BGP. Genera configuración para OpenBGPD o BIRD, pero también otros formatos como CSV o JSON para ser consumidos por otros programas
- LACNIC y NIC.MX: Validador FORT
 - Proyecto FORT incluye el validador y el Monitoreo FORT. El Validador está desarrollado en C y es muy eficiente, muy liviano para ejecutar en una VM


Validador FORT

El validador FORT es un validador RPKI de código abierto

- Es parte del Proyecto FORT, iniciativa conjunta entre LACNIC y NIC.MX
- Soporte para Linux y BSD
- Desarrollado en C

Documentación general: https://nicmx.github.io/FORT-validator/

Descargar el validador: https://github.com/NICMx/FORT-validator/releases

Herramientas útiles

- Mi LACNIC: https://milacnic.lacnic.net
- LACNIC Tools: https://tools.labs.lacnic.net/
 - Información de los repositorios de RPKI, consultas a RDAP, WHOIS y preguntas directas a servidores de nombres
- Inforedes: https://inforedes.labs.lacnic.net/
 - Información de recursos de numeración, ruteo, conectividad, DNS, RPKI
- Monitoreo FORT: https://monitor.fortproject.net/
 - · Cobertura de ROAs, validez de los updates BGP, anomalías en la información de ruteo, etc
- RIPE RIS: https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris
- BGP HE.NET https://bgp.he.net
- Cursos de Campus de LACNIC: https://campus.lacnic.net (BGP y RPKI)
- Documentación RPKI: https://rpki.readthedocs.io/en/latest/

Créditos de la Presentación

Fuente principal: Tutorial de Peering IXSY Meeting 2022

Alejandro Acosta – LACNIC Mauricio Oviedo - SOCIUM.CR

Material creado por LACNIC