Technical Specifications

- Maximum intermittent flow rate of: 2,460 litres per hour / 10.8 gallons per minute
- Maximum continuous flow rate of: 2,214 litres per hour / 9.75 gallons per minute
- Flow per revolution of: 0.41 litres / 0.11 gallon
- Pressure capability of: 10 Bar / 150 psi
- Maximum temperature: 80 Degrees Celsius / 176 Degrees Fahrenheit
- Inner hose diameter of: 25 mm / 1 inch

Features

- Pumps abrasive slurries, corrosive material, solids and gaseous liquids with ease
- Ideal for high viscosity or shear sensitive products
- Pumps can run-dry indefinitely without damage
- No check valves or seal water flush systems
- Fully reversible – pumps in either direction
- Minimal maintenance – the hose is the only wearing part
- Pump casings available in a choice of materials including stainless steel
- Suction lift capability up to 9.5 metres and self-priming
- Highly accurate
Technical Specifications

Operating Speeds: 0 to 100rpm

Product Temperature Range: -10 °C to +80 °C / 14 °F to 176 °F

Suction Lift: 9.5 metres / 30 feet lift

Hose Materials: Natural Rubber, Nitrile (Buna), EPDM and CSM

Connections available: DIN, ASA, JIS: mild steel galvanised

Hose Lubricant Required: 2.5 litres / 0.66 gallons

Sound level at 1m: < 70 dB(A) (pumping water at maximum continuous flow)

Optional Hose Failure Sensor: Capacitive DC sensor

Materials of Construction

Pump housing: Carbon steel or stainless steel

Rotor: Aluminium or carbon steel

Compression rollers: Acetal or steel

Front cover: Carbon steel

Support Frame: Carbon steel

Seals: Neoprene or Nitrile

The information contained in this document is believed to be correct at the time of publication, but AFX Mixing and Pumping Technologies Inc. accepts no liability for any error it contains, and reserves the right to alter specifications without prior notice. All values given in this document are values under controlled test conditions. Actual site flow rates achieved may differ due to changes in temperature, product viscosity, suction and discharge pressures and/or system configuration.