Ex 1.1 ### Relations Ex 1.1 Q1(i) A be the set of human beings. $R = \{(x,y): x \text{ and } y \text{ work at the same place}\}$ ### Reflexive: - . x and x works together - ∴ (x,x) ∈ R - ⇒ R is reflexive Symmetric: If x and y work $% \left(x\right) =0$ at the same place, which implies, y and x work at the same place - ∴ (y,x) ∈ R - ⇒ R is symmetric Transitive: If x and y work at the same place then x and y work at the same place and y and z work at the same place \Rightarrow $(x,z) \in R$ and Hence, ⇒ R is transitive Relations Ex 1.1 Q1(ii) .4 be the set of human beings. $R = \{(x,y): x \text{ and } y \text{ lives in the same locality} \}$ Reflexive: since x and x lives in the same locality - \Rightarrow $(x,x) \in R$ - ⇒ R is reflexive Symmetric: Let $\{x,y\} \in R$ - \Rightarrow x and y lives in the same locality - \Rightarrow y and x lives in the same locality - \Rightarrow $(y,x) \in R$ Transitive: Let $(x, y) \in R$ and $(y, z) \in R$ $$(x, y) \in R$$ - \Rightarrow x and y lives in the same locality - and $(y, z) \in R$ - \Rightarrow y and z lives in the same locality - \Rightarrow x and z lives in the same locality - \Rightarrow (x, z) \in R - ⇒ R is transitive ### Relations Ex 1.1 Q1(iii) $$R = \{(x,y) : x \text{ is wife of } y\}$$ Reflexive: since x can not be wife of x - ∴ (x,x) ∉ R - ⇒ R is not reflexive Symmetric: Let $(x,y) \in R$ - \Rightarrow x is wife of y - \Rightarrow y is husband of x - ⇒ (y,x) ∉ R - ⇒ R is not symmetric Transitive: Let $(x,y) \in R$ and $(y,z) \in R$ - \Rightarrow x is wife of y and y is husband of z which is a contradiction - \Rightarrow $(x,z) \notin R$ - ⇒ R is not transitive ### Relations Ex 1.1 Q1(iv) Million Stars Practice Anillion Stars Practice **Remove Watermark** ``` A be the set of human beings R = \{(x, y) : x \text{ is father of } y\} Reflexive: since x can not be father of x ∴ (x, x) ∉ R ⇒ R is not reflexive Symmetric: Let (x, y) \in R \Rightarrow x is father of y \Rightarrow y can not be father of x ⇒ (γ, x) ∉ R ⇒ R is not symmetric Transitive: Let (x, y) \in R and (y, z) \in R \Rightarrow x is father of y and y is father of z ⇒ x is grandfather of z ⇒ (x, z) ∉ R ⇒ R is not transitive Relations Ex 1.1 Q2 We have, A = \{a, b, c\} R_1 = \{(a, a)(a, b)(a, c)(b, b)(b, c)(c, a)(c, b)(c, c)\} R_1 is reflexive as (a,a) \in R_1, (b,b) \in R_1 \& (c,c) \in R_1 R_1 is not symmetric as (a,b) \in R_1 but (b,a) \in R_1 R_1 is not transitive as (b,c) \in R_1 and (c,a) \in R_1 but (b,a) \notin R_1 R_2 = \{(a, a)\} R_2 is not reflexive as (b,b) \notin R_2 R2 is symmetric and transitive. R_3 = \{(b,c)\} R_3 is not reflexive as (b,b) \notin R_3 R 3 is not symmetric R_3 is not transitive. R_4 = \{(a,b)(b,c)(c,a)\} R_4 is not reflexive on set A as (a, a) \notin R_4 R_4 is not symmetric as (a,b) \in R_4 but (b,a) \notin R_4 ``` R_4 is not transitive as $(a,b) \in R_4$ and $(b,c) \in R_4$ but $(a,c) \notin R_4$ ### Relations Ex 1.1 03 Million Stars Practice Williams Stars Practice $$R_1 = \left\{ \left(x,y\right), x,y \in Q_0, x = \frac{1}{y} \right\}$$ Reflexivity: Let, $x \in Q_0$ $$\Rightarrow \qquad x \neq \frac{1}{x}$$ $$\Rightarrow$$ $(x,x) \in R_1$ \therefore R_1 is not reflexive Symmetric: Let, $(x,y) \in R_1$ $$\Rightarrow \qquad x = \frac{1}{y}$$ $$\Rightarrow$$ $y = \frac{1}{x}$ $$\Rightarrow$$ $(y,x) \in R_1$ \therefore R_1 is symmetric symmetric Transitive: Let, $(x,y) \in R_1$ and $(y,z) \in R_1$ $$\Rightarrow \qquad x = \frac{1}{y} \text{ and } y = \frac{1}{z}$$ $$\Rightarrow$$ $X = Z$ $$\Rightarrow$$ $(x,z) \notin R_1$ A is not trasitive ### Relations Ex 1.1 Q3(ii) Reflexivity: Let, a < z $$\Rightarrow$$ $|a-a|=0 \le 5$ ∴ $$(a,a) \in R_2 \Rightarrow R_2$$ is reflexive Symmetricity:Let, $(a,b) \in R_2$ $$\Rightarrow |a-a| \le 5$$ $$\Rightarrow |b-a| \le 5$$ $$\Rightarrow$$ $|b,a| \in R_2$ \Rightarrow R_2 is symmetric Transitivity: Let, $(a,b) \in R_2$ and $(b,c) \in R_2$ $$\Rightarrow$$ $|a-b| \le 5$ and $|b-c| \le 5$ ⇒ R₂ is not transitive $$\begin{bmatrix} : & \text{if } a = 15, b = 11, c = 7 \\ & \Rightarrow & |15 - 11| \le 5 \text{ and } |11 - 7| \le 5 \\ & \text{but } |15 - 7| \ge 5 \end{bmatrix}$$ ## Relations Ex 1.1 Q4 Million Stars & Practice Williams And Stars & Practice (i) We have, $$A = \{1, 2, 3\}$$ and $R_1 = \{(1, 1)(1, 3)(3, 1)(2, 2)(2, 1)(3, 3)\}$: $$(1,1),(2,2)$$ and $(3,3) \in R_1$ R₁ is not Reflexive Now, ∴ $$(2,1) \in R_1$$ but $(1,2) \notin R_1$ R_1 is not Symmetric Again, $$(2,1) \in R_1 \text{ and } (1,3) \in R_1 \text{ but } (2,3) \notin R_1$$ R₁ is not Transitive (ii) $$R_2 = \{(2,2), (3,1), (1,3)\}$$ $$\therefore \qquad (1,1) \notin R_2$$ R_2 is not reflexive Now, $$(1,3) \in R_2$$ $$\Rightarrow$$ (3,1) $\in R_2$ R_2 is symmetric Now, $$(1,3) \in R_2$$ $\Rightarrow (3,1) \in R_2$ $\Rightarrow R_2 \text{ is symmetric}$ Again, $(3,1) \in R_2 \text{ and } (1,3) \in R_2 \text{ but } (3,3) \notin R_1$ $\therefore R_2 \text{ is not transitive}$ (iii) $R_3 = \{(1,3)(3,3)\}$ $\therefore (1,1) \notin R_3$ $\Rightarrow R_3 \text{ is not reflexive}$ R_2 is not transitive (iii) $$R_3 = \{(1,3)(3,3)\}$$ $$\therefore \qquad (1,1) \notin R_3$$ R3 is not reflexive Now, $$(1,3) \in R_3$$ but $(3,1) \in R_3$ R3 is not symmetric Again, It is clear that R3 is transitive Relations Ex 1.1 Q5. # Million Stars Practice Annihit Learns Practice (i) aRb ifa-b >0 Let R be the set of real numbers. Reflexivity: Let $a \in R$ - ⇒ a-a=0 - ⇒ (a, a) ∉ R - .. R is not reflexive Symmetric: Let aR b - ⇒ a-a>0 - ⇒ b-a<0</p> - ∴ b≰a - .: R is not Symmetric Transitive: Let aRb and bRc - \Rightarrow a-a> and b-c>0 - $\Rightarrow a-c>0$ - ⇒ aRc - A is Transitive ### Relations Ex 1.1 Q5(ii) We have, aRb iff 1+ab>0Let R be the set of real numbers Reflexive: Let a ∈ R - \Rightarrow 1+a² > 0 - ⇒ aRa - ⇒ R is reflexive Symmetric: Let aRb - \Rightarrow 1+ab > 0 - ⇒ 1+ba>0 - ⇒ bRa - ⇒ R is symmetric Transitive: Let aRb and bRc - \Rightarrow 1+ ab > 0 and 1+ bc > 0 - ⇒ 1+ac>0 - ⇒ R is not transitive Relations Ex 1.1 Q5(iii) We have, aRb if $|a| \le b$ Reflexivity: Let a ∈ R ⇒ |a|≰a $\begin{bmatrix} \therefore & |-2| = 2 > -2 \end{bmatrix}$ ⇒ R is not reflexive Symmetric: Let aRb \Rightarrow $|a| \le b$ ⇒ |b| ≤ « $\begin{bmatrix} \therefore & \text{Let } a = 4, \ b = 6 \\ |4| \le 8 \text{ but } |8| > 4 \end{bmatrix}$ ⇒ R is not symmetric Transitive: Let aRb and bRc \Rightarrow $|a| \le b$ and $|b| \le c$ ⇒ |a| ≤ |b| ≤ c ⇒ |a|≤c \Rightarrow aRc ⇒ R is transitive ### Relations Ex 1.1 Q6. Let $A = \{1, 2, 3, 4, 5, 6\}.$ A relation R is defined on set A as: $R = \{(a, b): b = a + 1\}$ Therefore, $R = \{(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)\}$ We find $(a, a) \notin R$, where $a \in A$. For instance, (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), $(6, 6) \notin R$ Therefore, R is not reflexive. It can be observed that $(1, 2) \in R$, but $(2, 1) \notin R$. Therefore, R is not symmetric. Now, (1, 2), $(2, 3) \in \mathbf{R}$ But, $(1, 3) \notin R$ Therefore, R is not transitive Hence, R is neither reflexive, nor symmetric, nor transitive. ### Relations Ex 1.1 Q7. $$R = \{(a, b): a \le b^3\}$$ It is observed that $$\left(\frac{1}{2}, \frac{1}{2}\right) \notin R$$ as $\frac{1}{2} > \left(\frac{1}{2}\right)^3 = \frac{1}{8}$. Therefore, R is not reflexive. Now, $(1, 2) \in R$ (as $1 < 2^3 = 8$) But, $(2, 1) \notin R$ (as $2^3 > 1$) Therefore, R is not symmetric. We have $$\left(3, \frac{3}{2}\right), \left(\frac{3}{2}, \frac{6}{5}\right) \in \mathbb{R} \text{ as } 3 < \left(\frac{3}{2}\right)^3 \text{ and } \frac{3}{2} < \left(\frac{6}{5}\right)^3.$$ But $$\left(3, \frac{6}{5}\right) \notin R \text{ as } 3 > \left(\frac{6}{5}\right)^3$$. Therefore, R is not transitive. Hence, R is neither reflexive, nor symmetric, nor transitive. ### Relations Ex 1.1 Q8 Willion Stars Practice William Paring Practice Wondershare Let A be a set. Then $I_A = \{(a, a) : a \in A\}$ is the identity relation on A. Hence, every identity relation on a set is reflexive by definition. Converse: Let $$A = \{(a,b,c)\}$$ be a set. Let $$R = \{(a,a)(b,b)(c,c)(a,b)\}$$ be a relation defined on A . Clearly R is reflexive on set A, but it is not identity relation on set A as $(a,b) \in R$ Hence, a reflexive relation need not be identity relation. ### Relations Ex 1.1 Q9 We have, $A = \{1, 2, 3, 4\}$ (i) $R = \{(1,1)(2,2)(3,3)(4,4)(1,2)\}$ is a relation on set A which is reflexive, transitive but not symmetric (ii) $R = \{(2,3),(3,2)\}$ is a relation on set A which is symmetric but neither reflexive nor transitive (iii) $R = \{(1,1)(2,2)(3,3)(4,4)(1,2)(2,1)\}$ is a relation on set A which is reflexive, symmetric and transitive ### Relations Ex 1.1 Q10 We have, $$R - \{(x,y); x,y \in N, 2x + y = 41\}$$ Then Domain of R is $x \in N$, such that $$2x + y = 41$$ $$\Rightarrow \qquad x = \frac{41 - y}{2}$$ Since $y \in N$, largest value that x can take corresponds to the smallest value that y can take. $$x = \{1, 2, 3, \dots, 20\}$$ Range of R is $y \in N$ such that $$2x + y = 41$$ $$y = 41 - 2x$$ Since, $$x = \{1, 2, 3, \dots, 20\}$$ $$y = \{39, 37, 35, 33, \dots, 7, 5, 3, 1\}$$ Since, $(2,2) \notin R$, R is not reflexive. Also, since $(1,39) \in R$ but $(39,1) \notin R$, R is not symmetric. Finally, since, $(15,11) \in R$ and $(11,19) \in R$ but $(15,19) \notin R$ R is not trasitive. ### Relations Ex 1.1 Q11 Million Stars Practice William Property of the China C No, it is not necessary that a relation which is symmetric and transitive is reflexive as well. For Example, Let $$A = \{a, b, c\}$$ be a set and $$R_2 = \{(a, a)\}$$ is a relation defined on A. Clearly, R_2 is symmetric and transitive but not reflexive. ### Relations Ex 1.1 Q12 It is given that an integer m is said to be relative to another integer n if m is a multiple of n. In other words $$R = \left\{ \left(m, n\right); \quad m = kn, k \in z \right\}$$ Reflexivity: Let, $m \in Z$ $$\Rightarrow$$ $m = 1.m$ $$\Rightarrow$$ $(m,m) \in R$ R is reflexive Transitive: Let $(a,b) \in R$ and $(b,c) \in R$ $$\Rightarrow$$ $a = kb$ and $b = k'c$ $$\Rightarrow$$ a = kk 'c $$[:: kk' \in Z]$$ $$\left[:: \quad I = kk' \in Z \right]$$ $$\Rightarrow$$ $(a,c) \in R$ R is transitive Symmetric: Let $(a,b) \in R$ $$\Rightarrow$$ $b = \frac{1}{\nu}$ out $$\frac{1}{k} \notin Z$$ if $k \in Z$ Actions Ex 1.1 Q13 We have, relation $R = " \ge "$ on the set R of all real numbers Reflexivity: Let $a \in R$ $\Rightarrow a \ge a$ $\Rightarrow " \ge " \text{ is reflev}$ Symmetric: Let $a,b \in R$ such that a≥b ⇒ b≥a "≥" not symmetric Transitivity: Let a,b,c∈ R anda≥b &b≥c a≥c "≥" is transitive Relations Ex 1.1 Q14 Million Stars Practice Anima, Learn & Practice a = a. ``` (i) Let A = \{4, 6, 8\}. ``` Define a relation R on A as: $$A = \{(4, 4), (6, 6), (8, 8), (4, 6), (6, 4), (6, 8), (8, 6)\}$$ Relation R is reflexive since for every $a \in A$, $(a, a) \in R$ i.e., (4, 4), (6, 6), (8, 8) $\in R$. Relation R is symmetric since $(a, b) \in R \Rightarrow (b, a) \in R$ for all $a, b \in R$. Relation R is not transitive since (4, 6), $(6, 8) \in R$, but $(4, 8) \notin R$. Hence, relation R is reflexive and symmetric but not transitive. ### (ii) Define a relation R in R as: $$R = \{a, b\}: a^3 \ge b^3\}$$ Clearly $$(a, a) \in R$$ as $a^3 = a^3$. Therefore, R is reflexive. Now, $(2, 1) \in R$ (as $2^3 \ge 1^3$) D.+ (1 0) - D (-- 11 - 01) But, $(1, 2) \notin R$ (as $1^3 < 2^3$) Therefore, R is not symmetric. Now, Let (a, b), $(b, c) \in R$. $$\Rightarrow a^3 \ge b^3 \text{ and } b^3 \ge c^3$$ $$\Rightarrow a^3 \ge c^3$$ $$\Rightarrow$$ (a, c) $\in \mathbb{R}$ Therefore, R is transitive. Hence, relation R is reflexive and transitive but not symmetric. Hence, relation R is transitive but not reflexive and symmetric. (iv)Let $$A = \{5, 6, 7\}$$. Define a relation R on A as $R = \{(5, 6), (6, 5)\}.$ Relation R is not reflexive as (5, 5), (6, 6), $(7, 7) \notin R$. Now, as $(5, 6) \in R$ and also $(6, 5) \in R$, R is symmetric. $$\Rightarrow$$ (5, 6), (6, 5) ∈ R, but (5, 5) ∉ R Therefore, R is not transitive. Hence, relation R is symmetric but not reflexive or transitive. ### (v) Consider a relation R in R defined as: $$R = \{(a, b): a < b\}$$ For any $a \in \mathbb{R}$, we have $(a, a) \notin \mathbb{R}$ since a cannot be strictly less than a itself. In fact, a = a. Therefore, R is not reflexive. Now, $(1, 2) \in R$ (as 1 < 2) But, 2 is not less than 1. Therefore, (2, 1) ∉ R Therefore, R is not symmetric. Now, let (a, b), $(b, c) \in R$. $\Rightarrow a < b \text{ and } b < c$ $\Rightarrow a < c$ \Rightarrow (a, c) \in R Therefore, R is transitive. Hence, relation R is transitive but not reflexive and symmetric. ### Relations Ex 1.1 Q15 We have, $$A = \{1, 2, 3\}$$ and $R\{(1, 2)(2, 3)\}$ Now, To make R reflexive, we will add (1,1)(2,2) and (3,3) to get $R' = \{(1,2)(2,3)(1,1,)(2,2)(3,3)\} \text{ is reflexive}$ Again to make R' symmetric we shall add (3,2) and (2,1) $R'' = \{(1,2)(2,3)(1,1)(2,2)(3,3)(3,2)(2,1)\}$ is reflexive and symmetric Now, To make R'' transitive we shall add (1,3) and (3,1) $$R''' = \{(1,2)(2,3)(1,1)(2,2)(3,3)(3,2)(2,1)(1,3)(3,1)\}$$:. R''' is reflexive, symmetric and transitive get Symmetric State of the Cilico ### Relations Ex 1.1 Q16 We have, $A = \{1, 2, 3\}$ and $R = \{(1, 2), (1, 1), (2, 3)\}$ To make R transitive we shall add (1,3) only. $R' = \{(1,2)(1,1)(2,3)(1,3)\}$ ### Relations Ex 1.1 Q17 A relation R in A is said to be reflexive if aRa for all a∈A R is said to be transitive if aRb and bRc \Rightarrow aRc for all $a, b, c \in A$. Hence for R to be reflexive (b, b) and (c, c) must be there in the set R. Also for R to be transitive (a, c) must be in R because (a, b) \in R and (b, c) \in R so (a, c) must be in R. So at least 3 ordered pairs must be added for R to be reflexive and transitive. ### Relations Ex 1.1 Q18 A relation R in A is said to be reflexive if aRa for all $a \in A$. R is symmetric if aRb \Rightarrow bRa, for all $a, b \in A$ and it is said to be transitive if aRb and bRc \Rightarrow aRc for all $a, b, c \in A$. • x > y, x, y ∈ N $(x, y) \in \{(2, 1), (3, 1), \dots, (3, 2), (4, 2), \dots \}$ This is not reflexive as (1, 1), (2, 2)....are absent. This is not symmetric as (2,1) is present but (1,2) is absent. This is transitive as $(3,2) \in R$ and $(2,1) \in R$ also $(3,1) \in R$, similarly this property satisfies all cases. = 10, x, y ∈ N $(x, y) \in \{(1, 9), (9, 1), (2, 8), (8, 2), (3, 7), (7, 3), (4, 6), (6, 4), (5, 5)\}$ This is not reflexive as (1, 1),(2, 2).... are absent. This only follows the condition of symmetric set as $(1, 9) \in R$ also $(9, 1) \in R$ similarly other cases are also satisfy the condition. This is not transitive because $\{(1, 9), (9, 1)\} \in R$ but (1, 1) is absent. • xy is square of an integer, x, y ∈ N (x, y) ∈ {(1, 1), (2, 2), (4, 1), (1, 4), (3, 3), (9, 1), (1, 9), (4, 4), (2, 8), (8, 2), (16, 1), (1, 16). This is reflexive as (1,1),(2,2)..... are present. This is also symmetric because if aRb \Rightarrow bRa, for all a,b \in N. This is transitive also because if aRb and bRc \Rightarrow aRc for all a, b, c \in N. • x + 4y = 10, x, y ∈ N $(x,y)\, \epsilon \, \{(6,1),(2,2)\}$ This is not reflexive as (1, 1), (2, 2)....are absent. This is not symmetric because (6,1) \in R but (1,6) is absent. This is not transitive as there are only two elements in the set having no element comm ## Ex 1.2 ``` Relations Ex 1.2 Q1 We have, R = \{(a,b): a-b \text{ is divisible by 3; a,b, } \in Z\} To prove: R is an equivalence relation Proff: Reflexivity: Let a∈ Z a - a = 0 a - a is divisible by 3 (a,a) \in R R is reflexive Symmetric: Let a,b \in Z and (a,b) \in R a - b is divisible by 3 a - b = 3p For some p \in Z b-a=3\times(-p) b-a\in R R is symmetric Transitive: Let a,b,c \in Z and such that (a,b) \in R and (b,c) \in R a-b=3p and b-c=3q For some p,q\in Z a - c = 3(p + q) a-c is divisible by 3 \Rightarrow (a,c) \in R R is transitive ``` Since, R is reflexive, symmetric and transitive, so R is equivalence relation. Relations Ex 1.2 Q2 Million Stars Practice William Realth ``` TWe have. R = \{(a,b): a-b \text{ is divisible by } 2; a,b, \in Z\} To prove: R is an equivalence relation Proff: Reflexivity: Let a ∈ Z a - a = 0 a-a is divisible by 2 (a,a) \in R R is reflexive Symmetric: Let a, b \in Z and (a,b) \in R a - b is divisible by 2 a-b=2p For some p \in Z b-a=2\times \left(-p\right) \Rightarrow b-a\in R R is symmetric Transitive: Let a,b,c \in Z and such that (a,b) \in R and (b,c) \in R a-b=2p and b-c=q For some p,q\in Z a - c = 2(p + q) a-c is divisible by 2 \Rightarrow (a,c) \in R R is transitive ``` ### Relations Ex 1.2 Q3 We have, $R = \{(a,b): (a-b) \text{ is divisible by 5} \text{ on Z.}$ We want to prove that ${\it R}$ is an equivalence relation on ${\it Z}$. Now, Reflexivity: Let a∈ Z - ⇒ a-a=0 - \Rightarrow a -a is divisible by 5. - ∴ $(a,a) \in R$, so R is reflexive Symmetric: Let $(a,b) \in R$ - \Rightarrow a-b=5P For some $P \in Z$ - $\Rightarrow b a = 5 \times (-P)$ - \Rightarrow b a is divisible by 5 - \Rightarrow (b,a) $\in R$, so R is symmetric Transitive: Let $(a,b) \in R$ and $(b,c) \in R$ - \Rightarrow a-b=5p and b-c=5q For some p,q \in Z - \Rightarrow a-c=5(p+q) - \Rightarrow a-c is divisible by 5. - ⇒ R is transitive. Thus, R being reflexive, symmetric and transitive on Z. Hence, R is equivalence relation on Z Million Stars Practice William Stars Practice ### Relations Ex 1.2 Q4 $R = \{(a,b): a-b \text{ is divisible by n}\} \text{ on } Z.$ Now. Reflexivity: Let $a \in Z$ - $a a = 0 \times n$ \Rightarrow - a a is divisible by n \Rightarrow - $(a,a) \in R$ - R is reflexive Symmetric: Let $(a,b) \in R$ - a-b=np For some $p \in Z$ - b-a=n(-p) - b a is divisible by n - $(b,a) \in R$ - R is symmetric \Rightarrow Transitive: Let $(a,b) \in R$ and $(b,c) \in R$ - a-b=xp and b-c=xq For some p,q \in Z - a-c=n(p+q) - a-c is divisible by n Thus, R being reflexive, symmetric and transitive on Z. Hence, R is an equivalence relation on Z Relations Chapter 1 Ex 1.2 Q5 # Million Stars & Practice Williams Anna China Chi **Remove Watermark** Wondershare We have, Z be set of integers and $R = \{(a,b): a,b \in \mathbb{Z} \text{ and } a+b \text{ is even } \}$ be a relation on \mathbb{Z} . We want to prove that $\ensuremath{\mathcal{R}}$ is an equivalence relation on $\ensuremath{\mathsf{Z}}.$ Now, Reflexivity: Let a ∈ Z $$\Rightarrow a+a \text{ is even}$$ $$\begin{vmatrix} \text{if a is even} \Rightarrow a+a \text{ is even} \\ \text{if a is odd} \Rightarrow a+a \text{ is even} \end{vmatrix}$$ - $(a,a) \in R$ - R is reflexive Symmetric: Let $a,b \in Z$ and $(a,b) \in R$ - a+b is even - \Rightarrow b + a is even - $(b,a) \in R$ - R is symmetric \Rightarrow Transitivity: Let $(a,b) \in R$ and $(b,c) \in R$ For some $a,b,c \in Z$ - a+b is even and b+c is even - [if b is odd, then a and c must be odd $\Rightarrow a+c$ is even, a+c is even If b is even, then a and c must be even $\Rightarrow a+c$ is even - $(a,c) \in R$ - R is transitive Hence, R is an equivalence relation on Z ``` Let Z be set of integers R = \{(m,n): m-n \text{ is divisible by } 13\} be a relation on Z. Now. Reflexivity: Let m \in Z m - m = 0 m-m is divisible by 13 (m,m) \in R R is reflexive Symmetric: Let m, n \in \mathbb{Z} and (m, n) \in \mathbb{R} m-n=13.p For some p \in Z n-m=13\times(-p) n-m is divisible by 13 \Rightarrow (n-m) \in R, R is symmetric Transitivity: Let (m,n) \in R and (n,q) \in R For some m,n,q \in Z m-n=13p and n-q=13s For some p,s \in Z m-q=13(p+s) \Rightarrow m-q is divisible by 13 (m,q) \in R R is transitive Hence, R is an equivalence relation on Z Relations Ex 1.2 Q7 (x, y) R (u, v) \Leftrightarrow xv = yu Reflexive TPT \therefore xy = yx (x, y) R (x, y) ``` ``` TPT Symmetric Let (x, y) R (u, v) TPT (u, v) R (x, y) Given xy = yu \Rightarrow yu = xv \Rightarrow uy = vx (u, v) R (x, y) Let (x, y) R (u, v) and (u, v) R (p, q)(i) Transitive TPT (x, y) R (p, q) Million Stars Practice Williams Practice TPT xq = yp from (1) xv = yu \& uq = vp xvuq = yuvp xq = yp R is transitive ... since R is reflexive symmetric & transitive all means it is an equivalence relation.] ``` ``` We have, A = \{x \in z: 0 \le x \le 12\} be a set and ``` $R = \{(a,b): a = b\}$ be a relation on A Now, Reflexivity: Let a ∈ A - ⇒ a=a - \Rightarrow $(a,a) \in R$ - \Rightarrow R is reflexive Symmetric: Let $a,b \in A$ and $(a,b) \in R$ - \Rightarrow a = b - \Rightarrow b = a - \Rightarrow $(b,a) \in R$ - ⇒ R is symmetric Transitive: Let a, b & c ∈ A and Let $(a,b) \in R$ and $(b,c) \in R$ - \Rightarrow a = b and b = c - \Rightarrow a = c - ⇒ (a,c) ∈ R - ⇒ R is transitive Since ${\cal R}$ is being relfexive, symmetric and transitive, so ${\cal R}$ is an equivalence relation. Also, we need to find the set of all elements related to 1. Since the relation is given by, $R=\{(a,b):a=b\}$, and 1 is an element of A, $R=\{(1,1):1=1\}$ Thus, the set of all elements related to 1 is 1 ``` (i) We have, L is the set of lines. ``` $$R = \{(L_1, L_2): L_1 \text{ is parallel to } L_2\}$$ be a relation on L Now. Reflexivity: Let $L_1 \in L$ Since a line is always parallel to itself. $$\therefore \left(L_1, L_2\right) \in R$$ R is reflexive Symmetric: Let $L_1, L_2 \in L$ and $(L_1, L_2) \in R$ - L_1 is parallel to L_2 - L_2 is parallel to L_1 - $(L_1, L_2) \in R$ - R is symmetric \Rightarrow Transitive: Let L_1, L_2 and $L_3 \in L$ such that $(L_1, L_2) \in R$ and $(L_2, L_3) \in R$ - L_1 is parallel to L_2 and L_2 is parallel to L_3 - L_1 is parallel to L_3 - $(L_1, L_3) \in R$ - \Rightarrow R is transitive Since, R is reflexive, symmetric and transitive, so R is an equivalence relation. (ii) The set of lines parallel to the line y = 2x + 4 is y = 2x + c For all $c \in R$ Where R is the set of real numbers. ### Relations Ex 1.2 Q10 $R = \{(P_1, P_2): P_1 \text{ and } P2 \text{ have same the number of sides}\}$ R is reflexive since $(P_{1}, P_{1}) \in R$ as the same polygon has the same number of sides with itself. Let $(P_1, P_2) \in R$. - ⇒ P1 and P2 have the same number of sides. - ⇒ P₂ and P₁ have the same number of sides. - \Rightarrow (P₂ P₁) \in R - ∴R is symmetric. Now, Let (P_1, P_2) , $(P_2, P3) \in R$. - \Rightarrow P₁ and P₂ have the same number of sides. Also, P₂ and P3 have the same number of Million Stars Practice Williams Stars Practice - ⇒ P₁ and P3 have the same number of sides. - \Rightarrow (P₁, P3) \in R - ∴R is transitive. Hence, R is an equivalence relation. The elements in Airelated to the right-angled triangle (T) with sides 3, 4, and 5 are those polygons which have 3 sides (since T is a polygon with 3 sides). Hence, the set of all elements in A related to triangle T is the set of all triangles. Million Stars Practice Let A be set of points on plane. Let $R = \{(P,Q): OP = OQ\}$ be a relation on A where O is the origin. To prove ${\cal R}$ is an equivalence relation, we need to show that ${\cal R}$ is reflexive, symmetric and transitive on ${\cal A}.$ Now, Reflexivity: Let $p \in A$ Since $$OP = OP \Rightarrow (P, P) \in R$$ ⇒ R is reflexive Symmetric: Let $(P,Q) \in R$ for $P,Q \in A$ Then OP = OQ \Rightarrow OQ = OP \Rightarrow $(Q,P) \in R$ ⇒ R is symmetric Transitive: Let $(P,Q) \in R$ and $(Q,S) \in R$ \Rightarrow OP = OQ and OQ = OS \Rightarrow OP = OS \Rightarrow $(P,S) \in R$ ⇒ R is transitive Thus, R is an equivalence relation on A ### Relations Ex 1.2 Q12 Given $A=\{1,2,3,4,5,6,7\}$ and $R=\{(a,b):both a and b are either odd or even number\}$ Therefore, $R = \{(1,1),(1,3),(1,5),(1,6),(3,3),(3,5),(3,7),(5,5),(5,7),(7,7),(7,5),(7,3),(5,3),(6,1),(5,1),(3,1),\\(2,2),(2,4),(2,6),(4,4),(4,6),(6,6),(6,4),(6,2),(4,2)\}$ Form the relation R it is seen that R is symmetric, reflecive and transitive also. Therefore R is an equivalent relation From the relation R it is seen that $\{1,3,5,7\}$ are related with each other only and $\{2,4,6\}$ are related with each other ### Relations Ex 1.2 Q13 $$S = \{(a,b): a^2 + b^2 = 1\}$$ Now, Reflexivity: Let $a = \frac{1}{2} \in \mathbb{R}$ Then, $a^2 + a^2 = \frac{1}{4} + \frac{1}{4} = \frac{1}{2} \neq 1$ ⇒ (a,a) ∉ S ⇒ S is not reflexive Hence, S in not an equivalenve relation on R We have, $\,\,$ Z be set of integers and $\,$ Z $_{0}$ be the set of non-zero integers. $R = \{(a,b)(c,d): ad = bc\}$ be a relation on $z \times z_0$ Reflexivity: $(a,b) \in Z \times Z_0$ - ab = ba - $\{(a,b),(a,b)\}\in R$ - R is reflexive Symmetric: Let $((a,b),(c,d)) \in R$ - ad = bc - cd = da - $\{(c,d),(a,b)\}\in R$ - R is symmetric Transitive: Let $(a,b),(c,d) \in R$ and $(c,d),(e,f) \in R$ - ad = bc and cf = de - $\frac{a}{b} = \frac{c}{d}$ and $\frac{c}{d} = \frac{\theta}{f}$ - af = be We have, $\,\,$ Z be set of integers and $\,$ Z $_{0}$ be the set of non-zero integers. $$R = \{(a,b)(c,d): ad = bc\}$$ be a relation on Z and Z_0 . Now, Reflexivity: $(a,b) \in Z \times Z_0$ - ab = ba - $\{(a,b),(a,b)\}\in R$ - R is reflexive Symmetric: Let $((a,b),(c,d)) \in R$ - ad = bc - cd = da \Rightarrow - $\{(c,d),(a,b)\}\in R$ - R is symmetric \Rightarrow Transitive: Let (a,b), $(c,d) \in R$ and (c,d), $(e,f) \in R$ - ad = bc and cf = de - $\frac{a}{b} = \frac{c}{d}$ and $\frac{c}{d} = \frac{e}{f}$ - af = be \Rightarrow - $\big(a,b\big)\big(e,f\big)\in R$ - R is transitive Hence, R is an equivalence relation on $Z \times Z_0$ Relations Ex 1.2 O15. Million Stars Practice Anillion Stars Practice $\ensuremath{\mathcal{R}}$ and $\ensuremath{\mathcal{S}}$ are two symmetric relations on set $\ensuremath{\mathcal{A}}$ (i) To prove: $R \cap S$ is symmetric Let $(a,b) \in R \cap S$ - \Rightarrow (a,b) $\in R$ and (a,b) $\in S$ - \Rightarrow $(b,a) \in R$ and $(b,a) \in S$ $[\because R \text{ and } S \text{ are symmetric}]$ - \Rightarrow $(b,a) \in R \land S$ - \Rightarrow $R \land S$ is symmetric To prove: $R \cup S$ is symmetric. Let $(a,b) \in R \cup S$ - \Rightarrow $(a,b) \in R$ or $(a,b) \in S$ - \Rightarrow $(b,a) \in R$ or $(b,a) \in S$ $[\because R \text{ and } S \text{ are symmetric}]$ - \Rightarrow $(b,a) \in R \cup S$ - \Rightarrow $R \cup S$ is symmetric - (ii) ${\cal R}$ and ${\cal S}$ are two relations on ${\cal A}$ such that ${\cal R}$ is reflexive. To prove: $R \cup S$ is reflexive Suppose $R \cup S$ is not reflexive. This means that there is an $a \in R \cup S$ such that $(a, a) \notin R \cup S$ Since $a \in R \cup S$, ∴ a∈Rora∈S If $a \in R$, then $(a, a) \in R$ $[\because R \text{ is reflexive}]$ \Rightarrow $(a,a) \in R \cup S$ Hence, $R \cup S$ is reflexive ### Relations Ex 1.2 Q16. We will prove this by means of an example. Let $A = \{a, b, c\}$ be a set and $R = \{(a, a)(b, b)(c, c)(a, b)(b, a)\}$ and $S = \{(a, a)(b, b)(c, c)(b, c)(c, b)\}$ are two relations on A Clearly R and S are transitive relation on A Now, $R \cup S = \{(a,a)(b,b)(c,c)(a,b)(b,a)(b,c)(c,b)\}$ Here, $(a,b) \in R \cup S$ and $(b,c) \in R \cup S$ but $(a,c) \notin R \cup S$ $R \cup S$ is not transitive # Million Stars Practice Williams Practice