

Wondershare

Polynomials

If ' α ' is a variable, 'n' is a positive integer and $a_0, a_1, a_2, \ldots, a_n$ are constants, then a polynomial in variable α is $f(\alpha) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$

f(x) =
$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
Terms

Degree of a Polynomial: The power of the highest degree term

Zero of a Polynomial: A real number α is a zero of a polynomial f(x), iff $f(\alpha) = 0$.

Finding the zero of a polynomial f(x) means solving the polynomial equation f(x) = 0

Polynomial Classification

Degree	Name
0	Constant
1	Linear
2	Quadratic
3	Cubic
4	Quartic
5	Quintic

Number of Terms	Name
1	Monomial
2	Binomial
3	Trinomial
4	Polynomial of 4 Terms

Exercise 2A

Question 1:

- (i) It is a polynomial, Degree = 5.
- (ii) It is polynomial, Degree = 3.
- (iii) It is polynomial, Degree = 2.
- (iv) It is not a polynomial.
- (v) It is not a polynomial.
- (vi) It is polynomial, Degree = 108.
- (vii) It is not a polynomial.
- (viii) It is a polynomial, Degree = 2.
- (ix) It is not a polynomial.
- (x) It is a polynomial, Degree = 0.
- (xi) It is a polynomial, Degree = 0.
- (xii) It is a polynomial, Degree = 2.

Question 2:

The degree of a polynomial in one variable is the highest power of the variable.

- (i) Degree of $2x \sqrt{5}$ is 1.
- (ii) Degree of $3 x + x^2 6x^3$ is 3.
- (iii) Degree of 9 is 0.
- (iv) Degree of $8x^4 36x + 5x^7$ is 7.
- (v) Degree of $x^9 x^5 + 3x^{10} + 8$ is 10.

Million Stars & Practice
Williams Aring

(vi) Degree of $2 - 3x^2$ is 2.

Question 3:

- (i) Coefficient of x^3 in $2x + x^2 5x^3 + x^4$ is -5
- (ii) Coefficient of x in $\sqrt{3}$ $2\sqrt{2}$ x + 4x² is $2\sqrt{2}$
- (iii) Coefficient of x² in $\frac{\pi}{3}$ x² + 7x 3 is $\frac{\pi}{3}$
- (iv) Coefficient of x^2 in 3x 5 is 0.

Question 4:

- (i) $x^{27} 36$
- (ii) y^{16}
- (iii) $5x^3 8x + 7$

Question 5:

- (i) It is a quadratic polynomial.
- (ii) It is a cubic polynomial.
- (iii) It is a quadratic polynomial.
- (iv) It is a linear polynomial.
- (v) It is a linear polynomial.
- (vi) It is a cubic polynomial.

Exercise 2B

Question 1:

$$p(x) = 5 - 4x + 2x^2$$

(i)
$$p(0) = 5 - 4(0) + 2(0)^2 = 5$$

(ii)
$$p(3) = 5 - 4(3) + 2(3)^2$$

$$= 5 - 12 + 18$$

$$= 23 - 12 = 11$$

(iii)
$$p(-2) = 5 - 4(-2) + 2(-2)^2$$

$$= 5 + 8 + 8 = 21$$

Question 2:

$$p(y) = 4 + 3y - y^2 + 5y^3$$

(i)
$$p(0) = 4 + 3(0) - 0^2 + 5(0)^3$$

$$=4+0-0+0=4$$

(ii)
$$p(2) = 4 + 3(2) - 2^2 + 5(2)^3$$

$$=4+6-4+40$$

$$= 10 - 4 + 40 = 46$$

(iii)
$$p(-1) = 4 + 3(-1) - (-1)^2 + 5(-1)^3$$

$$=4-3-1-5=-5$$

Question 3:

$$f(t) = 4t^2 - 3t + 6$$

(i)
$$f(0) = 4(0)^2 - 3(0) + 6$$

$$= 0 - 0 + 6 = 6$$

(ii)
$$f(4) = 4(4)^2 - 3(4) + 6$$

$$= 64 - 12 + 6 = 58$$

(iii)
$$f(-5) = 4(-5)^2 - 3(-5) + 6$$

= 100 + 15 + 6 = 121

Question 4:

(i)
$$p(x) = 0$$

$$\Rightarrow x - 5 = 0$$

$$\Rightarrow x = 5$$

 \Rightarrow 5 is the zero of the polynomial p(x).

(ii)
$$q(x) = 0$$

$$\Rightarrow$$
 x + 4 = 0

 \Rightarrow -4 is the zero of the polynomial q(x).

(iii)
$$p(t) = 0$$

$$\Rightarrow$$
 2t - 3 = 0

$$\Rightarrow$$
 2t = 3

⇒
$$t = \frac{3}{2}$$

 \Rightarrow t = $\overline{2}$ is the zero of the polynomial p(t).

$$(iv) f(x) = 0$$

$$\Rightarrow$$
 3x + 1= 0

 \Rightarrow x = $\frac{-1}{3}$ is the zero of the polynomial f(x).

$$(v) g(x) = 0$$

$$\Rightarrow$$
 5 - 4x = 0

$$\Rightarrow$$
 -4x = -5

$$\rightarrow v = \frac{9}{4}$$

$$\Rightarrow x = \overline{4}$$

 \Rightarrow x = $\overline{4}$ is the zero of the polynomial g(x).

$$(vi) h(x) = 0$$

$$\Rightarrow$$
 6x - 1 = 0

$$\rightarrow v = \frac{1}{6}$$

$$\Rightarrow$$
 x = $\frac{1}{6}$ is the zero of the polynomial h(x).

$$(vii) p(x) = 0$$

$$\Rightarrow$$
 ax + b = 0

 \Rightarrow x = a is the zero of the polynomial p(x)

$$(viii) q(x) = 0$$

$$\Rightarrow$$
 4x = 0

Million Stars & Practice
Williams And China Chin

 $\Rightarrow x = 0$

 \Rightarrow 0 is the zero of the polynomial q(x).

(ix) p(x) = 0

⇒ ax = 0

 $\Rightarrow x = 0$

 \Rightarrow 0 is the zero of the polynomial p(x).

Question 5:

(i) p(x) = x - 4

Then, p(4) = 4 - 4 = 0

 \Rightarrow 4 is a zero of the polynomial p(x).

(ii)
$$p(x) = x - 3$$

Then, p(-3) = -3 - 3 = -6

 \Rightarrow -3 is not a zero of the polynomial p(x).

(iii)
$$p(y) = 2y + 1$$

$$p\left(-\frac{1}{2}\right) = 2\left(\frac{-1}{2}\right) + 1 = 0$$

Then,

 \Rightarrow $\boxed{2}$ is a zero of the polynomial p(y).

(iv)
$$p(x) = 2 - 5x$$

$$p\left(\frac{2}{5}\right) = 2 - 5\left(\frac{2}{5}\right) = 2 - 2 = 0$$

 $\Rightarrow \frac{2}{5}$ is a zero of the polynomial p(x).

$$(v) p(x) = (x - 1) (x - 2)$$

Then,
$$p(1) = (1 - 1)(1 - 2) = 0 - 1 = 0$$

 \Rightarrow 1 is a zero of the polynomial p(x).

Also,
$$p(2) = (2 - 1)(2 - 2) = 10 = 0$$

 \Rightarrow 2 is a zero of the polynomial p(x).

Hence, 1 and 2 are the zeroes of the polynomial p(x).

(vi)
$$p(x) = x^2 - 3x$$
.

Then,
$$p(0) = 0^2 - 3(0) = 0$$

$$p(3) = (3^2) - 3(3) = 9 - 9 = 0$$

 \Rightarrow 0 and 3 are the zeroes of the polynomial p(x).

(vii)
$$p(x) = x^2 + x - 6$$

Then,
$$p(2) = 2^2 + 2 - 6$$

$$=4+2-6$$

$$= 6 - 6 = 0$$

 \Rightarrow 2 is a zero of the polynomial p(x).

Also,
$$p(-3) = (-3)^2 - 3 - 6$$

$$= 9 - 3 - 6 = 0$$

 \Rightarrow -3 is a zero of the polynomial p(x).

Hence, 2 and -3 are the zeroes of the polynomial p(x).

Exercise 2C

Millionsins edulaciice

Let p(x) be a polynomial of degree greater than or equal to one and 'a' be a real number. If p(x) is divided by (x - a), then the remainder is equal to p(a). p(x) = (x - a) q(x) + r(x)

Proof:

Divide p(x) by (x - a), and let q(x) be the quotient and r(x) be the remainder, where r(x) = 0 or degree of r(x) < degree of (x - a). But degree of (x - a) is 1,

$$\therefore$$
 degree of $r(x) = 0$

Let
$$r(x) = r$$
, then $p(x) = (x - a) q(x) + r$

Substituting
$$x = a$$
, we have

$$p(a) = (a - a) q(a) + r$$

$$\Rightarrow$$
 p(a) = 0 × q(a) + r

$$\Rightarrow$$
 p(a) = 0 + r

$$\Rightarrow$$
 p(a) = r

Thus remainder is p(a) when p(x) is divided $= 8 \times \frac{1}{4} + 2 - 2$

by
$$(x - a)$$

To divide:
$$(8x^2 + 4x - 2) \div (4x - 2)$$

 $2x + 2$
 $4x - 2$
 $8x^2 + 4x + 2$
 $8x^2 - 4x$
 $8x - 2$
 $8x - 4$
 2

Using the remainder theorem p(x) = (x - a) q(x) + r(x), $p(x) = 8x^2 + 4x - 2$ and $x = \frac{2}{4} = \frac{1}{2}$ $p(\frac{1}{2}) = 8 \times (\frac{1}{2})^2 + 4 \times \frac{1}{2} - 2$

Question 1:

$$f(x) = x^3 - 6x^2 + 9x + 3$$

Now.
$$x - 1 = 0 \Rightarrow x = 1$$

By the remainder theorem, we know that when f(x) is divided by (x - 1) the remainder is f(1).

Now,
$$f(1) = 1^3 - 6 \times 1^2 + 9 \times 1 + 3$$

$$= 1 - 6 + 9 + 3$$

∴ The required remainder is 7.

Question 2:

$$f(x) = (2x^3 - 5x^2 + 9x - 8)$$

Now.
$$x - 3 = 0 \Rightarrow x = 3$$

By the remainder theorem, we know that when f(x) is divided by (x - 3) the remainder is

Now,
$$f(3) = 2 \times 3^3 - 5 \times 3^2 + 9 \times 3 - 8$$

$$= 54 - 45 + 27 - 8$$

$$= 81 - 53 = 28$$

∴ The required remainder is 28.

Question 3:

$$f(x) = (3x^4 - 6x^2 - 8x + 2)$$

Now,
$$x - 2 = 0 \Rightarrow x = 2$$

By the remainder theorem, we know that when f(x) is divided by (x - 2) the remainder is

Now,
$$f(2) = 3 \times 2^4 - 6 \times 2^2 - 8 \times 2 + 2$$

$$= 50 - 40 = 10$$

∴ The required remainder is 10.

Question 4:

$$f(x) = x^3 - 7x^2 + 6x + 4$$

Now,
$$x - 6 = 0 \Rightarrow x = 6$$

By the remainder theorem, we know that when f(x) is divide by (x

Now,
$$f(6) = 6^3 - 7 \times 6^2 + 6 \times 6 + 4$$

6) the remainder is

$$= 256 - 252 = 4$$

∴ The required remainder is 4.

Question 5:

$$f(x) = (x^3 - 6x^2 + 13x + 60)$$

Now,
$$x + 2 = 0 \implies x = -2$$

By the remainder the theorem, we know that when f(x) is divide by (x + 2) the remainder is f(-2).

Now,
$$f(-2) = (-2)^3 - 6(-2)^2 + 13(-2) + 60$$

$$= -58 + 60 = 2$$

∴ The required remainder is 2.

Question 6:

$$f(x) = (2x^4 + 6x^3 + 2x^2 + x - 8)$$

Now,
$$x + 3 = 0 \Rightarrow x = -3$$

By the remainder the theorem, we know that when f(x) is divide by (x + 3) the remainder

$$f(-3) = 2(-3)^4 + 6(-3)^3 + 2(-3)^2 - 3 - 8$$

$$= 162 - 162 + 18 - 3 - 8$$

∴ The required remainder is 7.

Question 7:

$$f(x) = (4x^3 - 12x^2 + 11x - 5)$$

Now,
$$2x - 1 = 0 \implies x = \frac{1}{2}$$

By the remainder theorem, we know that when f(x) is divided by (2x - 1) the remainder $f\left(\frac{1}{2}\right)$

Now,
$$f\left(\frac{1}{2}\right) = 4\left(\frac{1}{2}\right)^3 - 12\left(\frac{1}{2}\right)^2 + 11\left(\frac{1}{2}\right) - 5$$

$$= 4 \times \frac{1}{8} - 12 \times \frac{1}{4} + \frac{11}{2} - 5$$

$$= \frac{1}{2} - 3 + \frac{11}{2} - 5$$

$$= \frac{1 - 6 + 11 - 10}{2}$$

$$= \frac{-16 + 12}{2}$$

$$f(x) = (81x^4 + 54x^3 - 9x^2 - 3x + 2)$$

Now,
$$3x + 2 = 0 \implies x = \frac{-2}{3}$$

Now, $3x + 2 = 0 \Rightarrow x = \frac{-2}{3}$ By the remainder theorem, we know that when f(x) is divided by (3x + 2) the remainder is $f\left(\frac{-2}{3}\right)$ Now, $f\left(\frac{-2}{3}\right) = 81\left(\frac{-2}{3}\right)^4 + 54\left(\frac{-2}{3}\right)^3 - 9\left(\frac{-2}{3}\right)^2 - 3\left(\frac{-2}{3}\right) + 2$ $= 81 \times \frac{16}{81} + 54\left(\frac{-8}{27}\right) - 9\left(\frac{4}{9}\right) + 2 + 2$ = 16 - 16 - 4 + 4 = 0

$$f\left(\frac{-2}{3}\right)$$

Now,
$$f\left(\frac{-2}{3}\right) = 81\left(\frac{-2}{3}\right)^4 + 54\left(\frac{-2}{3}\right)^3 - 9\left(\frac{-2}{3}\right)^2 - 3\left(\frac{-2}{3}\right) + 3\left(\frac{-2}{3}\right)^4 + 54\left(\frac{-2}{3}\right)^3 - 9\left(\frac{-2}{3}\right)^2 - 3\left(\frac{-2}{3}\right) + 3\left(\frac{-2}{3}\right)^4 + 54\left(\frac{-2}{3}\right)^3 - 9\left(\frac{-2}{3}\right)^2 - 3\left(\frac{-2}{3}\right) + 3\left(\frac{-2}{3}\right)^3 - 9\left(\frac{-2}{3}\right)^3 - 9\left(\frac{-2}{$$

$$= 81 \times \frac{16}{81} + 54 \left(\frac{-8}{27}\right) - 9 \left(\frac{4}{9}\right) + 2 + 2$$
$$= 16 - 16 - 4 + 4 = 0$$

∴ The required remainder is 0.

Question 9:

$$f(x) = (x^3 - ax^2 + 2x - a)$$

Now,
$$x - a = 0 x \Rightarrow = a$$

By the remainder theorem, we know that when f(x) is divided by (x - a) the remainder is

Now,
$$f(a) = a^3 - a a^2 + 2 a - a$$

$$= a^3 - a^3 + 2a - a$$

= a

: The required remainder is a.

Question 10:

Let
$$f(x) = ax^3 + 3x^2 - 3$$

and
$$g(x) = 2x^3 - 5x + a$$

$$\therefore$$
 f(4) = a × 4³ + 3 × 4² - 3

$$= 64a + 48 - 3$$

$$= 64a + 45$$

$$g(4) = 2 \times 4^3 - 5 \times 4 + a$$

$$= 128 - 20 + a$$

$$= 108 + a$$

It is given that:

$$f(4) = g(4)$$

$$\Rightarrow$$
 64a + 45 = 108 + a

$$\Rightarrow$$
 a = $\frac{63}{63}$ = 1

∴ The value of a is 1.

Question 11:

: From the given information.

$$f(1) = 1^4 - 2(1)^3 + 3(1)^2 - a(1) + b = 5$$

$$\Rightarrow$$
 1 - 2 + 3 - a + b = 5

$$\Rightarrow$$
 2 - a + b = 5(i)

And.

$$f(-1) = (-1)^4 - 2(-1)^3 + 3(-1)^2 - a(-1) + b = 19$$

$$\Rightarrow$$
 1 + 2 + 3 + a + b = 19

$$\Rightarrow$$
 6 + a + b = 19(ii)

Adding (i) and (ii), we get

$$\Rightarrow$$
 8 + 2b = 24

$$\Rightarrow$$
 2b = 24 - 8 = 16

$$\Rightarrow$$
 b = $\frac{16}{2}$

Substituting the value of b = 8 in (i), we get

$$2 - a + 8 = 5$$

$$\Rightarrow$$
 -a = -10 + 5

$$\therefore$$
 a = 5 and b = 8

$$f(x) = x^4 - 2x^3 + 3x^2 - ax + b$$

$$= x^4 - 2x^3 + 3x^2 - 5x + 8$$

 $f(2) = (2)^4 - 2(2)^3 + 3(2)^2 - 5(2) + 8$

= 16 - 16 + 12 - 10 + 8

= 20 - 10 = 10

∴ The required remainder is 10.

Exercise 2D

Factor Theorem

Let p(x) be a polynomial of degree greater than or equal to one and 'a' be a real number such that p(a) = 0, then (x - a) is a factor of p(x). i.e. (x - a) is a factor of p(x), if p(a) = 0

Proof:

p(x) is a polynomial of degree greater than or equal to one and 'a' is a real number such that p(a) = 0. To prove : (x - a) is a factor of p(x) Divide p(x) by (x - a), and let q(x) be the quotient.

By Remainder theorem, p(x) when divided by (x - a) gives remainder p(a).

$$\therefore p(x) = (x - a) q(x) + p(a)$$

$$\Rightarrow$$
 p(x) = (x - a) q(x) [:: p(a) = 0]

$$\Rightarrow$$
 (x - a) is a factor of p(x)

Find if (x + 1) and (2x - 4) are factors of $2x^3 - 9x^2 + x + 12 = p(x)$

Using Factor theorem:

(i)
$$p(-1) = 2 (-1)^3 - 9 (-1)^2 + 1(-1) + 12$$

= -2 - 9 - 1 + 12 = 0

(ii)
$$p(\frac{4}{2}) = 2 (2)^3 - 9 (2)^2 + 1(2) + 12$$

= 16 - 36 + 2 + 12 = -6

Since (i) = 0,
$$(x + 1)$$
 is a factor and (ii) \neq 0, $(2x - 4)$ is not a factor of $2x^3 - 9x^2 + x + 12$.

Question 1:

$$f(x) = (x^3 - 8)$$

By the Factor Theorem, (x - 2) will be a factor of f(x) if f(2) = 0.

Here,
$$f(2) = (2)^3 - 8$$

$$= 8 - 8 = 0$$

 \therefore (x - 2) is a factor of (x³ - 8).

Question 2:

$$f(x) = (2x^3 + 7x^2 - 24x - 45)$$

By the Factor Theorem, (x - 3) will be a factor of f(x) if f(3) = 0.

Here,
$$f(3) = 2 \times 3^3 + 7 \times 3^2 - 24 \times 3 - 45$$

(x - 3) is a factor of $(2x^3 + 7x^2 - 24x - 45)$.

Question 3:

$$f(x) = (2x^4 + 9x^3 + 6x^2 - 11x - 6)$$

By the Factor Theorem, (x - 1) will be a factor of f(x) if f(1) = 0.

Here,
$$f(1) = 2 \times 1^4 + 9 \times 1^3 + 6 \times 1^2 - 11 \times 1 - 6$$

$$= 2 + 9 + 6 - 11 - 6$$

$$= 17 - 17 = 0$$

 \therefore (x - 1) is factor of $(2x^4 + 9x^3 + 6x^2 - 11x - 6)$.

Question 4:

$$f(x) = (x^4 - x^2 - 12)$$

By the Factor Theorem, (x + 2) will be a factor of f(x) if f(-2) = 0.

Here,
$$f(-2) = (-2)^4 - (-2)^2 - 12$$

$$= 16 - 16 = 0$$

: (x + 2) is a factor of $(x^4 - x^2 - 12)$.

Question 5:

$$f(x) = 2x^3 + 9x^2 - 11x - 30$$

By the Factor Theorem, (x + 5) will be a factor of f(x) if f(-5) = 0.

Here,
$$f(-5) = 2(-5)^3 + 9(-5)^2 - 11(-5) - 30$$

$$= -250 + 225 + 55 - 30$$

$$= -280 + 280 = 0$$

$$\therefore$$
 (x + 5) is a factor of $(2x^3 + 9x^2 - 11x - 30)$.

Question 6:

$$f(x) = (2x^4 + x^3 - 8x^2 - x + 6)$$

By the Factor Theorem, (x - a) will be a factor of f(x) if f(a) = 0.

Here,
$$2x - 3 = 0 \implies x = \frac{3}{2}$$

$$f\left(\frac{3}{2}\right) = 2\left(\frac{3}{2}\right)^4 + \left(\frac{3}{2}\right)^3 - 8\left(\frac{3}{2}\right)^2 - \left(\frac{3}{2}\right) + 6$$

$$= 2 \times \frac{81}{16} + \frac{27}{8} - 8 \times \frac{9}{4} - \frac{3}{2} + 6$$
$$= \frac{81}{8} + \frac{27}{8} - 18 - \frac{3}{2} + 6$$

$$= \frac{81 + 27 - 144 - 12 + 48}{8}$$
$$= \frac{156 - 156}{8} = 0$$

 \therefore (2x - 3) is a factor of (2x⁴ + x³ - 8x² - x + 6).

Question 7:

$$f(x) = (7x^2 - 4\sqrt{2}x - 6 = 0)$$

By the Factor Theorem, (x - a) will be a factor of f(x) if f(a) = 0.

Here.
$$f(\sqrt{2}) = 7(\sqrt{2})^2 - 4\sqrt{2} \times \sqrt{2} - 6$$

$$= 14 - 14 = 0$$

$$\therefore (x - \sqrt{2}) \text{ is a factor of } (7 - 4\sqrt{2} \times - 6 = 0).$$

Question 8:

$$f(x) = (4\sqrt{2}x^2 + 5x + \sqrt{2} = 0)$$

By the Factor Theorem, (x - a) will be a factor of f(x) if f(a) = 0.

$$f(-\sqrt{2}) = 2\sqrt{2}(-\sqrt{2})^2 + 5(-\sqrt{2}) + \sqrt{2}$$
= $2\sqrt{2} \times 2 - 5\sqrt{2} + \sqrt{2}$
= $4\sqrt{2} - 5\sqrt{2} + \sqrt{2}$
= $4\sqrt{2} - 5\sqrt{2} + \sqrt{2}$
= $4\sqrt{2} - 5\sqrt{2} + \sqrt{2}$
Here, = $5\sqrt{2} - 5\sqrt{2} = 0$.

∴ $(x + \sqrt{2})$ is a factor of $(4\sqrt{2}x^2 + 5x + \sqrt{2} = 0)$.

Question 9:
$$f(x) = (2x^3 + 9x^2 + x + k)$$

$$x - 1 = 0 \Rightarrow x = 1$$
∴ $f(1) = 2 \times 1^3 + 9 \times 1^2 + 1 + k$
= $2 + 9 + 1 + k$
= $12 + k$
Given that $(x - 1)$ is a factor of $f(x)$.

By the Factor Theorem, $(x - a)$ will be a factor of $f(x)$ if $f(a) = 0$ and therefore $f(1) = 0$?

⇒ $f(1) = 12 + k = 0$
⇒ $k = -12$.

$$f(y) = (2y^3 + 9y^2 + y + k)$$

$$x - 1 = 0 \Rightarrow x = 1$$

$$f(1) = 2 \times 1^3 + 9 \times 1^2 + 1 + 1$$

$$= 2 + 9 + 1 + 1$$

$$\Rightarrow$$
 f(1) = 12 + k = 0

$$\Rightarrow$$
 k = -12

Remove Watermark

Question 10:

$$f(x) = (2x^3 - 3x^2 - 18x + a)$$

$$x - 4 = 0 \Rightarrow x = 4$$

$$\therefore$$
 f(4) = 2(4)³ - 3(4)² - 18 × 4 + a

$$= 128 - 120 + a$$

$$= 8 + a$$

Given that (x - 4) is a factor of f(x).

By the Factor Theorem, (x - a) will be a factor of f(x) if f(a) = 0 and therefore f(4) = 0.

$$\Rightarrow$$
 f(4) = 8 + a = 0

Question 11:

$$f(x) = x^4 - x^3 - 11x^2 - x + a$$

$$x + 3 = 0 \Rightarrow x = -3$$

$$f(-3) = (-3)^4 - (-3)^3 - 11(-3)^2 - (-3) + a$$

$$= 81 + 27 - 11 \times 9 + 3 + a$$

$$= 81 + 27 - 99 + 3 + a$$

$$= 111 - 99 + a$$

$$= 12 + a$$

Given that f(x) is divisible by (x + 3), that is (x+3) is a factor of f(x).

By the Factor Theorem, (x - a) will be a factor of f(x) if f(a) = 0 and therefore f(-3) = 0.

$$\Rightarrow$$
 f(-3) = 12 + a = 0

Question 12:

$$f(x) = (2x^3 + ax^2 + 11x + a + 3)$$

$$2x - 1 = 0 \Rightarrow x = \frac{1}{2}$$

Given that f(x) is exactly divisible by (2x - 1), that is (2x - 1) is a factor of f(x).

By the Factor Theorem, (x - a) will be a factor of f(x) if f(a) = 0

and therefore
$$f\left(\frac{1}{2}\right)_{\neq 0}$$
.

Therefore, we have

$$f\left(\frac{1}{2}\right) = 2\left(\frac{1}{2}\right)^3 + a\left(\frac{1}{2}\right)^2 + 11 \times \frac{1}{2} + a + 3 = 0$$

$$\Rightarrow 2 \times \frac{1}{4} + a \times \frac{1}{4} + \frac{11}{4} + a + 3 = 0$$

$$\Rightarrow 2 \times \frac{1}{8} + a \times \frac{1}{4} + \frac{11}{2} + a + 3 = 0$$

$$\Rightarrow \frac{1}{4} + \frac{1}{4}a + \frac{11}{2} + a + 3 = 0$$

$$\Rightarrow \frac{1}{4} + a + 22 + 4a + 12 = 0$$

$$\Rightarrow \frac{1 + a + 22 + 4a + 12}{4} = 0$$

$$\Rightarrow \frac{5a + 35}{a} = 0$$

$$\Rightarrow 5a + 35 = 0$$

$$\Rightarrow a = \frac{-35}{5} = -7$$

 \therefore The value of a = -7.

Question 13:

Let $f(x) = (x^3 - 10x^2 + ax + b)$, then by factor theorem

(x-1) and (x-2) will be factors of f(x) if f(1) = 0 and f(2) = 0.

$$f(1) = 1^3 - 10 - 1^2 + a - 1 + b = 0$$

$$\Rightarrow$$
 1 - 10 + a + b = 0

$$\Rightarrow$$
 a + b = 9(i)

And
$$f(2) = 2^3 - 10 = 2^2 + a = 2 + b = 0$$

$$\Rightarrow$$
 8 - 40 + 2a + b = 0

$$\Rightarrow$$
 2a + b = 32(ii)

Subtracting (i) from (ii), we get

$$a = 23$$

Substituting the value of a = 23 in (i), we get

$$\Rightarrow$$
 23 + b = 9

$$\Rightarrow$$
 b = 9 - 23

$$\Rightarrow$$
 b = -14

∴
$$a = 23$$
 and $b = -14$.

Question 14:

Let
$$f(x) = (x^4 + ax^3 - 7x^2 - 8x + b)$$

Now,
$$x + 2 = 0$$
 $x = -2$ and $x + 3 = 0$ $x = -3$

By factor theorem, (x + 2) and (x + 3) will be factors of f(x) if f(-2) = 0 and f(-3) = 0

$$f(-2) = (-2)^4 + a(-2)^3 - 7(-2)^2 - 8(-2) + b = 0$$

$$\Rightarrow$$
 16 - 8a - 28 + 16 + b = 0

$$\Rightarrow$$
 -8a + b = -4

$$\Rightarrow$$
 8a - b = 4(i)

And,
$$f(-3) = (-3)^4 + a(-3)^3 - 7(-3)^2 - 8(-3) + b = 0$$

$$\Rightarrow$$
 81 - 27a - 63 + 24 + b = 0

$$\Rightarrow$$
 -27a + b = -42

Subtracting (i) from (ii), we get,

So,
$$a = 2$$

Substituting the value of a = 2 in (i), we get

$$8(2) - b = 4$$

$$\Rightarrow$$
 16 - b = 4

$$\therefore$$
 a = 2 and b = 12.

Question 15:

Let
$$f(x) = x^3 - 3x^2 - 13x + 15$$

Now.
$$x^2 + 2x - 3 = x^2 + 3x - x - 3$$

$$= x(x + 3) - 1(x + 3)$$

$$= (x + 3) (x - 1)$$

Millionsting Practice Thus, f(x) will be exactly divisible by $x^2 + 2x - 3 = (x + 3)(x - 1)$ if (x + 3) and (x - 1) are both factors of f(x), so by factor theorem, we should have f(-3) = 0 and f(1) = 0.

Now,
$$f(-3) = (-3)^3 - 3(-3)^2 - 13(-3) + 15$$

$$= -27 - 3 \times 9 + 39 + 15$$

$$= -27 - 27 + 39 + 15$$

$$= -54 + 54 = 0$$

And,
$$f(1) = 1^3 - 3 \times 1^2 - 13 \times 1 + 15$$

$$= 1 - 3 - 13 + 15$$

$$:: f(-3) = 0 \text{ and } f(1) = 0$$

So,
$$x^2 + 2x - 3$$
 divides $f(x)$ exactly.

Question 16:

Let
$$f(x) = (x^3 + ax^2 + bx + 6)$$

Now, by remainder theorem, f(x) when divided by (x - 3) will leave a remainder as f(3).

So,
$$f(3) = 3^3 + a \times 3^2 + b \times 3 + 6 = 3$$

$$\Rightarrow$$
 27 + 9a + 3b + 6 = 3

$$\Rightarrow$$
 9a + 3b + 33 = 3

$$\Rightarrow$$
 9a + 3b = 3 - 33

$$\Rightarrow$$
 9a + 3b = -30

$$\Rightarrow$$
 3a + b = -10(i)

Given that (x - 2) is a factor of f(x).

By the Factor Theorem, (x - a) will be a factor of f(x) if f(a) = 0 and therefore f(2) = 0.

$$f(2) = 2^3 + a \times 2^2 + b \times 2 + 6 = 0$$

$$\Rightarrow$$
 8 + 4a+ 2b + 6 = 0

$$\Rightarrow$$
 2a + b = -7(ii)

Subtracting (ii) from (i), we get,

Substituting the value of a = -3 in (i), we get,

$$\Rightarrow$$
 3(-3) + b = -10

$$\Rightarrow$$
 -9 + b = -10

$$\Rightarrow$$
 b = -10 + 9

$$\Rightarrow$$
 b = -1

$$\therefore$$
 a = -3 and b = -1.

Exercise 2E

1.
$$(a + b)^2 = a^2 + 2ab + b^2 = (-a - b)^2$$

2.
$$(a-b)^2 = a^2 - 2ab + b^2$$

3.
$$(a-b)(a+b) = a^2 - b^2$$

4.
$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$$

5.
$$(a+b-c)^2 = a^2 + b^2 + c^2 + 2ab - 2bc - 2ca$$

6.
$$(a-b+c)^2 = a^2+b^2+c^2-2ab-2bc+2ca$$

7.
$$(-a+b+c)^2 = a^2+b^2+c^2-2ab+2bc-2ca$$

8.
$$(a-b-c)^2 = a^2 + b^2 + c^2 - 2ab + 2bc - 2ca$$

9.
$$(a+b)^3 = a^3 + b^3 + 3ab (a+b)$$

10.
$$(a-b)^3 = a^3 - b^3 - 3ab(a-b)$$

11.
$$a^3 + b^3 = (a + b)^3 - 3ab(a + b)$$

= $(a + b) (a^2 - ab + b^2)$

12.
$$a^3 - b^3 = (a - b)^3 + 3ab(a - b)$$

= $(a - b) (a^2 + ab + b^2)$

$$-(a + b) (a^{2} - ab + b^{2})$$
12. $a^{3} - b^{3} = (a - b)^{3} + 3ab(a - b)$

$$= (a - b) (a^{2} + ab + b^{2})$$
13. $a^{3} + b^{3} + c^{3} - 3abc = (a + b + c) (a^{2} + b^{2} + c^{2} - ab - bc - ca)$
if $a + b + c = 0$ then $a^{3} + b^{3} + c^{3} = 3abc$

Question 1:
$$2x^{2} + 12xy = 3x (3x + 4y)$$
Question 2:
$$18x^{2}y - 24xyz = 6xy (3x - 4z)$$
Question 3:
$$27a^{3}b^{3} - 45a^{4}b^{2} = 9a^{3}b^{2} (3b - 5a)$$
Question 4:

if
$$a + b + c = 0$$
 then $a^3 + b^3 + c^3 = 3abc$

Question 1:

$$9x^2 + 12xy = 3x(3x + 4y)$$

Question 2:

$$18x^2y - 24xyz = 6xy(3x - 4z)$$

Question 3:

$$27a^3b^3 - 45a^4b^2 = 9a^3b^2 (3b - 5a)$$

Question 4:

$$2a(x + y) - 3b(x + y) = (x + y)(2a - 3b)$$

Question 5:

$$2x (p2 + q2) + 4y (p2 + q2)$$
= (2x + 4y) (p² + q²)
= 2(x + 2y) (p² + q²)

Question 6:

$$x (a - 5) + y (5 - a)$$

= $x (a - 5) + y (-1) (a - 5)$
= $(x - y) (a - 5)$

Question 7:

$$4 (a + b) - 6 (a + b)^{2}$$

$$= (a + b) [4 - 6 (a + b)]$$

$$= 2 (a + b) (2 - 3a - 3b)$$

$$= 2 (a + b) (2 - 3a - 3b)$$

Question 8:

$$8 (3a - 2b)^{2} - 10 (3a - 2b)$$

$$= (3a - 2b) [8(3a - 2b) - 10]$$

$$= (3a - 2b) 2[4 (3a - 2b) - 5]$$

$$= 2 (3a - 2b) (12 a - 8b - 5)$$

Question 9:

$$x (x + y)^{3} - 3x^{2}y (x + y)$$

$$= x (x + y) [(x + y)^{2} - 3xy]$$

$$= x (x + y) (x^{2} + y^{2} + 2xy - 3xy)$$

$$= x (x + y) (x^{2} + y^{2} - xy)$$

Question 10:

$$x^3 + 2x^2 + 5x + 10$$

= $x^2 (x + 2) + 5 (x + 2)$
= $(x^2 + 5) (x + 2)$

Question 11:

$$x^{2} + xy - 2xz - 2yz$$

= $x (x + y) - 2z (x + y)$
= $(x + y) (x - 2z)$

Question 12:

$$a^{3}b - a^{2}b + 5ab - 5b$$

$$= a^{2}b (a - 1) + 5b (a - 1)$$

$$= (a - 1) (a^{2}b + 5b)$$

$$= (a - 1) b (a^{2} + 5)$$

$$= b (a - 1) (a^{2} + 5)$$

Question 13:

$$8 - 4a - 2a^{3} + a^{4}$$

$$= 4(2 - a) - a^{3} (2 - a)$$

$$= (2 - a) (4 - a^{3})$$

Mondershare

Question 14:

$$x^{3} - 2x^{2}y + 3xy^{2} - 6y^{3}$$
$$= x^{2}(x - 2y) + 3y^{2}(x - 2y)$$
$$= (x - 2y)(x^{2} + 3y^{2})$$

Question 15:

$$px + pq - 5q - 5x$$

= $p(x + q) - 5(q + x)$
= $(x + q)(p - 5)$

Question 16:

$$x^{2} - xy + y - x$$

= $x(x - y) - 1(x - y)$
= $(x - y)(x - 1)$

Question 17:

$$(3a-1)^2-6a+2$$

= $(3a-1)^2-2(3a-1)$
= $(3a-1)[(3a-1)-2]$
= $(3a-1)(3a-3)$
= $3(3a-1)(a-1)$

Question 18:

$$(2x-3)^2 - 8x + 12$$
= $(2x-3)^2 - 4(2x-3)$
= $(2x-3)(2x-3-4)$
= $(2x-3)(2x-7)$

Question 19:

$$a^{3} + a - 3a^{2} - 3$$

= $a(a^{2} + 1) - 3(a^{2} + 1)$
= $(a - 3)(a^{2} + 1)$

Question 20:

$$3ax - 6ay - 8by + 4bx$$

= $3a(x - 2y) + 4b(x - 2y)$
= $(x - 2y)(3a + 4b)$

Question 21:

$$abx^{2} + a^{2}x + b^{2}x + ab$$

= $ax (bx + a) + b (bx + a)$
= $(bx + a) (ax + b)$

Question 22:

$$x^{3} - x^{2} + ax + x - a - 1$$

$$= x^{3} - x^{2} + ax - a + x - 1$$

$$= x^{2} (x - 1) + a (x - 1) + 1 (x - 1)$$

$$= (x - 1) (x^{2} + a + 1)$$

Question 23:

$$2x + 4y - 8xy - 1$$

= $2x - 1 - 8xy + 4y$

Question 24:

$$ab (x^{2} + y^{2}) - xy (a^{2} + b^{2})$$

$$= abx^{2} + aby^{2} - a^{2}xy - b^{2}xy$$

$$= abx^{2} - a^{2}xy + aby^{2} - b^{2}xy$$

$$= ax (bx - ay) + by(ay - bx)$$

$$= (bx - ay) (ax - by)$$

Question 25:

$$a^{2} + ab (b + 1) + b^{3}$$

$$= a^{2} + ab^{2} + ab + b^{3}$$

$$= a^{2} + ab + ab^{2} + b^{3}$$

$$= a (a + b) + b^{2} (a + b)$$

$$= (a + b) (a + b^{2})$$

Question 26:

$$a^{3} + ab (1 - 2a) - 2b^{2}$$

= $a^{3} + ab - 2a^{2}b - 2b^{2}$
= $a (a^{2} + b) - 2b (a^{2} + b)$
= $(a^{2} + b) (a - 2b)$

Question 27:

$$2a^{2} + bc - 2ab - ac$$

= $2a^{2} - 2ab - ac + bc$
= $2a (a - b) - c (a - b)$
= $(a - b) (2a - c)$

Question 28:

$$= a^{3} + ab - 2a^{2}b - 2b^{2}$$

$$= a(a^{2} + b) - 2b(a^{2} + b)$$

$$= (a^{2} + b)(a - 2b)$$
Question 27:
$$2a^{2} + bc - 2ab - ac$$

$$= 2a^{2} - 2ab - ac + bc$$

$$= 2a(a - b) - c(a - b)$$

$$= (a - b)(2a - c)$$
Question 28:
$$(ax + by)^{2} + (bx - ay)^{2}$$

$$= a^{2}x^{2} + b^{2}y^{2} + 2abxy + b^{2}x^{2} + a^{2}y^{2} - 2abxy$$

$$= a^{2}x^{2} + b^{2}y^{2} + b^{2}x^{2} + a^{2}y^{2}$$

$$= a^{2}x^{2} + b^{2}x^{2} + b^{2}y^{2} + a^{2}y^{2}$$

$$= a^{2}x^{2} + b^{2}x^{2} + b^{2}y^{2} + a^{2}y^{2}$$

$$= x^{2}(a^{2} + b^{2}) + y^{2}(a^{2} + b^{2})$$

$$= (a^{2} + b^{2})(x^{2} + y^{2})$$

Question 29:

$$a (a + b - c) - bc$$

= $a^2 + ab - ac - bc$
= $a(a + b) - c (a + b)$
= $(a - c) (a + b)$

Question 30:

$$a(a - 2b - c) + 2bc$$

= $a^2 - 2ab - ac + 2bc$
= $a(a - 2b) - c(a - 2b)$
= $(a - 2b)(a - c)$

Question 31:

$$a^{2}x^{2} + (ax^{2} + 1)x + a$$

= $a^{2}x^{2} + ax^{3} + x + a$

Remove Watermark

Million Stars & Practice
Williams And Stars

Question 32:

$$ab (x^{2} + 1) + x (a^{2} + b^{2})$$

$$= abx^{2} + ab + a^{2}x + b^{2}x$$

$$= abx^{2} + a^{2}x + ab + b^{2}x$$

$$= ax (bx + a) + b (bx + a)$$

$$= (bx + a) (ax + b)$$

Question 33:

$$x^{2}$$
 - $(a + b) x + ab$
= x^{2} - ax - bx + ab
= $x (x - a)$ - $b(x - a)$
= $(x - a) (x - b)$

Question 34:

$$x^{2} + \frac{1}{x^{2}} - 2 - 3x + \frac{3}{x}$$

$$= \left(x - \frac{1}{x}\right)^{2} - 3\left(x - \frac{1}{x}\right)$$

$$= \left(x - \frac{1}{x}\right)\left(x - \frac{1}{x} - 3\right)$$

Exercise 2F

Question 1:

$$25x^{2} - 64y^{2}$$

$$= (5x)^{2} - (8y)^{2}$$

$$= (5x + 8y) (5x - 8y)$$

$$\left[\because a^{2} - b^{2} = (a + b) (a - b) \right]$$

Question 2:

$$100 - 9x^{2}$$

$$= (10)^{2} - (3x)^{2}$$

$$= (10 + 3x) (10 - 3x)$$

$$\left[\because a^{2} - b^{2} = (a + b) (a - b) \right]$$

Question 3:

$$5x^{2} - 7y^{2}$$

$$= (\sqrt{5}x)^{2} - (\sqrt{7}y)^{2}$$

$$= (\sqrt{5}x + \sqrt{7}y)(\sqrt{5}x - \sqrt{7}y)$$

$$[\because a^{2} - b^{2} = (a + b)(a - b)]$$

Question 4:

$$(3x + 5y)^{2} - 4z^{2}$$

$$= (3x + 5y)^{2} - (2z)^{2}$$

$$= (3x + 5y + 2z) (3x + 5y - 2z)$$

$$\left[\because a^{2} - b^{2} = (a + b) (a - b)\right]$$

Question 5:

$$150 - 6x^2$$

Millionstars edulactice
Anillionstars

=
$$6(25 - x^2)$$

= $6(5^2 - x^2)$
= $6(5 + x)(5 - x)$
 $\left[\because a^2 - b^2 = (a + b)(a - b)\right]$

Question 6:

$$20x^{2}-45$$

$$= 5(4x^{2}-9)$$

$$= 5[(2x)^{2}-(3)^{2}]$$

$$= 5(2x+3)(2x-3)$$

$$\left[\because a^{2}-b^{2}=(a+b)(a-b)\right]$$

Question 7:

$$3x^{3} - 48x$$

$$= 3x (x^{2} - 16)$$

$$= 3x [(x)^{2} - (4)^{2}]$$

$$= 3x (x + 4) (x - 4)$$

$$[\because a^{2} - b^{2} = (a + b) (a - b)]$$

Question 8:

$$2-50x^2$$

 $= 2(1-25x^2)$
 $= 2[(1)^2-(5x)^2]$
 $= 2(1+5x)(1-5x)$
[: $a^2 - b^2 = (a+b)(a-b)$]
Question 9:
 $27a^2-48b^2$
 $= 3(9a^2-16b^2)$
 $= 3[(3a)^2-(4b)^2]$
 $= 3(3a+4b)(3a-4b)$

$$= 3 (9a^{2} - 16b^{2})$$

$$= 3 [(3a)^{2} - (4b)^{2}]$$

$$= 3(3a + 4b) (3a - 4b)$$

$$[\because a^{2} - b^{2} = (a + b) (a - b)]$$

Question 10:

$$x - 64x^{3}$$
= x (1 - 64x²)
= x[(1)² - (8x)²]
= x (1 + 8x) (1 - 8x)
$$\left[\because a^{2} - b^{2} = (a + b) (a - b) \right]$$

Question 11:

$$8ab^{2} - 18a^{3}$$

$$= 2a (4b^{2} - 9a^{2})$$

$$= 2a [(2b)^{2} - (3a)^{2}]$$

$$= 2a (2b + 3a) (2b - 3a)$$

$$\left[\because a^{2} - b^{2} = (a + b) (a - b) \right]$$

Question 12:

$$3a^{3}b - 243ab^{3}$$

$$= 3ab (a^{2} - 81b^{2})$$

$$= 3ab [(a)^{2} - (9b)^{2}]$$

$$= 3ab (a + 9b) (a - 9b)$$

$$[: a^{2} - b^{2} = (a + b) (a - b)]$$

Question 13:

$$(a+b)^3 - a - b$$
= $(a+b)^3 - (a+b)$
= $(a+b)[(a+b)^2 - 1^2]$
= $(a+b)(a+b+1)(a+b-1)$
 $\left[\because a^2 - b^2 = (a+b)(a-b)\right]$

Question 14:

$$108a^{2} - 3(b - c)^{2}$$

$$= 3[(36a^{2} - (b - c)^{2}]$$

$$= 3[(6a)^{2} - (b - c)^{2}]$$

$$= 3(6a + b - c)(6a - b + c)$$

$$[\because a^{2} - b^{2} = (a + b)(a - b)]$$

Question 15:

$$x^{3} - 5x^{2} - x + 5$$

$$= x^{2}(x - 5) - 1(x - 5)$$

$$= (x - 5)(x^{2} - 1)$$

$$= (x - 5)(x + 1)(x - 1)$$

$$[\because a^{2} - b^{2} = (a + b)(a - b)]$$
Question 16:

$$a^{2} + 2ab + b^{2} - 9c^{2}$$

$$= (a + b)^{2} - (3c)^{2}$$

$$= (a + b + 3c)(a + b - 3c)$$

$$[\because a^{2} - b^{2} = (a + b)(a - b)]$$

$$a^{2} + 2ab + b^{2} - 9c^{2}$$

$$= (a + b)^{2} - (3c)^{2}$$

$$= (a + b + 3c) (a + b - 3c)$$

$$\left[\because a^{2} - b^{2} = (a + b) (a - b) \right]$$

Question 17:

$$9 - a^{2} + 2ab - b^{2}$$

$$= 9 - (a^{2} - 2ab + b^{2})$$

$$= 3^{2} - (a - b)^{2}$$

$$= (3 + a - b)(3 - a + b)$$

$$\left[\because a^{2} - b^{2} = (a + b)(a - b) \right]$$

Question 18:

$$a^{2} - 4ac + 4c^{2} - b^{2}$$

$$= a^{2} - 4ac + 4c^{2} - b^{2}$$

$$= a^{2} - 2a 2c + (2c)^{2} - b^{2}$$

$$= (a - 2c)^{2} - b^{2}$$

$$= (a - 2c + b) (a - 2c - b)$$

$$\left[\because a^{2} - b^{2} = (a + b) (a - b)\right]$$

Million Stars & Practice
Williams And Chicago Practice

Question 19:

$$9a^{2} + 3a - 8b - 64b^{2}$$

$$= 9a^{2} - 64b^{2} + 3a - 8b$$

$$= (3a)^{2} - (8b)^{2} + (3a - 8b)$$

$$= (3a + 8b) (3a - 8b) + (3a - 8b)$$

$$\left[\because a^{2} - b^{2} = (a + b) (a - b) \right]$$

$$= (3a - 8b) (3a + 8b + 1)$$

Question 20:

$$x^{2} - y^{2} + 6y - 9$$

$$= x^{2} - (y^{2} - 6y + 9)$$

$$= x^{2} - (y^{2} - 2y + 3 + 3^{2})$$

$$= x^{2} - (y - 3)^{2}$$

$$= [x + (y - 3)] [x - (y - 3)]$$

$$[\because a^{2} - b^{2} = (a + b) (a - b)]$$

$$= (x + y - 3) (x - y + 3)$$

Question 21:

$$4x^{2} - 9y^{2} - 2x - 3y$$

$$= (2x)^{2} - (3y)^{2} - (2x + 3y)$$

$$= (2x + 3y) (2x - 3y) - (2x + 3y)$$

$$\left[\because a^{2} - b^{2} = (a + b) (a - b) \right]$$

$$= (2x + 3y) (2x - 3y - 1)$$

Question 22:

$$4x^{2} - 9y^{2} - 2x - 3y$$

$$= (2x)^{2} - (3y)^{2} - (2x + 3y)$$

$$= (2x + 3y) (2x - 3y) - (2x + 3y)$$

$$[\because a^{2} - b^{2} = (a + b) (a - b)]$$

$$= (2x + 3y) (2x - 3y - 1)$$

Question 22:
$$x^{4} - 1$$

$$= (x^{2})^{2} - 1^{2}$$

$$= (x^{2} + 1) (x^{2} - 1) [\because a^{2} - b^{2} = (a + b) (a - b)]$$

$$= (x^{2} + 1) (x + 1) (x - 1)$$

$$[\because a^{2} - b^{2} = (a + b) (a - b)]$$

Question 23:

$$a - b - a^{2} + b^{2}$$

$$= (a - b) - (a^{2} - b^{2})$$

$$= (a - b) - (a - b) (a + b)$$

$$\left[\because a^{2} - b^{2} = (a + b) (a - b) \right]$$

$$= (a - b) (1 - a - b)$$

Question 24:

$$x^{4}-625$$

$$= (x^{2})^{2}-(25)^{2}$$

$$= (x^{2}+25)(x^{2}-25)$$

$$\left[\because a^{2}-b^{2}=(a+b)(a-b)\right]$$

$$= (x^{2}+25)(x^{2}-5^{2})$$

$$= (x^{2}+25)(x+5)(x-5)$$

$$\left[\because a^{2}-b^{2}=(a+b)(a-b)\right]$$

Millions and Practice

Exercise 2G

Mondershare

Question 1:

$$x^{2} + 11x + 30$$

$$= x^{2} + 6x + 5x + 30$$

$$= x(x+6) + 5(x+6)$$

$$= (x+6)(x+5).$$

Question 2:

$$x^{2} + 18x + 32$$

$$= x^{2} + 16x + 2x + 32$$

$$= x(x + 16) + 2(x + 16)$$

$$= (x + 16)(x + 2).$$

Question 3:

$$x^{2} + 7x - 18$$

$$= x^{2} + 9x - 2x - 18$$

$$= x(x + 9) - 2(x + 9)$$

$$= (x + 9)(x - 2).$$

Question 4:

$$x^{2} + 5x - 6$$

$$= x^{2} + 6x - x - 6$$

$$= x(x + 6) - 1(x + 6)$$

$$= (x + 6)(x - 1).$$

Question 5:

$$y^{2} - 4y + 3$$

$$= y^{2} - 3y - y + 3$$

$$= y (y - 3) - 1 (y - 3)$$

$$= (y - 3) (y - 1).$$

Question 6:

$$x^{2}-21x+108$$

$$=x^{2}-12x-9x+108$$

$$=x(x-12)-9(x-12)$$

$$=(x-12)(x-9).$$

Question 7:

$$x^{2} - 11x - 80$$

$$= x^{2} - 16x + 5x - 80$$

$$= x(x - 16) + 5(x - 16)$$

$$= (x - 16)(x + 5).$$

Question 8:

$$x^{2} - x - 156$$

= $x^{2} - 13x + 12x - 156$
= $x(x - 13) + 12(x - 13)$
= $(x - 13)(x + 12)$.

Question 9:

$$z^2 - 32z - 105$$

$$= z^2 - 35z + 3z - 105$$

$$= z (z - 35) + 3 (z - 35)$$

$$= (z - 35) (z + 3)$$

Question 10:

$$40 + 3x - x^2$$

$$=40+8x-5x-x^2$$

$$= 8 (5 + x) - x (5 + x)$$

$$= (5 + x) (8 - x).$$

Question 11:

$$6 - x - x^2$$

$$= 6 + 2x - 3x - x^2$$

$$= 2(3 + x) - x (3 + x)$$

$$= (3 + x) (2 - x).$$

Question 12:

$$7x^2 + 49x + 84$$

$$= 7(x^2 + 7x + 12)$$

$$= 7 [x^2 + 4x + 3x + 12]$$

$$= 7 [x (x + 4) + 3 (x + 4)]$$

$$= 7 (x + 4) (x + 3).$$

Question 13:

$$m^2 + 17mn - 84n^2$$

$$= m^2 + 21mn - 4mn - 84n^2$$

$$= m (m + 21n) - 4n (m + 21n)$$

$$= (m + 21n) (m - 4n).$$

Question 14:

$$5x^2 + 16x + 3$$

$$= 5x^2 + 15x + x + 3$$

$$= 5x(x + 3) + 1(x + 3)$$

$$= (5x + 1)(x + 3).$$

Question 15:

$$6x^2 + 17x + 12$$

$$= 6x^2 + 9x + 8x + 12$$

$$= 3x (2x + 3) + 4(2x + 3)$$

$$= (2x + 3) (3x + 4).$$

Question 16:

$$9x^2 + 18x + 8$$

$$= 9x^2 + 12x + 6x + 8$$

$$= 3x (3x+4) + 2 (3x+4)$$

$$= (3x + 4) (3x + 2).$$

Question 17:

$$14x^2 + 9x + 1$$

$$= 14x^2 + 7x + 2x + 1$$

$$= 7x(2x + 1) + (2x + 1)$$

$$= (7x + 1) (2x + 1).$$

Mondershare

Question 18:

$$2x^2 + 3x - 90$$

$$= 2x^2 - 12x + 15x - 90$$

$$= 2x(x-6) + 15(x-6)$$

$$= (x - 6) (2x + 15).$$

Question 19:

$$2x^2 + 11x - 21$$

$$=2x^2+14x-3x-21$$

$$= 2x(x+7) - 3(x+7)$$

$$= (x + 7) (2x - 3).$$

Question 20:

$$3x^2 - 14x + 8$$

$$=3x^2 - 12x - 2x + 8$$

$$= 3x(x-4) - 2(x-4)$$

$$= (x - 4) (3x - 2).$$

Question 21:

$$18x^2 + 3x - 10$$

$$= 18x^2 - 12x + 15x - 10$$

$$= 6x(3x-2) + 5(3x-2)$$

$$= (6x + 5) (3x - 2).$$

Question 22:

$$15x^2 + 2x - 8$$

$$= 15x^2 - 10x + 12x - 8$$

$$= 5x(3x-2) + 4(3x-2)$$

$$= (3x - 2) (5x + 4).$$

Question 23:

$$6x^2 + 11x - 10$$

$$= 6x^2 + 15x - 4x - 10$$

$$= 3x (2x + 5) - 2(2x + 5)$$

$$= (2x + 5) (3x - 2).$$

Question 24:

$$30x^2 + 7x - 15$$

$$=30x^2 - 18x + 25x - 15$$

$$= 6x (5x - 3) + 5 (5x - 3)$$

$$= (5x - 3)(6x + 5).$$

Question 25:

$$24x^2 - 41x + 12$$

$$= 24x^2 - 32x - 9x + 12$$

$$= 8x (3x - 4) - 3 (3x - 4)$$

$$= (3x - 4) (8x - 3).$$

Question 26:

$$2x^2 - 7x - 15$$

$$= 2x^2 - 10x + 3x - 15$$

$$= 2x(x-5) + 3(x-5)$$

Million Stars & Practice

Williams and Stars of the Children o

Mondershare

= (x - 5) (2x + 3).

Question 27:

 $6x^2 - 5x - 21$

$$=6x^2+9x-14x-21$$

$$= 3x (2x + 3) - 7 (2x + 3)$$

$$=(3x-7)(2x+3).$$

Question 28:

$$10x^2 - 9x - 7$$

$$= 10x^2 + 5x - 14x - 7$$

$$= 5x (2x + 1) - 7 (2x + 1)$$

$$= (2x + 1) (5x - 7).$$

Question 29:

$$5x^2 - 16x - 21$$

$$=5x^2+5x-21x-21$$

$$= 5x(x + 1) - 21(x + 1)$$

$$= (x + 1) (5x - 21).$$

Question 30:

$$2x^2 - x - 21$$

$$= 2x^2 + 6x - 7x - 21$$

$$= 2x(x+3) - 7(x+3)$$

$$= (x + 3) (2x - 7).$$

Question 31:

$$15x^2 - x - 28$$

$$= 15x^2 + 20x - 21x - 28$$

$$= 5x(3x+4) - 7(3x+4)$$

$$= (3x + 4) (5x - 7).$$

Question 32:

$$8a^2 - 27ab + 9b^2$$

$$= 8a^2 - 24ab - 3ab + 9b^2$$

$$= 8a (a - 3b) - 3b (a - 3b)$$

$$= (a - 3b) (8a - 3b).$$

Question 33:

$$5x^2 + 33xy - 14y^2$$

$$=5x^2 + 35xy - 2xy - 14y^2$$

$$= 5x (x + 7y) - 2y (x + 7y)$$

$$= (x + 7y) (5x - 2y).$$

Question 34:

$$3x^3 - x^2 - 10x$$

$$= x (3x^2 - x - 10)$$

$$= x [3x^2 - 6x + 5x - 10]$$

$$= x [3x (x - 2) + 5 (x - 2)]$$

$$= x (x - 2) (3x + 5).$$

Question 35:

Million Stars & Practice
Williams Annual Comments of the Comme

Wondershare Porelement

$$\frac{1}{3}x^{2} - 2x - 9$$

$$= \frac{1}{3}x^{2} - 3x + x - 9$$

$$= x\left(\frac{x}{3} - 3\right) + (x - 9)$$

$$= \frac{x}{3}(x - 9) + (x - 9)$$

$$= (x - 9)\left(\frac{x}{3} + 1\right)$$

$$= (x - 9)\frac{(x + 3)}{3} = \frac{1}{3}(x - 9)(x + 3).$$

Question 36:

$$x^{2}-2x+\frac{7}{16}$$

$$=\frac{1}{16}\left(16x^{2}-32x+7\right)$$

$$=\frac{1}{16}\left(16x^{2}-4x-28x+7\right)$$

$$=\frac{1}{16}\left[4x\left(4x-1\right)-7\left(4x-1\right)\right]$$

$$=\frac{1}{16}\left(4x-1\right)\left(4x-7\right).$$

Question 37:

$$\begin{split} &\sqrt{2}x^2 + 3x + \sqrt{2} \\ &= \sqrt{2}x^2 + x + 2x + \sqrt{2} \\ &= x \left(\sqrt{2}x + 1\right) + \sqrt{2} \left(\sqrt{2}x + 1\right) \\ &= \left(\sqrt{2}x + 1\right) \left(x + \sqrt{2}\right). \end{split}$$

Question 38:

 $\sqrt{5}x^2 + 2x - 3\sqrt{5}$

=
$$\sqrt{5}x^2 + 5x - 3x - 3\sqrt{5}$$

= $\sqrt{5}x (x + \sqrt{5}) - 3 (x + \sqrt{5})$
= $(\sqrt{5}x - 3)(x + \sqrt{5})$.

Question 39:

$$2x^{2} + 3\sqrt{3}x + 3$$

$$= 2x^{2} + 2\sqrt{3}x + \sqrt{3}x + 3$$

$$= 2x (x + \sqrt{3}) + \sqrt{3}(x + \sqrt{3})$$

$$= (x + \sqrt{3})(2x + \sqrt{3}).$$

Question 40:

$$2\sqrt{3}x^{2} + x - 5\sqrt{3}$$

$$= 2\sqrt{3}x^{2} + 6x - 5x - 5\sqrt{3}$$

$$= 2\sqrt{3}x (x + \sqrt{3}) - 5(x + \sqrt{3})$$

$$= (x + \sqrt{3}) (2\sqrt{3}x - 5).$$

Question 41:

 $5\sqrt{5}x^2 + 20x + 3\sqrt{5}$

=
$$5\sqrt{5}x^2 + 15x + 5x + 3\sqrt{5}$$

= $5x(\sqrt{5}x + 3) + \sqrt{5}(\sqrt{5}x + 3)$
= $(\sqrt{5}x + 3)(5x + \sqrt{5})$.

Question 42:

$$7\sqrt{2}x^2 - 10x - 4\sqrt{2}$$

=
$$7\sqrt{2}x^2 - 14x + 4x - 4\sqrt{2}$$

= $7\sqrt{2}x(x - \sqrt{2}) + 4(x - \sqrt{2})$
= $(x - \sqrt{2})(7\sqrt{2}x + 4)$.

Question 43:

$$6\sqrt{3}x^{2} - 47x + 5\sqrt{3}$$

$$= 6\sqrt{3}x^{2} - 45x - 2x + 5\sqrt{3}$$

$$= 3\sqrt{3}x (2x - 5\sqrt{3}) - 1 (2x - 5\sqrt{3})$$

$$= (2x - 5\sqrt{3}) (3\sqrt{3}x - 1).$$

Question 44:

$$7x^{2} + 2\sqrt{14}x + 2$$

$$= 7x^{2} + \sqrt{2}\sqrt{7}x + \sqrt{2}\sqrt{7}x + 2$$

$$= \sqrt{7}x (\sqrt{7}x + \sqrt{2}) + \sqrt{2} (\sqrt{7}x + \sqrt{2})$$

$$= (\sqrt{7}x + \sqrt{2}) (\sqrt{7}x + \sqrt{2}) = (\sqrt{7}x + \sqrt{2})^{2}.$$

Question 45:

Let x + y = z

Then,
$$2(x+y)^2 - 9(x+y) - 5$$

$$= 2z^{2} - 9z - 5$$

$$= 2z^{2} - 10z + z - 5$$

$$= 2z(z - 5) + 1(z - 5)$$

$$= (z - 5)(2z + 1)$$

Nondershare Portelement Now, replacing z by (x + y), we get

$$2(x + y)^{2} - 9(x + y) - 5$$

$$= [(x + y) - 5] [(2(x + y) + 1)]$$

$$= (x + y - 5) (2x + 2y + 1).$$

Question 46:

Let
$$2a - b = c$$

Then,
$$9(2a - b)^2 - 4(2a - b) - 13$$

$$= 9c^{2} - 4c - 13$$

$$= 9c^{2} - 13c + 9c - 13$$

$$= c (9c - 13) + 1 (9c - 13)$$

$$= (c + 1) (9c - 13)$$

Now, replacing c by (2a - b), we get

$$9(2a-b)^2-4(2a-b)-13$$

= $(2a-b+1)[9(2a-b)-13]$
= $(2a-b+1)(18a-9b-13)$

Question 47:

Let
$$x - 2y = z$$

Then, $7(x - 2y)^2 - 25(x - 2y) + 12$
= $7z^2 - 25z + 12$

$$= 7z^{2} - 25z + 12$$

$$= 7z^{2} - 21z - 4z + 12$$

$$= 7z(z - 3) - 4(z - 3)$$

$$= (z - 3)(7z - 4)$$

Now replace z by (x - 2y), we get

$$7(x-2y)^2-25(x-2y)+12$$

Million Stars & Practice
Annihit Learn

$$\begin{array}{l} = \left({x - 2y - 3} \right)\left[{7\left({x - 2y} \right) - 4} \right] \\ = \left({x - 2y - 3} \right)\left({7x - 14y - 4} \right). \end{array}$$

Question 48:

Let $x^2 = y$

Then,
$$4x^4 + 7x^2 - 2$$

$$= 4y^{2} + 7y - 2$$

$$= 4y^{2} + 8y - y - 2$$

$$= 4y (y + 2) - 1 (y + 2)$$

$$= (y + 2) (4y - 1)$$

Now replacing y by x^2 , we get

$$4x^4 + 7x^2 - 2$$

$$= (x^{2} + 2)(4x^{2} - 1)$$

$$[\because a^{2} - b^{2} = (a - b)(a + b)]$$

$$= (x^{2} + 2)(2x + 1)(2x - 1).$$

Exercise 2H

1.
$$(a + b)^2 = a^2 + 2ab + b^2 = (-a - b)^2$$

2.
$$(a-b)^2 = a^2 - 2ab + b^2$$

3.
$$(a-b)(a+b) = a^2 - b^2$$

4.
$$(a+b+c)^2 = a^2+b^2+c^2+2ab+2bc+2ca$$

5.
$$(a+b-c)^2 = a^2 + b^2 + c^2 + 2ab - 2bc - 2ca$$

6.
$$(a-b+c)^2 = a^2+b^2+c^2-2ab-2bc+2ca$$

7.
$$(-a+b+c)^2 = a^2+b^2+c^2-2ab+2bc-2ca$$

8.
$$(a-b-c)^2 = a^2 + b^2 + c^2 - 2ab + 2bc - 2ca$$

9.
$$(a+b)^3 = a^3 + b^3 + 3ab (a+b)$$

10.
$$(a-b)^3 = a^3 - b^3 - 3ab(a-b)$$

11.
$$a^3 + b^3 = (a + b)^3 - 3ab(a + b)$$

= $(a + b) (a^2 - ab + b^2)$

12.
$$a^3 - b^3 = (a - b)^3 + 3ab(a - b)$$

= $(a - b)(a^2 + ab + b^2)$

13.
$$a^3 + b^3 + c^3 - 3abc = (a + b + c) (a^2 + b^2 + c^2 - ab - bc - ca)$$

if $a + b + c = 0$ then $a^3 + b^3 + c^3 = 3abc$

Question 1:

We know:

$$(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$$

(i)
$$(a + 2b + 5c)^2$$

$$= (a)^2 + (2b)^2 + (5c)^2 + 2(a)(2b) + 2(2b)(5c) + 2(5c)(a)$$

$$= a^2 + 4b^2 + 25c^2 + 4ab + 20bc + 10ac$$

(ii)
$$(2a - b + c)^2$$

$$= (2a)^2 + (-b)^2 + (c)^2 + 2(2a)(-b) + 2(-b)(c) + 2(c)(2a)$$

$$= 4a^2 + b^2 + c^2 - 4ab - 2bc + 4ac.$$

(iii)
$$(a - 2b - 3c)^2$$

=
$$(a)^2 + (-2b)^2 + (-3c)^2 + 2(a)(-2b) + 2(-2b)(-3c) + 2(-3c)(a)$$

$$= a^2 + 4b^2 + 9c^2 - 4ab + 12bc - 6ac.$$

Question 2:

We know:

$$(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$$

Williams States of Aractice

(i)
$$(2a - 5b - 7c)^2$$

=
$$(2a)^2 + (-5b)^2 + (-7c)^2 + 2(2a)(-5b) + 2(-5b)(-7c) + 2(-7c)(2a)$$

$$=4a^2+25b^2+49c^2-20ab+70bc-28ac.$$

(ii)
$$(-3a + 4b - 5c)^2$$

$$= (-3a)^2 + (4b)^2 + (-5c)^2 + 2(-3a)(4b) + 2(4b)(-5c) + 2(-5c)(-3a)$$

$$= 9a^2 + 16b^2 + 25c^2 - 24ab - 40bc + 30ac.$$

(iii)
$$\left(\frac{1}{2}a - \frac{1}{4}b + 2\right)^2$$

$$= \left(\frac{1}{2}a\right)^2 + \left(-\frac{1}{4}b\right)^2 + \left(2\right)^2 + 2\left(\frac{1}{2}a\right)\left(-\frac{1}{4}b\right) + 2\left(-\frac{1}{4}b\right)\left(2\right) + 2\left(2\right)\left(\frac{1}{2}a\right) = \frac{a^2}{4} + \frac{b^2}{16} + 4 - \frac{ab}{4} - b + 2a$$

Question 3:

$$4x^2 + 9y^2 + 16z^2 + 12xy - 24yz - 16xz$$

$$=(2x)^2+(3y)^2+(-4z)^2+2(2x)(3y)+2(3y)(-4z)+2(-4z)(2x)$$

$$=(2x+3y-4z)^2$$

Ouestion 4:

$$9x^2 + 16y^2 + 4z^2 - 24xy + 16yz - 12xz$$

$$=(-3x)^2+(4y)^2+(2z)^2+2(-3x)(4y)+2(4y)(2z)+2(2z)(-3x)$$

$$=(-3x+4y+2z)^2$$
.

Question 5:

$$25x^2 + 4y^2 + 9z^2 - 20xy - 12yz + 30xz$$

$$= (5x)^2 + (-2y)^2 + (3z)^2 + 2(5x)(-2y) + 2(-2y)(3z) + 2(3z)(5x)$$

$$= (5x - 2y + 3z)^2$$

Question 6:

$$(i) (99)^2$$

$$=(100-1)^2$$

$$\left[\because (a - b)^2 = a^2 - 2ab + b^2\right]$$

$$=(100)^2-2(100)(1)+(1)^2$$

= 9801.

 $(ii) (998)^2$

$$=(1000-2)^2$$

$$=(1000)^2 - 2(1000)(2) + (2)^2$$

= 996004.

Exercise 21

- 1. $(a + b)^2 = a^2 + 2ab + b^2 = (-a b)^2$
- 2. $(a-b)^2 = a^2 2ab + b^2$
- 3. $(a-b)(a+b) = a^2 b^2$
- 4. $(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$
- 5. $(a+b-c)^2 = a^2 + b^2 + c^2 + 2ab 2bc 2ca$
- 6. $(a-b+c)^2 = a^2 + b^2 + c^2 2ab 2bc + 2ca$
- 7. $(-a+b+c)^2 = a^2+b^2+c^2-2ab+2bc-2ca$
- 8. $(a-b-c)^2 = a^2 + b^2 + c^2 2ab + 2bc 2ca$
- 9. $(a+b)^3 = a^3 + b^3 + 3ab (a+b)$
- 10. $(a-b)^3 = a^3 b^3 3ab(a-b)$
- 11. $a^3 + b^3 = (a + b)^3 3ab(a + b)$ $= (a + b) (a^2 - ab + b^2)$
- 12. $a^3 b^3 = (a b)^3 + 3ab(a b)$ $= (a - b) (a^2 + ab + b^2)$
- 13. $a^3 + b^3 + c^3 3abc = (a + b + c)(a^2 + b^2 + c^2 ab bc ca)$ if a + b + c = 0 then $a^3 + b^3 + c^3 = 3abc$

Question 1:

(i)
$$(3x + 2)^3$$

$$= (3x)^3 + (2)^3 + 3 \times 3x \times 2 (3x + 2)^3$$

(i)
$$(3x + 2)^3$$

= $(3x)^3 + (2)^3 + 3 \times 3x \times 2 (3x + 2)$
[: $(a + b)^3 = a^3 + b^3 + 3ab (a + b)$]
= $27x^3 + 8 + 18x (3x + 2)$
= $27x^3 + 8 + 54x^2 + 36x$.
(ii) $(3a - 2b)^3$
= $(3a)^3 - (2b)^3 - 3 \times 3a \times 2b (3a - 2b)$
[: $(a - b)^3 = a^3 - b^3 - 3ab (a - b)$]
= $27a^3 - 8b^3 - 18ab (3a - 2b)$
= $27a^3 - 8b^3 - 54a^2b + 36ab^2$.
(iii) $(\frac{2}{3}x + 1)^3$

$$=27x^3+8+18x(3x+2)$$

$$= 27x^3 + 8 + 54x^2 + 36x$$

$$= (3a)^3 - (2b)^3 - 3 \times 3a \times 2b (3a - 2b)^3$$

$$[\cdot \cdot (a - b)^3 = a^3 - b^3 - 3ab (a - b)]$$

$$= 27a^3 - 8b^3 - 18ab (3a - 2b)$$

$$= 27 a^3 - 8h^3 - 54a^2h + 36ah^2$$

(iii)
$$\left(\frac{2}{3} \times + 1\right)^3$$

$$= \left(\frac{2}{3}x\right)^{3} + \left(1\right)^{3} + 3x\frac{2}{3}x \times 1\left(\frac{2}{3}x + 1\right)$$

$$\left[\because (a+b)^{3} = a^{3} + b^{3} + 3ab (a+b)\right]$$

$$= \frac{8}{27}x^{3} + 1 + 2x\left(\frac{2}{3}x + 1\right)$$

$$= \frac{8}{27}x^{3} + 1 + \frac{4}{3}x^{2} + 2x.$$

Question 2:

$$\left(2x - \frac{2}{x}\right)^{3}$$

$$= (2x)^{3} - \left(\frac{2}{x}\right)^{3} - 3 \times 2x \times \frac{2}{x} \left(2x - \frac{2}{x}\right)$$

$$\left[\because (a - b)^{3} = a^{3} - b^{3} - 3ab (a - b)\right]$$

$$= 8x^{3} - \frac{8}{x^{3}} - 12 \left(2x - \frac{2}{x}\right)$$

$$= 8x^{3} - \frac{8}{x^{3}} - 24x + \frac{24}{x}.$$

$$\left(3a + \frac{1}{4b}\right)^{3}$$

$$= (3a)^{3} + \left(\frac{1}{4b}\right)^{3} + 3 \times 3a \times \frac{1}{4b} \left(3a + \frac{1}{4b}\right)$$

$$\left[\because (a+b)^{3} = a^{3} + b^{3} + 3ab (a+b)\right]$$

$$= 27a^{3} + \frac{1}{64b^{3}} + \frac{9a}{4b} \left(3a + \frac{1}{4b}\right)$$

$$= 27a^{3} + \frac{1}{64b^{3}} + \frac{27a^{2}}{4b} + \frac{9a}{16b^{2}}.$$

$$\left(\frac{4}{5} \times -2\right)^{3}$$
= $\left(\frac{4}{5} \times\right)^{3} - (2)^{3} - 3 \times \frac{4}{5} \times 2 \left(\frac{4}{5} \times -2\right)$

$$\left[\because (a-b)^{3} = a^{3} - b^{3} - 3ab (a-b)\right]$$
= $\frac{64}{125} \times^{3} - 8 - \frac{24}{5} \times \left(\frac{4}{5} \times -2\right)$
= $\frac{64}{125} \times^{3} - 8 - \frac{96}{25} \times^{2} + \frac{48}{5} \times$.

Question 3:
(i) $(95)^{3}$

(i) $(95)^3$

 $=(100-5)^3$

$$= (100)^3 - (5)^3 - 3 \times 100 \times 5 (100 - 5)$$

= 1000000 - 125 - (150095)

= 857375.

 $(ii) (999)^3$

 $=(1000-1)^3$

 $= (1000)^3 - (1)^3 - 3 \times 1000 \times 1 (1000 - 1)$

= 1000000000 - 1 - 3000 (1000 - 1)

= 1000000000 - 1 - (3000999)

= 997002999.

Exercise 2J

- 1. $(a + b)^2 = a^2 + 2ab + b^2 = (-a b)^2$
- 2. $(a-b)^2 = a^2 2ab + b^2$
- 3. $(a-b)(a+b) = a^2 b^2$
- 4. $(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$
- 5. $(a+b-c)^2 = a^2 + b^2 + c^2 + 2ab 2bc 2ca$
- 6. $(a-b+c)^2 = a^2 + b^2 + c^2 2ab 2bc + 2ca$
- 7. $(-a+b+c)^2 = a^2+b^2+c^2-2ab+2bc-2ca$
- 8. $(a-b-c)^2 = a^2 + b^2 + c^2 2ab + 2bc 2ca$
- 9. $(a+b)^3 = a^3 + b^3 + 3ab (a+b)$
- 10. $(a-b)^3 = a^3 b^3 3ab(a-b)$
- 11. $a^3 + b^3 = (a + b)^3 3ab(a + b)$ $= (a + b) (a^2 - ab + b^2)$
- 12. $a^3 b^3 = (a b)^3 + 3ab(a b)$ $= (a - b) (a^2 + ab + b^2)$
- 13. $a^3 + b^3 + c^3 3abc = (a + b + c)(a^2 + b^2 + c^2 ab bc ca)$ if a + b + c = 0 then $a^3 + b^3 + c^3 = 3abc$

Question 1:

$$x^3 + 27$$

$$= x^3 + 3^3$$

$$= (x + 3) (x^2 - 3x + 9)$$

Since
$$a^3 + b^3 = (a + b)(a^2 - a \times b + b^2)$$

Question 2:

$$8x^3 + 27y^3$$

$$=(2x)^3+(3y)^3$$

=
$$(2x+3y)[(2x)^2 - (2x)(3y) + (3y)^2]$$

Since $a^3 + b^3 = (a + b)(a^2 - a \times b + b^2)$

$$= (2x + 3y) (4x^2 - 6xy + 9y^2).$$

Question 3:

$$343 + 125 b^3$$

$$=(7)^3+(5b)^3$$

$$= (7 + 5b)[(7)^2 - (7)(5b) + (5b)^2]$$

Since $a^3 + b^3 = (a+b)(a^2 - a \times b + b^2)$

$$= (7 + 5b) (49 - 35b + 25b^2)$$

Question 4:

$$1 + 64x^3$$

$$=(1)^3+(4x)^3$$

$$= (1 + 4x) [(1)^2 - 1 (4x) + (4x)^2]$$

Since
$$a^3 + b^3 = (a+b)(a^2 - a \times b + b^2)$$

$$= (1 + 4x) (1 - 4x + 16x^2).$$

Question 5:

$$125a^3 + \frac{1}{8}$$

We know that

$$a^3 + b^3 = (a + b)(a^2 - a \times b + b^2)$$

Let us rewrite

Million Stars & Practice
Williams and Stars of the Control of the

$$125a^3 + \frac{1}{8}$$

$$= (5a)^3 + \left(\frac{1}{2}\right)^3$$

$$= \left(5a + \frac{1}{2}\right) \left[(5a)^2 - 5a \times \frac{1}{2} + \left(\frac{1}{2}\right)^2 \right]$$

$$= \left(5a + \frac{1}{2}\right) \left(25a^2 - \frac{5a}{2} + \frac{1}{4}\right).$$

Question 6:

$$216x^3 + \frac{1}{125}$$

We know that

$$a^3 + b^3 = (a + b)(a^2 - a \times b + b^2)$$

Let us rewrite

$$216x^3 + \frac{1}{125}$$

=
$$(6x)^3 + (\frac{1}{5})^3$$

= $(6x + \frac{1}{5})[(6x)^2 - 6x \times \frac{1}{5} + (\frac{1}{5})^2]$
= $(6x + \frac{1}{5})[36x^2 - \frac{6x}{5} + \frac{1}{25}]$.
Question 7:
 $16x^4 + 54x$
= $2x(8x^3 + 27)$
= $2x[(2x)^3 + (3)^3]$
= $2x(2x + 3)[(2x)^2 - 2x(3) + 3^2]$
Since $a^3 + b^3 = (a + b)(a^2 - a \times b + b^2)$
= $2x(2x + 3)(4x^2 - 6x + 9)$
Question 8:

Question 7:

$$16x^4 + 54x$$

$$= 2x (8x^3 + 27)$$

$$= 2x[(2x)^3 + (3)^3]$$

$$= 2x (2x + 3) [(2x)^2 - 2x(3) + 3^2]$$

Since
$$a^3 + b^3 = (a + b)(a^2 - a \times b + b^2)$$

$$=2x(2x+3)(4x^2-6x+9)$$

Question 8:

$$7a^3 + 56b^3$$

$$= 7(a^3 + 8b^3)$$

$$= 7 [(a)^3 + (2b)^3]$$

$$= 7 (a + 2b) [a^2 - a 2b + (2b)^2]$$

Since
$$a^3 + b^3 = (a + b)(a^2 - a \times b + b^2)$$

$$= 7 (a + 2b) (a^2 - 2ab + 4b^2).$$

Question 9:

$$x^5 + x^2$$

$$= x^2(x^3 + 1)$$

$$= x^2 (x + 1) [(x)^2 - x (1) + (1)^2]$$

Since $a^3 + b^3 = (a + b)(a^2 - a \times b + b^2)$

$$= x^{2}(x + 1)(x^{2} - x + 1).$$

Question 10:

$$a^3 + 0.008$$

$$= (a)^3 + (0.2)^3$$

=
$$(a + 0.2)[(a)^2 - a(0.2) + (0.2)^2]$$

Since
$$a^3 + b^3 = (a + b)(a^2 - a \times b + b^2)$$

$$= (a + 0.2) (a^2 - 0.2a + 0.04).$$

Million Stars & Practice
Annihit Learn

Mondershare

Question 11:

$$x^{6} + y^{6}$$

$$= (x^{2})^{3} + (y^{2})^{3}$$

$$= (x^{2} + y^{2}) [(x^{2})^{2} - x^{2} (y^{2}) + (y^{2})^{2}]$$
Since $a^{3} + b^{3} = (a + b) (a^{2} - a \times b + b^{2})$

$$= (x^{2} + y^{2}) (x^{4} - x^{2}y^{2} + y^{4}).$$

Question 12:

$$2a^{3} + 16b^{3} - 5a - 10b$$

$$= 2 (a^{3} + 8b^{3}) - 5 (a + 2b)$$

$$= 2 [(a)^{3} + (2b)^{3}] - 5 (a + 2b)$$

$$= 2 (a + 2b) [(a)^{2} - a (2b) + (2b)^{2}] - 5 (a + 2b)$$
Since $a^{3} + b^{3} = (a + b)(a^{2} - a \times b + b^{2})$

$$= (a + 2b) [2(a^{2} - 2ab + 4b^{2}) - 5]$$

Question 13:

$$x^{3} - 512$$

$$= (x)^{3} - (8)^{3}$$

$$= (x - 8) [(x)^{2} + x (8) + (8)^{2}]$$
Since $a^{3} - b^{3} = (a - b) (a^{2} + a \times b + b^{2})$

$$= (x - 8) (x^{2} + 8x + 64).$$

Question 14:

$$64x^{3} - 343$$
= $(4x)^{3} - (7)^{3}$
= $(4x - 7)[(4x)^{2} + 4x(7) + (7)^{2}]$
Since $a^{3} - b^{3} = (a - b)(a^{2} + a \times b + b^{2})$

 $= (4x - 7) (16x^2 + 28x + 49).$

Question 15:

$$1 - 27x^{3}$$

$$= (1)^{3} - (3x)^{3}$$

$$= (1 - 3x) [(1)^{2} + 1 (3x) + (3x)^{2}]$$
Since $a^{3} - b^{3} = (a - b)(a^{2} + a \times b + b^{2})$

$$= (1 - 3x) (1 + 3x + 9x^{2}).$$

Question 16:

$$1 - 27x^{3}$$
= $(1)^{3} - (3x)^{3}$
= $(1 - 3x)[(1)^{2} + 1(3x) + (3x)^{2}]$
Since $a^{3} - b^{3} = (a - b)(a^{2} + a \times b + b^{2})$
= $(1 - 3x)(1 + 3x + 9x^{2})$.

Question 17:

We know that
$$a^3 - b^3 = (a - b)(a^2 + a \times b + b^2)$$

Let us rewrite

$$8x^3 - \frac{1}{27y^3}$$

$$\begin{split} &= \left(2x\right)^3 - \left(\frac{1}{3y}\right)^3 \\ &= \left(2x - \frac{1}{3y}\right) \left[\left(2x\right)^2 + 2x \times \frac{1}{3y} + \left(\frac{1}{3y}\right)^2\right] \\ &= \left(2x - \frac{1}{3y}\right) \left(4x^2 + \frac{2x}{3y} + \frac{1}{9y^2}\right). \end{split}$$

Question 18:

$$a^{3} - 0.064$$

$$= (a)^{3} - (0.4)^{3}$$

$$= (a - 0.4) [(a)^{2} + a (0.4) + (0.4)^{2}]$$
Since $a^{3} - b^{3} = (a - b) (a^{2} + a \times b + b^{2})$

$$= (a - 0.4) (a^{2} + 0.4 a + 0.16).$$

Question 19:

$$(a + b)^3 - 8$$
= $(a + b)^3 - (2)^3$
= $(a + b - 2) [(a + b)^2 + (a + b) 2 + (2)^2]$
Since $a^3 - b^3 = (a - b) (a^2 + a \times b + b^2)$
= $(a + b - 2) [a^2 + b^2 + 2ab + 2 (a + b) + 4]$.

Question 20:

=
$$(a + b - 2) [(a + b)^2 + (a + b) 2 + (2)^2]$$

Since $a^3 - b^3 = (a - b) (a^2 + a \times b + b^2)$
= $(a + b - 2) [a^2 + b^2 + 2ab + 2 (a + b) + 4]$.
Question 20:
 $x^6 - 729$
= $(x^2)^3 - (9)^3$
= $(x^2 - 9) [(x^2)^2 + x^2 9 + (9)^2]$
Since $a^3 - b^3 = (a - b) (a^2 + a \times b + b^2)$
= $(x^2 - 9) (x^4 + 9x^2 + 81)$
= $(x + 3) (x - 3) [(x^2 + 9)^2 - (3x)^2]$
= $(x + 3) (x - 3) (x^2 + 3x + 9) (x^2 - 3x + 9)$.

Question 21:

We know that,
$$a^3 - b^3 = (a - b)(a^2 + a \times b + b^2)$$

Therefore,

$$(a + b)^3 - (a - b)^3$$
= [a + b - (a - b)] [(a + b)^2 + (a + b) (a - b) + (a - b)^2]
= (a + b - a + b) [a^2 + b^2 + 2ab + a^2 - b^2 + a^2 + b^2 - 2ab]
= 2b (3a^2 + b^2).

Question 22:

$$x - 8xy^{3}$$

$$= x (1 - 8y^{3})$$

$$= x [(1)^{3} - (2y)^{3}]$$

$$= x (1 - 2y) [(1)^{2} + 1 (2y) + (2y)^{2}]$$
Since $a^{3} - b^{3} = (a - b) (a^{2} + a \times b + b^{2})$

$$= x (1 - 2y) (1 + 2y + 4y^{2}).$$

Question 23:

$$32x^4 - 500x$$

Willion Stars & Practice
Williams & Practice

$$= 4x (8x^3 - 125)$$

$$= 4x [(2x)^3 - (5)^3]$$

$$= 4x [(2x - 5) [(2x)^2 + 2x (5) + (5)^2]$$
Since $a^3 - b^3 = (a - b) (a^2 + a \times b + b^2)$

$$= 4x (2x - 5) (4x^2 + 10x + 25).$$

Question 24:

$$3a^{7}b - 81a^{4}b^{4}$$

$$= 3a^{4}b (a^{3} - 27b^{3})$$

$$= 3a^{4}b [(a)^{3} - (3b)^{3}]$$

$$= 3a^{4}b (a - 3b) [(a)^{2} + a (3b) + (3b)^{2}]$$
Since $a^{3} - b^{3} = (a - b)(a^{2} + a \times b + b^{2})$

$$= 3a^{4}b (a - 3b) (a^{2} + 3ab + 9b^{2}).$$

Question 25:

We know that $a^3 - b^3 = (a - b)(a^2 + a \times b + b^2)$

$$a^{3} - \frac{1}{a^{3}} - 2a + \frac{2}{a}$$

$$= a^{3} - \frac{1}{a^{3}} - 2\left(a - \frac{1}{a}\right)$$

$$= \left(a - \frac{1}{a}\right)\left(a^{2} + a \times \frac{1}{a} + \frac{1}{a^{2}}\right) - 2\left(a - \frac{1}{a}\right)$$

$$= \left(a - \frac{1}{a}\right)\left(a^{2} + 1 + \frac{1}{a^{2}} - 2\right)$$

$$= \left(a - \frac{1}{a}\right)\left(a^{2} + \frac{1}{a^{2}} - 1\right).$$

$$Question 26:$$

$$8a^{3} - b^{3} - 4ax + 2bx$$

$$= 8a^{3} - b^{3} - 2x(2a - b)$$

$$= (2a)^{3} - (b)^{3} - 2x(2a - b)$$

Question 26:

$$8a^{3} - b^{3} - 4ax + 2bx$$

$$= 8a^{3} - b^{3} - 2x (2a - b)$$

$$= (2a)^{3} - (b)^{3} - 2x (2a - b)$$

$$= (2a - b) [(2a)^{2} + 2a (b) + (b)^{2}] - 2x (2a - b)$$
Since $a^{3} - b^{3} = (a - b) (a^{2} + a \times b + b^{2})$

$$= (2a - b) (4a^{2} + 2ab + b^{2}) - 2x (2a - b)$$

$$= (2a - b) (4a^{2} + 2ab + b^{2} - 2x).$$

Question 27:

$$8a^{3} - b^{3} - 4ax + 2bx$$

$$= 8a^{3} - b^{3} - 2x (2a - b)$$

$$= (2a)^{3} - (b)^{3} - 2x (2a - b)$$

$$= (2a - b) [(2a)^{2} + 2a (b) + (b)^{2}] - 2x (2a - b)$$
Since $a^{3} - b^{3} = (a - b)(a^{2} + a \times b + b^{2})$

$$= (2a - b) (4a^{2} + 2ab + b^{2}) - 2x (2a - b)$$

$$= (2a - b) (4a^{2} + 2ab + b^{2} - 2x).$$

Exercise 2K

- 1. $(a + b)^2 = a^2 + 2ab + b^2 = (-a b)^2$
- 2. $(a-b)^2 = a^2 2ab + b^2$
- 3. $(a-b)(a+b) = a^2 b^2$
- 4. $(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$
- 5. $(a+b-c)^2 = a^2 + b^2 + c^2 + 2ab 2bc 2ca$
- 6. $(a-b+c)^2 = a^2 + b^2 + c^2 2ab 2bc + 2ca$
- 7. $(-a+b+c)^2 = a^2+b^2+c^2-2ab+2bc-2ca$
- 8. $(a-b-c)^2 = a^2 + b^2 + c^2 2ab + 2bc 2ca$
- 9. $(a+b)^3 = a^3 + b^3 + 3ab (a+b)$
- 10. $(a-b)^3 = a^3 b^3 3ab(a-b)$
- 11. $a^3 + b^3 = (a + b)^3 3ab(a + b)$ $= (a + b) (a^2 - ab + b^2)$
- 12. $a^3 b^3 = (a b)^3 + 3ab(a b)$ $= (a - b) (a^2 + ab + b^2)$
- 13. $a^3 + b^3 + c^3 3abc = (a + b + c)(a^2 + b^2 + c^2 ab bc ca)$ if a + b + c = 0 then $a^3 + b^3 + c^3 = 3abc$

Question 1:

$$125a^3 + b^3 + 64c^3 - 60abc$$

$$= (5a)^3 + (b)^3 + (4c)^3 - 3(5a)(b)(4c)$$

=
$$(5a + b + 4c)[(5a)^2 + b^2 + (4c)^2 - (5a)(b) - (b)(4c) - (5a)(4c)]$$

$$[:a^3 + b^3 + c^3 - 3abc = (a+b+c)(a^2 + b^2 + c^2 - ab - bc - ca)]$$

$$= (5a + b + 4c) (25a^2 + b^2 + 16c^2 - 5ab - 4bc - 20ac).$$

Question 2:

$$a^3 + 8b^3 + 64c^3 - 24abc$$

$$= (a)^3 + (2b)^3 + (4c)^3 - 3a2b4c$$

$$= (a + 2b + 4c) [a^2 + 4b^2 + 16c^2 - 2ab - 8bc - 4ca).$$

Question 3:

$$1 + b^3 + 8c^3 - 6bc$$

$$= 1 + (b)^3 + (2c)^3 - 3 (b) (2c)$$

$$= (1 + b + 2c) [1 + b^2 + (2c)^2 - b - b 2c - 2c]$$

$$= (1 + b + 2c) (1 + b^2 + 4c^2 - b - 2bc - 2c).$$

Question 4:

$$216 + 27b^3 + 8c^3 - 108bc$$

$$= (6)^3 + (3b)^3 + (2c)^2 - 363b2c$$

$$= (6 + 3b + 2c)[(6)^{2} + (3b)^{2} + (2c)^{2} - 63b - 3b2c - 2c6$$

$$= (6 + 3h + 2c)(36 + 9h^2 + 4c^2 - 18h - 6hc - 12c)$$

$$27a^3 - b^3 + 8c^3 + 18abc$$

$$= (3a)^3 + (-b)^3 + (2c)^3 + 3(3a) (-b) (2c)^3$$

=
$$[3a + (-b) + 2c][(3a)^2 + (-b)^2 + (2c)^2 - 3a(-b) - (-b)(2c) - (2c)(3a)$$

$$= (3a - b + 2c) (9a^2 + b^2 + 4c^2 + 3ab + 2bc - 6ca)$$

$$8a^3 + 125h^3 - 64c^3 + 120ahc$$

$$= (2a)^3 + (5b)^3 + (-4c)^3 - 3(2a)(5b)(-4c)^3$$

(3a) - (-b)(2c) - (2c)(3a) $-125b^3 - 64c^3 + 120abc$ $= (2a)^3 + (5b)^3 + (-4c)^3 - 3(2a)(5b)(-4c)$ $= (2a + 5b - 4c)[(2a)^2 + (5b)^2 + (-4c)^2 - (2a)(5b) - (-7c)^2]$

Willion Stars & Practice
Williams & Practice

$$= (2a + 5b - 4c) (4a^2 + 25b^2 + 16c^2 - 10ab + 20bc + 8ca).$$

Question 7:

$$8 - 27b^{3} - 343c^{3} - 126bc$$

$$= (2)^{3} + (-3b)^{3} + (-7c)^{3} - 3(2)(-3b)(-7c)$$

$$= (2 - 3b - 7c)[(2)^{2} + (-3b)^{2} + (-7c)^{2} - (2)(-3b) - (-3b)(-7c) - (-7c)(2)]$$

$$= (2 - 3b - 7c)(4 + 9b^{2} + 49c^{2} + 6b - 21bc + 14c).$$

Question 8:

$$\begin{aligned} &125 - 8x^3 - 27y^3 - 90xy \\ &= (5)^3 + (-2x)^3 + (-3y)^3 - 3 (5) (-2x) (-3y) \\ &= (5 - 2x - 3y) \left[(5)^2 + (-2x)^2 + (-3y)^2 - (5) (-2x) - (-2x) (-3y) - (-3y) (5) \right] \\ &= (5 - 2x - 3y) (25 + 4x^2 + 9y^2 + 10x - 6xy + 15y). \end{aligned}$$

Question 9:

$$\begin{split} 2\sqrt{2}a^3 &+ 16\sqrt{2}b^3 + c^3 - 12abc \\ &= \left(\sqrt{2}a\right)^3 + \left(2\sqrt{2}b\right)^3 + (c)^3 - 3\left(\sqrt{2}a\right)\left(2\sqrt{2}b\right)(c) \\ &= \left(\sqrt{2}a + 2\sqrt{2}b + c\right) \\ &\left[\left(\sqrt{2}a\right)^2 + \left(2\sqrt{2}b\right)^2 + c^2 - \left(\sqrt{2}a\right)\left(2\sqrt{2}b\right) - \left(2\sqrt{2}b\right)(c) - (c)\left(\sqrt{2}a\right)\right] \\ &= \left(\sqrt{2}a + 2\sqrt{2}b + c\right)\left(2a^2 + 8b^2 + c^2 - 4ab - 2\sqrt{2}bc - \sqrt{2}ac\right). \end{split}$$

Question 10:

$$x^3 + y^3 - 12xy + 64$$

 $= x^3 + y^3 + 64 - 12xy$
 $= (x)^3 + (y)^3 + (4)^3 - 3(x)(y)(4)$
 $= (x + y + 4)[(x)^2 + (y)^2 + (4)^2 - x \times y - y \times 4 - 4 \times x]$
 $= (x + y + 4)(x^2 + y^2 + 16 - xy - 4y - 4x)$.
Question 11:
Putting $(a - b) = x$, $(b - c) = y$ and $(c - a) = z$, we get,

Putting
$$(a - b) = x$$
, $(b - c) = y$ and $(c - a) = z$, we get,
 $(a - b)^3 + (b - c)^3 + (c - a)^3$
 $= x^3 + y^3 + z^3$, where $(x + y + z) = (a - b) + (b - c) + (c - a) = 0$
 $= 3xyz [\because (x + y + z) = 0 \Rightarrow (x^3 + y^3 + z^3) = 3xyz]$
 $= 3(a - b) (b - c) (c - a)$.

Question 12:

We have:

$$(3a - 2b) + (2b - 5c) + (5c - 3a) = 0$$

So, $(3a - 2b)^3 + (2b - 5c)^3 + (5c - 3a)^3$
= $3(3a - 2b)(2b - 5c)(5c - 3a)$.

Question 13:

$$a^{3} (b-c)^{3} + b^{3} (c-a)^{3} + c^{3} (a-b)^{3}$$

$$= [a (b-c)]^{3} + [b (c-a)]^{3} + [c (a-b)]^{3}$$
Now, since, a (b-c) + b (c-a) + c (a-b)
$$= ab - ac + bc - ba + ca - bc = 0$$
So, $a^{3} (b-c)^{3} + b^{3} (c-a)^{3} + c^{3} (a-b)^{3}$

$$= 3a (b-c) b (c-a) c (a-b)$$

$$= 3abc (a-b) (b-c) (c-a).$$

Question 14:

$$(5a - 7b)^3 + (9c - 5a)^3 + (7b - 9c)^3$$

Since,
$$(5a - 7b) + (9c - 5a) + (7b - 9c)$$

= $5a - 7b + 9c - 5a + 7b - 9c = 0$
So, $(5a - 7b)^3 + (9c - 5a)^3 + (7b - 9c)^3$
= $3(5a - 7b)(9c - 5a)(7b - 9c)$.

Question 15:

$$(x + y - z) (x^2 + y^2 + z^2 - xy + yz + zx)$$

$$= [x + y + (-z)] [(x)^2 + (y)^2 + (-z)^2 - (x) (y) - (y) (-z) - (-z) (x)]$$

$$= x^3 + y^3 - z^3 + 3xyz.$$

Question 16:

$$(x-2y+3)(x^2+4y^2+2xy-3x+6y+9)$$
= [x+(-2y)+3] [(x)^2+(-2y)^2+(3)-(x)(-2y)-(-2y)(3)-(3)(x)]
= (a+b+c)(a^2+b^2+c^2-ab-bc-ca)
= a^3+b^3+c^3-3abc
Where, x = a, (-2y) = b and 3 = c
(x-2y+3)(x^2+4y^2+2xy-3x+6y+9)
= (x)^3+(-2y)^3+(3)^2-3(x)(-2y)(3)
= x^3-8y^3+27+18xy.

Question 17:

$$\begin{aligned} &(x-2y-z)\,(x^2+4y^2+z^2+2xy+zx-2yz)\\ &=[x+(-2y)+(-z)]\,[(x)^2+(-2y)^2+(-z)^2-(x)\,(-2y)-(-2y)\,(-z)-(-z)\,(x)]\\ &=(a+b+c)\,(a^2+b^2+c^2-ab-bc-ca)\\ &=a^3+b^3+c^3-3abc\\ &\text{Where } x=a,(-2y)=b\text{ and } (-z)=c\\ &(x-2y-z)\,(x^2+4y^2+z^2+2xy+zx-2yz)\\ &=(x)^3+(-2y)^3+(-z)^3-3\,(x)\,(-2y)\,(-z)\\ &=x^3-8y^3-z^3-6xyz.\end{aligned}$$

Question 18:

Given,
$$x + y + 4 = 0$$

We have $(x^3 + y^3 - 12xy + 64)$
= $(x)^3 + (y)^3 + (4)^3 - 3(x)(y)(4)$
= 0.
Since, we know $a + b + c = 0 \Rightarrow (a^3 + b^3 + c^3) = 3abc$

Question 19:

Given
$$x = 2y + 6$$

Or, $x - 2y - 6 = 0$
We have, $(x^3 - 8y^3 - 36xy - 216)$
 $= (x^3 - 8y^3 - 216 - 36xy)$
 $= (x)^3 + (-2y)^3 + (-6)^3 - 3(x)(-2y)(-6)$
 $= (x - 2y - 6)[(x)^2 + (-2y)^2 + (-6)^2 - (x)(-2y) - (-2y)(-6) - (-6)(x)]$
 $= (x - 2y - 6)(x^2 + 4y^2 + 36 + 2xy - 12y + 6x)$
 $= 0(x^2 + 4y^2 + 36 + 2xy - 12y + 6x)$
 $= 0$.