Remove Watermark

BINARY OPERATIONS (XII, R.S. AGARWAL)

EXERCISE 3-A [Pg. No. 74]

- Let * be a binary operation on the set I of all integers, defined by a*b = 3a + 4b 2. Find the value of 4*5
- **Sol.** a*b = 3a + 4b 2 \Rightarrow 4 * 5 = 3 × 4 + 4 × 5 - 2 = 30
- The binary operation * on R is defined by a*b = 2a+b. Find (2*3)*4
- Sol. Given, $a*b = 2a + b \forall a \text{ and } b \in R$. Now, (2 * 3) * 4 $= (2 \times 2 + 3) * 4 = 12 * 4 = 2 \times 12 + 4 = 28$
- Let * be a binary operation on the set of al nonzero real numbers, defined by $a*b = \frac{ab}{5}$. Find the 3. value of x given that 2*(x*5)=10
- Sol. Given: $a * b = \frac{ab}{5}$: 2 * (x * 5) = 10 $\Rightarrow 2*\left(\frac{x\times5}{5}\right) = 10 \Rightarrow 2*x = 10 \Rightarrow \frac{2\times x}{5} = 10 \Rightarrow x = 25$
- Let $x: R \times R \to R$ be a binary operation given by $a*b = a+4b^2$. Then, compute (-5)*(2*0)
- Sol. Given: $a * b = a + 4b^2$ Now, (-5) * (2 * 0) $= (-5) * (2 + 4 \times 0^{2}) = -5 * 2 = -5 + 4 \times (-2)^{2} = 11$
- Let * be a binary operation on the set Q of all rational numbers given as $a*b = (2a-b)^{-}$ for all $a,b \in O$. Find 3*5 and 5*3. is 3*5=5*3?
- Sol. Given : $\rightarrow a * b = (2a b)^2$ Now, $3 * 5 = (2 \times 3 - 5)^2 = 1$ And $5 * 3 = (2 \times 5 - 3)^2 = 49$ Here, $3 * 5 \neq 5 * 3$
- Williams Bracilice Williams Bracilice 6. Let * be a binary operation on N given by a*b=1 cm of a and b. Find the value of 20*16Is * (i) commutative (ii) associative?
- Sol. Given: \rightarrow a * b = L.C.M of a and b \therefore 20 * 16 = L.C.M of 20 and 16 = 80. Commutatively:→

Let, a and $b \in N$

 \therefore L.C.M at a and b = L.C.M of b and a

$$\Rightarrow$$
 (a * b) = (b * a) \forall a & b \in N

Hence, * is commutative.

Associatively: →

- = {L.C.M of a and b} * chttps://millionstar.godaddysites.com/
- = L.C.M of $[\{L.C.M \text{ of a and b}\}\]$ and C]=L.C.M of [L.C.M of a, b and c]
- = L.C.M of [a and {L.C.M of b and c}] = $a * \{L.C.M \text{ of b and c}\}\$
- = a * (b * c)

Here, $a * (b * C) = (a * b) * c \forall a, b \in c \in N$ Hence, * is associative.

- If * be the binary operation on the set Z of all integers defined by $a*b = (a+3b^2)$, find 2*4
- Sol. Given: $\rightarrow a * b = a + 3b^2$

$$\therefore 2 * 4 = 2 + 3 \times (4)^2 = 50$$

- show that * on Z^+ defined by a*b = |a-b| is not binary operation
- Sol. On Z^+ , * is defined by a*b = |a-b|, it is seen that for $a, a \in Z^+$.

$$a*a = |a-a| = 0 \notin Z^+$$
, hence * is not a binary operation

- Let * on Z^+ defined by $a*b=a^b$ is neither commutative nor associative
- Sol. Commutativity: Let $a, b \in N$, then $a * b = a^b$ and $b * a = b^a$.

 a^b and b^a are not equal for every $a, b \in N$.

 $\Rightarrow a*b \neq b*a \Rightarrow *$ is not commutative only.

Associativity: Let $a, b, c \in N$, then

$$(a*b)*c = a^b*c = (a^b)^c = a^{bc}$$

and
$$a*(b*c) = a*b^c = (a)^{b^c}$$

From (1) & (2), $(a*b)*c \neq a*(b*c) \implies *$ is associative on N.

- 10. Let a*b=1 cm (a,b) for all values of $a,b \in N$
 - (i) Find (12*16)

- (ii) show that * is commutative on N
- (iii) Find the identity element in N
- (iv) Find all invertible elements in N
- Sol. (i) 12 * 16 = L.C.M (12, 16)= 48
 - (ii) Let, a & $b \in N$
 - a * b = L.C.M (a, b)
 - = L.C.M(b, a)= b* a \forall a, b \in N

Hence, * is commutative.

- (iii) Let, C be the identity element

$$\Rightarrow$$
 L.C.M (a, b) = 1 \Rightarrow a = b = 1

- 11
- Let, a & b \in Q⁺

 Which is invertible.

 (i) show that the operation * on Q⁺ defined by $a*b = \frac{1}{2}(a+b)$ is a binary operation (ii) show that * is commutative (iii) show that * is not associated as a*b = 0.

Sol. (i) Let, a & b \in Q⁺

Williams Bracilice Williams Bracilice

https://millionstar.godaddysites.com/

$$\Rightarrow$$
 $(a + b) \in Q^{+} \Rightarrow \frac{1}{2}(a + b) \in Q^{+} \Rightarrow a * b \in Q^{+}$

Hence, * on Q is a binary operation.

(ii) Let, a & b $\in Q^+$

$$a * b = \frac{1}{2} (a + b) = \frac{1}{2} (b + a) = b * a \forall a \& b \in Q^{+}$$

Hence, * is commutative on Q

(iii)
$$10 * (2 * 6) = 10 * \frac{1}{2}(2+6) = 10 * 4 = \frac{10+4}{2} = 7$$

$$(10 * 2) * 6 = \frac{1}{2}(10+2)*6 = 6*6 = \frac{6+6}{2} = 6$$

: $10 * (2 * 6) \neq (10 * 2) * 6$: * is not associative.

- 12. Show that the set A = (-1, 0, 1) is not closed for addition.
- **Sol.** We have, $1 \in A$, $1 \in A$ and $1+1=2 \notin A$. Hence, A is not closed for addition.
- 13. * on $R \{-1\}$, defined by $(a * b) = \frac{a}{(b+1)}$ is neither commutative nor associative

Sol. Commutativity: Let
$$a, b \in R - \{-1\}$$
, then $a * b = \frac{a}{b+1}$ and $b * a = \frac{b}{a+1}$

 $\Rightarrow a*b \neq b*a \Rightarrow * \text{ is not commutative on } R - \{-1\}.$

Associativity: Let $a, b, c \in R - \{-1\}$, then

$$(a*b)*c = \left(\frac{a}{b+1}\right)*c = \frac{a}{b+1} = \frac{a}{(b+1)(c+1)} \dots (1)$$

and
$$a*(b*c) = a*\left(\frac{b}{c+1}\right) = \frac{a}{\frac{b}{c+1}+1} = \frac{a(c+1)}{b+c+1}$$
 ...(2)

From (1) and (2), $(a*b)*c \neq a*(b*c)$ \Rightarrow * is not associative on $R-\{-1\}$

14. For all
$$a, b \in R$$
, we defined $a * b = |a-b|$

Show that * is commutative but not associative

Sol. Let, a &
$$b \in R$$
.

$$a * b = |a - b|$$

$$= |b - a| = b * a$$

$$\therefore$$
 * is commutative. $(2*3)*4 = 12 - 31*4$

and,
$$2*(3*4) = 2*(3-4)$$

$$= 2 * 1 = |2 - 1| = 1$$

$$(2*3)*4 \neq 2*(3*4)$$
 ... * is not associative

15. For all
$$a, b \in N$$
, we defined $a * b = a^3 + b^3$

Show that * is commutative but not associative

Sol. Let, a and
$$b \in N$$

$$a * b = a^3 + b^3$$

$$= b * a \forall a, b \in N$$

$$\therefore$$
 * is commutative. $(1 * 2) * 3 = (1^3 + 2^3) * 3$

=
$$9 * 3 = 9^3 + 3^3 = 729 + 2$$
 Thtps://shallionstar.godaddysites.com/
 $1 * (2 * 3) = 1 * (2^2 + 3^2)$
= $1 * 35 = 1^3 + 35^3 = 1 + 42875 = 42876$
 $\therefore (1 * 2) * 3 \pm 1 * (2 * 3) \therefore$ f is not associative

- 16. Let X be a non-empty set and * be a binary operation on P(X), the power set of X, defined by $A*B = A \cap B$ for all $A, B \in P(X)$.
 - (i) Find the identity element in (PX) (ii) Show that X is the only invertible element in P(X).
- **Sol.** (i) Since $A \cap X = A$ for all A in P(X). $\therefore X$ is the identity element.
 - (ii) Let A be invertible in P(X) and let B be its inverse. Then, $A \cap B = X$. This is possible only when A = B = X.
 - \therefore X is the only invertible element in P(X) and its inverse in X.
- 17. A binary operation * on the set $\{0,1,2,3,4,5\}$ is defined as $a*b = \begin{cases} a+b, & \text{if } a+b < 6 \\ a+b-6, & \text{if } a+b \ge 6 \end{cases}$ Show that 0 is the identity for this operation and each element a has an inverse (6-a)

Sol. Here,
$$a * 0 = a + 0$$
 $\left\{ \because a < 6 \\ \therefore a + 0 < 6 \\ \Rightarrow a * 0 = 0 \right\}$ Hence, O is the identity element Inverse element of $a : \rightarrow$

Let,
$$b = a^{-1}$$

 $\therefore a * b = 0$
 $\Rightarrow a + b = 0 \text{ if } a + b < 6$
or, $a + b - 6 = 0 \text{ if } a + b \ge 6$
If, $a + b = 0 \Rightarrow a = -b$
clearly, If $a = 0$ then, $a^{-1} = 0$
If, $a + b - 6 = 0$ then, $b = 6 - a$
 $\therefore a^{-1} = 6 - a$, $\forall a \in \{1, 2, 3, 4, 5\}$

EXERCISE 3-B [Pg.No. 78]

- 1. Define * on N by m*n = lcm(m, n). Show that * is a binary operation which is commutative as well as associative.
- Sol. Let m and $n \in N$, then m*n = lcm(m, n) = lcm(n, m) = n*mHence, * is commutative binary operation. and (m*n)*p = (lcm(m, n))*p = lcm of (lcm of (m, n) and p) = lcm of (m, n, p)and m*(n*p) = m*(lcm of (n, p)) = lcm of (m and lcm of (n, p)) = lcm of (m, n, p) $\therefore (m*n)*p = m*(n*p)$. Hence, the operation is associative.
- 2. Define * on Z by a*b=a-b+ab. Show that * is a binary operation on Z which is neither commutative nor associative.
- Sol. Commutativity: Let us take two elements 1 and 2 of Z.

Then, $1*2=1-2+1\times 2=Https://dmillionstall.gdda@ddybites.com/. <math>1*2\neq 2*1$

Hence, the binary operation is not commutative.

Associativity: 2, 3, $4 \in Z$

$$(2*3)*4 = (2-3+2\times3)*4 = 5*4 = 5-4+5\times4 = 21$$

and
$$2*(3*4) = 2*(3-4+12) = 2*11 = 2-11+2\times11=13$$

 \Rightarrow (2*3)*4 \neq (2*3)*4. Hence, binary operation is not associative.

- Define * on Z by a*b=a+b-ab. Show that * is a binary operation on Z which is commutative as well as associative.
- **Sol.** Let $a, b \in \mathbb{Z}$, then by definition a * b = a + b ab and b * a = b + a ba

Hence, a*b=b*a.

For Associativity: Let $a, b, c \in Z$.

Now,
$$(a*b)*c = (a+b-ab)*c = a+b-ab+c-(a+b-ab)c$$

$$= a+b+c-ab-bc-ca+abc \qquad ...(1)$$

and
$$a*(b*c) = a*(b+c-bc) = a+b+c-bc-a(b+c-bc)$$

$$=a+b+c-ab-bc-ca+abc$$
 ...(

Hence, by (1) and (2), $(a*b)*c = \vec{a} \times (\vec{b}*c)$

Hence, the binary operation on Z is associative.

- Consider a binary operation on $Q \{1\}$, defined by a * b = a + b ab4.
 - (i) Find the identity element in $Q \{1\}$
- (ii) Show that each $a \in Q \{1\}$ has its inverse
- Sol. (i) Let e be the identity element.

Then, $a * e = a \forall a \in Q \{1\}$

$$\Rightarrow$$
 a + e - ae = a \Rightarrow e(1 - a) = 0

$$\Rightarrow$$
 e = 0 \in Q - {1}

Now, a * 0 = a + 0 = a

and,
$$0 * a = 0 + a = a$$

thus, o is the identity element in $Q - \{1\}$

(ii) Let
$$a \in Q - \{1\}$$
 and Let, $a^{-1} = b$,

Now, a * b = 0

$$\Rightarrow a+b-ab=0 \Rightarrow a=ab-b \Rightarrow a=\left(a-1\right)\cdot b \Rightarrow b=\frac{a}{a-1}\in Q-\{1\} \Rightarrow a^{-1}=\frac{a}{a-1}\in Q-\{1\}$$

- Hence, each $a \in Q \{1\}$ has its inverse. Let Q_0 be the set of all non-zero rational numbers. Let * be a binary operation on Q_0 , defined by $a*b = \frac{ab}{4}$ for all $a, b \in Q_0$. (i) Show that * is commutative and associative (ii) Find the identity element in Q_0 (iii) Find the inverse of an element a in Q_0 Let $a*b = \frac{ab}{4}$ (i) For all $a, b, c \in Q_0$, we have $a*b = \frac{ab}{4} = \frac{ba}{4} = b*a$ and $(a*b)*e = \frac{ab}{4}*c = \frac{(ab)c}{4}$

Sol. Let
$$a*b = \frac{ab}{4}$$

Millions and Stars Practice

https://millionstar.godaddysites.com/

Also,
$$a^*(b^*c) = a^*\frac{bc}{4} = \frac{a(bc)}{4} = \frac{a(bc)}{16}$$
. But $(ab)c = a(bc)$. Hence, $(a^*b)^*c = a^*(b^*c)$

(ii) Let e be the identity element and let $a \in Q_0$. Then $a * e = a \implies \frac{ae}{A} = a \implies e = 4$

:. 4 is the identity element in Q.

- (iii) Let $a \in Q_0$ a and let its inverse be b, then, $a * b = e \implies \frac{ab}{A} = 4 \implies b = \frac{16}{a} \in Q_0$ Thus, each $a \in Q_0$ has $\frac{16}{a}$ as its inverse.
- On the set Q^+ of all positive rational numbers, define an operation * on Q^+ by $a*b = \frac{ab}{2}$ for all 6. $a,b \in O^+$

Show that

(i) * is a binary operation on Q^+ (ii) * is commutative (iii) * is associative

Find the identity element in Q^+ for *

What is the inverse of $a \in O^+$?

Sol. Let, a and $b \in Q^+$: a and $b \in Q^+$

Now,
$$a * b = \frac{ab}{2} = \frac{ba}{2} = b * a \forall a \& b Q Q$$

Now,
$$a * (b * c) = a * \left(\frac{bc}{2}\right)$$

$$= \frac{a\left(\frac{ab}{2}\right)}{2} = \frac{abc}{4} \qquad \text{and, } (a * b) * c = \frac{ab}{2} * c$$

$$=\frac{\frac{ab}{2} \cdot c}{2} = \frac{abc}{4}$$

$$(a * b) * c = a * (b * c), \forall a, b & c \in Q^+$$

Hence, * is associative on Q

Identity element:-

Let, $e \in Q^+$ b the identity element $\therefore a * e = a$ and e * a = a

$$\Rightarrow \frac{a \cdot e}{2} = a$$
 and $\frac{e \cdot a}{2} = a$ $\Rightarrow e = 2 \in Q^+$

Hence, e = 2 is the identity element on Q^+

Inverse of a :-

https://millionstar.godaddysites.com/

Now,
$$a * b = 2 \Rightarrow \frac{a \cdot b}{2} = 2 \Rightarrow b = \frac{4}{a} \Rightarrow a^{-1} = \frac{4}{a}$$

- Let Q^+ be the set of all positive rational numbers. 7.
 - (i) Show that the operation * on Q^+ defined by $a*b = \frac{1}{2}(a+b)$ is a binary operation
 - (ii) Show that * is commutative

(iii) Show that * is not associative

Sol. (i) On
$$Q^+$$
, * defined by $a*b = \frac{a+b}{2}$

It is seen that for each $a, b \in Q^+$, there is a unique element $\frac{a+b}{2}$ in Q^+

This means that * carries each pair (a, b) to a unique element $a * b = \frac{a+b}{2}$ in Q^+ .

Therefore, * is a binary operation.

- (ii) Commutative: $a*b = \frac{a+b}{2} = \frac{b+a}{2} = b*a$, a*b = b*a, which shows * is commutative.
- (iii) Associative: $(a*b)*c = \left(\frac{a+b}{2}\right)*c = \left(\frac{a+b}{2}\right)+c = \frac{a+b+2c}{2}$

$$a*(b*c) = a*\left(\frac{b+c}{2}\right) = \frac{a+\left(\frac{b+c}{2}\right)}{2} = \frac{2a+b+c}{4}$$

Now, $\frac{a+b+2c}{4} \neq \frac{2a+b+c}{4} \Rightarrow (a*b)*c \neq a*(b*c)$, hence, * is not associative.

- Let Q be the set of all rational numbers. Define an operation * on $Q \{-1\}$ by a * b = a + b + ab. 8 Show that:
 - (i) * is a binary operation on $Q \{-1\}$ (ii) * is commutative

(iii) * is associative

(iv)zero is the identity element in $Q - \{-1\}$ for *

(v)
$$a^{-1} = \left(\frac{-a}{1+a}\right)$$
, where $a \in Q - \{-1\}$

Sol. (i) On Q^+ , * is defined by a*b = a+b+ab, it is seen that for each $a, b \in Q^+$ these is unique element Note that a+b+ab=1 is not possible. \therefore If $a+b+ab=-1 \Rightarrow (1+a)(1+b)=0 \Rightarrow a=-1$ or b=-1, which is not possible. \therefore Both cannot be -1. 1. We have a*b=a+b+ab and b*a=b+a+ba and as a+b+ab=b+a+ba \therefore a*b=b*a. So, * is commutative on $R-\{-1\}$. 1. Associativity: For any $a,b,c\in R-\{-1\}$ we have a*b=a+b+ab=b+a+ba

- (ii) Commutativity: For any $a, b \in R \{-1\}$,

(iii) Associativity: For any $a, b, c \in R - \{-1\}$ we have (a*b)*c = (a+b+ab)*c

$$(a*b)*c = (a+b+ab)$$
tps://n(illian/star/g)daddysites.com/

$$\Rightarrow (a*b)*c = a+b+c+ab+bc+ac+abc \qquad \dots (1)$$

and
$$a*(b*c) = a*(b+c+bc)$$

$$a*(b*c) = a+(b+c+bc)+a(b+c+bc) = a+b+c+ab+bc+ca+abc$$
 ...(2)

From (1) and (2), we have,
$$(a*b)*c = a*(b*c)$$
 for all $a, b, c \in R - \{-1\}$

So, * is associative on $R - \{-1\}$.

(iv) Existence of identity: Let e be the identity element. Then, a*e=a=e*a for all $a \in R-\{-1\}$

$$\Rightarrow a+e+ae=a$$
 and $e+a+ea=a$ for all $a \in R-\{-1\}$

$$\Rightarrow e(1+a)=0$$
 for all $a \in R-\{-1\} \Rightarrow e=0$

Also, $o \in R - \{-1\}$. So, o is the identity element for * defined on $R - \{-1\}$.

Existence of inverse : Let $a \in R - \{-1\}$ and let b be the inverse of a.

Then,
$$a*b=e=b*a \Rightarrow a*b=e$$

$$\Rightarrow a+b+ab=0$$
 [:: Identity element is o]

$$\Rightarrow b = \frac{-a}{a+1}, \text{ Since, } a \in R - \{-1\} \quad [\because a \neq -1 \Rightarrow a+1 \neq 0, \text{ hence, } \frac{-a}{a+1} \text{ is defined}]$$

Hence, every element of $R - \{-1\}$ is invertible and the inverse of an element a is $\frac{-a}{a+1}$.

Let $A = N \times N$. Define * on A by (a, b)*(c, d) = (a+c, b+d)

Show that:

(i) A is closed for *

(ii) * is commutative

(iii) * is associative

(iv)identity element does not exist in A

Sol. (i) Let $(a, b) \in A$ and $(c, d) \in A$, then $a, b, c, d \in N$

$$(a, b)*(c, d) = (a+c, b+d) \in A$$
 [: $a+c \in N, b+d \in N$]

.: A is closed for *.

(ii) Commutativity: Let $(a, b), (c, d) \in A$,

then
$$(a, b)*(c, d) = (a+c, b+d)$$
 and $(c, d)*(a, b) = (c+a, d+b)$

$$\therefore a+c=c+a$$
 and $b+d=d+b$ for all $a, b, c, d \in N$

$$\therefore (a+c, b+d) = (c+a, d+b) \text{ for all } a, b, c, d \in \mathbb{N}$$

$$\Rightarrow$$
 $(a, b)*(c, d)=(c, d)*(a, b)$ for all $(a, b), (c, d) \in N \times N = A$

$$\{(a,b)*(c,d)\}*(e,f)=(a+c,b+d)*(e,f)=((a+c)+e,(b+d)+f$$

$$=(a+(c+e), b+(d+f))$$
 [: Addition is associative on N

$$=(a, b)*(c+e, d+f)=(a, b)*(c, d)*(e, f)$$

[: Addition is associative on N] $(c+e, d+f) = (a, b)*\{(c, d)*(e, f)\}$ So, '*' is associative on A.

(iv) Let (x, y) be the identity element in A. Then (a, b)*(x, y) = (a, b) for all $(a, b) \in A$ $\Rightarrow (a+x, b+y) = (a, b) \text{ for all } (a, b) \in A$ $\Rightarrow (a+x, b+y) = (a, b) \text{ for all } (a, b) \in A$

$$\Rightarrow$$
 $(a+x, b+y)=(a, b)$ for all $(a, b) \in A \Rightarrow a+x=a, b=b+y$ for all $a, b \in N$

 $\Rightarrow x = 0, y = 0$, clearly pso/millions targed and with some ment does not exist in A.

Let $A = \{1, -1, i, -i\}$ be the set of four 4th roots of unity. Prepare the composition table for multiplication on A and show that

- (i) A is closed for multiplication
- (ii) multiplication is associative on A
- (iii) multiplication is commutative on A
- (iv) 1 is the multiplicative identity
- (v) every element in A has its multiplicative inverse

Sol.

•	1	-1	i	-i
1	1	-1	i	-i
-1	-1	4	_i	i
i	i	-i	-1	-1
-i	-i	i	1	-1

- (i) Clearly every element of table belongs to the set A. Hence A is closed for multiplication.
- (ii) Clearly a(bc) = (ab)c is satisfied for all $a,b,c \in A$. Hence multiplication is Associative.
- (iii) Clearly the table is symmetrical about the diagonal line. Hence multiplication is commutative for A.
- (iv) As 1.1=1, 1.(-1)=-1, 1i=i and 1.(-i)=-i and 1.1=1, -1.1=-1, i.1=i and -i.1=-i. Hence 1 is multiplicative identity.
- (v) As 1 is present in every row and columns of product.Hence every element in A has its multiplicative inverse.

