Linear Equations in Two Varial

Linear Equation in two Variables: Equation

of the form: ax + by + c = 0

Here, a, b and c are real numbers, where a and b are not both zero.

Example: 2x + 3y - 9 = 0 is a linear equation of two variables because 2, 3 & -9 are all real numbers and also both $a, b \neq 0$.

- There are infinitely many solutions for a linear equation of two variables.
- The graph of every linear equation in two variables is a straight line.

Solution of an Equation in Two Variables

Example:

Given the equation 2x + 3y = 18, determine if the ordered pair (3, 4) is a solution to the equation.

We substitute 3 in for x and 4 in for y.

2(3) + 3(4) ? 18

6+12?18

18 = 18 True.

Therefore, the ordered pair (3, 4) is a solution to the equation 2x + 3y = 18.

Exercise 8A

Question 1:

(i) The given equation is x = 5

Million Stars & Practice Take two solutions of the given equation as x = 5, y = 1 and x = 5, y = -1

Thus we get the following table:

X	5	5
У	1	-1

Plot points P(5,1) and Q(5,-1) on the graph paper.

Join PQ. The line PQ is the required graph.

(ii) The given equation is y = -2

Take two solutions of the given equation as x = 1, y = -2 and x = 2, y = -2.

Thus we have the following table:

Х	1	2
У	-2	-2

Plot points P(1,-2) and Q(2,-2) on the graph paper. Join PQ. The line PQ is the required

Million Stars & Practice

graph.

(iii) The given equation is

$$x + 6 = 0$$

Let
$$x = -6 \& y = 1$$

$$x = -6 \& y = -1$$

Х	-6	-6
У	1	-1

Plot points P(-6,1) and Q(-6,-1) on the graph paper. Join PQ. The line PQ is the required graph.

Millions and Bracilice Alillions and Ariacilice Alillions and a second action action and a second action action and a second action act

(iv) The given equation is

$$x + 7 = 0$$

Let
$$x = -7$$
, $y = 2$ and $x = -7$, $y = 1$

Thus we have the following table:

Х	-7	-7
У	2	1

Plot points P(-7,2) and Q(-7,1) on the graph paper. Join PQ. The line PQ is the required graph.

Williams Braciles Phaciles Alling Control of the Children of t

- (v) y = 0 represents the x-axis
- (vi) x = 0 represents the y-axis.

Question 2:

The given equation is y = 3x.

Putting x = 1, y = 3 (1) = 3

Putting x = 2, y = 3(2) = 6

Thus, we have the following table:

Х	1	2
У	3	6

Plot points (1,3) and (2,6) on a graph paper and join them to get the required graph.

Million Stars & Practice

Take a point P on the left of y-axis such that the distance of point P from the y-axis is 2 units.

Draw PQ parallel to y-axis cutting the line y = 3x at Q. Draw QN parallel to x-axis meeting y-axis at N.

So,
$$y = ON = -6$$
.

The given equation is,

$$x + 2y - 3 = 0$$

$$\Rightarrow$$
 x = 3 - 2y

Putting $y = 1, x = 3 - (2 \times 1) = 1$

Putting y = 0, $x = 3 - (2 \times 0) = 3$

Thus, we have the following table:

Williams Braciles Phaciles

Х	1	3
У	1	0

Plot points (1,1) and (3,0) on a graph paper and join them to get the required graph.

Take a point Q on x-axis such that OQ = 5.

Draw QP parallel to y-axis meeting the line (x = 3 - 2y) at P.

Through P, draw PM parallel to x-axis cutting y-axis at M.

So, y = OM = -1.

Question 4:

(i) The given equation is y = x

Let x = 1, then y = 1 and let x = 2, then y = 2

Thus, we have the following table:

Х	1	2
У	1	2

Plot points (1,1) and (2,2) on a graph paper and join them to get the required graph.

Williams & Practice

(ii) The given equation is y = -x

Now, if x = 1, y = -1 and if x = 2, y = -2

Thus, we have the following table:

	Х	1	2
	У	-1	-2
ı			

Plot points (1,-1) and (2,-2) on a graph paper and join them to get the required graph.

(iii) The given equation is y + 3x = 0

⇒ y = -3x

Now, if x = -1, then y = -3(-1) = 3

Allinean Practice

And, if x = 1, then y = -3(1) = -3

Thus we have the following table:

Х	1	-1
У	-3	3

Plot points (1,-3) and (-1,3) on a graph paper and join them to get the required graph.

(iv) The given equation is 2x + 3y = 0

$$\Rightarrow$$
 y = $\frac{-2}{3}$ x

Now, if x = 3, then

$$y = \frac{-2}{3} \times 3 = -2$$

And, if x = -3, then

$$y = \frac{-2}{3} \times (-3) = 2$$

Thus, we have the following table

X	3	-3
У	-2	2

Million State & Practice Plot points (3,-2) and (-3,2) on a graph paper and join them to get the required graph.

(v) The given equation is
$$3x - 2y = 0$$

$$\Rightarrow$$
 y = $\frac{3}{2}$ x

Now, if x = 2,

$$y = \frac{3}{2} \times 2 = 3$$

And, if
$$x = -2$$
,

$$y = \frac{3}{2} \times (-2) = -3$$

Thus, we have the following table:

Х	2	-2
У	3	-3

Plot points (2,3) and (-2,-3) on a graph paper and join them to get the required graph.

Millions and Practice

(vi) The given equation is 2x + y = 0

 \Rightarrow y = -2x

Now, if x = 1, then y = -21 = -2

And, if x = -1, then y = -2(-1) = 2

Thus, we have the following table:

Х	1	-1
У	-2	2

Plot points (1,-2) and (-1,2) on a graph paper and join them to get the required graph.

Williams Braciles Phaciles Alling Control of the Children of t

Question 5:

The given equation is, 2x - 3y = 5 $\Rightarrow y = \frac{2x - 5}{3}$

$$\Rightarrow \sqrt{=} \frac{2x-5}{3}$$

Now, if x = 4, then
$$y = \frac{2(4)-5}{3} = \frac{8-5}{3} = 1$$

And, if x = -2, then

$$y = \frac{2(-2)-5}{3} = \frac{-4-5}{3} = \frac{-9}{3} = -3$$

Thus, we have the following table:

Х	4	-2
У	1	-3

Millions are edulactice while the contraction of th Plot points (4,1) and (-2,-3) on a graph paper and join them to get the required graph.

(i) When x = 4, draw a line parallel to y-axis at a distance of 4 units from y-axis to its right cutting the line at Q and through Q draw a line parallel to x-axis cutting y-axis which is found to be at a distance of 1 units above x-axis.

Thus, y = 1 when x = 4.

(ii) When y = 3, draw a line parallel to x-axis at a distance of 3 units from x-axis and above it, cutting the line at point P. Through P, draw a line parallel to y-axis meeting x-axis at a point which is found be 7 units to the right of y axis.

Thus, when y = 3, x = 7.

Question 6:

The given equation is 2x + y = 6

$$\Rightarrow$$
 y = 6 - 2x

Now, if
$$x = 1$$
, then $y = 6 - 2(1) = 4$

And, if
$$x = 2$$
, then $y = 6 - 2(2) = 2$

Thus, we have the following table:

X	1	2
У	4	2

Million Stars & Practice
Anillion Stars Plot points (1,4) and (2,2) on a graph paper and join them to get the required graph.

We find that the line cuts the x-axis at a point P which is at a distance of 3 units to the right of y-axis.

So, the co-ordinates of P are (3,0).

Question 7:

The given equation is 3x + 2y = 6

$$\Rightarrow$$
 2y = 6 - 3x

$$\Rightarrow 2y = 6 - 3x$$
$$\Rightarrow y = \frac{6 - 3x}{2}$$

Now, if x = 2, then

$$y = \frac{6 - 3(2)}{2} = 0$$

And, if x = 4, then

$$y = \frac{6 - 3(4)}{2} = \frac{-6}{2} = -3$$

Thus, we have the following table:

Х	2	4
У	0	-3

Allioneans & Practice Plot points (2, 0) and (4,-3) on a graph paper and join them to get the required graph.

We find that the line 3x + 2y = 6 cuts the y-axis at a point P which is 3 units above the x-axis.

So, co-ordinates of P are (0,3).

Millions are a practice with the property of t