Remove Watermark

Wondershare

PDFelement

Exercise – 9.1

- In a $\triangle ABC$, if $\angle A = 55^\circ$, $\angle B = 40^\circ$, find $\angle C$. 1. Sol: Given $\angle A = 55^\circ$, $\angle B = 40^\circ$ then $\angle C = ?$ We know that In $a \Delta ABC$ sum of all angles of triangle is 180° *i.e.*, $\angle A + \angle B + \angle C = 180^{\circ}$ \Rightarrow 55°+40° $\angle C$ =180° \Rightarrow 95° + $\angle C$ = 180° $\Rightarrow \angle C = 180^{\circ} - 95^{\circ}$ $\Rightarrow \angle C = 85^{\circ}$
- 2. If the angles of a triangle are in the ratio 1: 2 : 3, determine three angles. Sol:

offelemen Stelemen Given that the angles of a triangle are in the ratio 1:2:3Let the angles be a, 2a, 3a

: We know that Sum of all angles of triangles is 180° $a + 2a + 3a = 180^{\circ}$ $\Rightarrow 6a = 180^{\circ}$ $\Rightarrow a = \frac{180^{\circ}}{6}$ $\Rightarrow a = 30^{\circ}$ Since $a = 30^{\circ}$ $2a = 2(30)^\circ = 60^\circ$ $3a = 3(30)^{\circ} = 90^{\circ}$ \therefore angles are $a = 30^\circ, 2a = 60^\circ, 3a = 90^\circ$ \therefore Hence angles are 30°, 60° and 90°

The angles of a triangle are $(x - 40)^\circ$, $(x - 20)^\circ$ and $(\frac{1}{2}x - 10)^\circ$. Find the value of x. Sol: Given that The angles of a triangle are $(x - 40^\circ), (x - 20)^\circ$ and $(\frac{x}{2} - 10)^\circ$ We know that We know that 3.

$$(x-40^\circ), (x-20)^\circ \text{ and } \left(\frac{x}{2}-10\right)$$

Maths

Sum of all angles of triangle is 180°

$$\therefore x - 40^{\circ} + x - 20^{\circ} + \frac{x}{2} - 10^{\circ} = 180^{\circ}$$

$$2x + \frac{x}{2} - 70^{\circ} = 180^{\circ}$$

$$\frac{5x}{2} = 180 + 70^{\circ}$$

$$5x = 250^{\circ}(2)$$

$$x = 50^{\circ}(2)$$

$$x = 100^{\circ}$$

$$\therefore x = 100^{\circ}$$

4. The angles of a triangle are arranged in ascending order of magnitude. If the difference between two consecutive angles is 10°, find the three angles.

Sol:

Given that,

The difference between two consecutive angles is 10°

Let
$$x, x+10, x+20$$
 be the consecutive angles differ by 10°

 $W \cdot K \cdot T$ sum of all angles of triangle is 180°

 $x + x + 10 + x + 20 = 180^{\circ}$

$$3x + 30 = 180^{\circ}$$

$$\Rightarrow 3x = 180 - 30^{\circ} \Rightarrow 3x = 150^{\circ}$$

 $\Rightarrow x = 50^{\circ}$

$$\therefore x = 50^{\circ}$$

... The required angles are

x, x + 10 and x + 20

x = 50

x + 10 = 50 + 10 = 60

x + 20 = 50 + 10 + 10 = 70

Two angles of a triangle are equal and the third angle is greater than each of those angles by 30°. Determine all the angles of the triangle. Sol: Given that, Two angles are equal and the third 5.

Two angles are equal and the third angle is greater than each of those angles by 30°. Let x, x, x + 30 be the angles of a triangle

Wondershare

PDFelement

We know that Sum of all angles of a triangle is 180° $x + x + x + 30 = 180^{\circ}$ $3x + 30 = 180^{\circ}$ \Rightarrow 3x = 180° - 30° \Rightarrow 3x = 150° $\Rightarrow x = \frac{150^{\circ}}{3}$ $\Rightarrow x = 50^{\circ}$ \therefore The angles are x, x, x + 30 $x = 50^{\circ}$ $x + 30 = 80^{\circ}$ \therefore The required angles are 50°, 50°, 80°

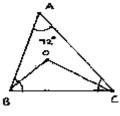
If one angle of a triangle is equal to the sum of the other two, show that the triangle is a 6. right triangle.

Sol:

If one angle of a triangle is equal to the sum of other two

i.e., $\angle B = \angle A + \angle C$ Now, in $\triangle ABC$ (Sum of all angles of triangle 180°) $\angle A + \angle B + \angle C = 180^{\circ}$ $[:: \angle B = \angle A + \angle C]$ $\angle B + \angle B = 180^{\circ}$ $2\angle B = 180^{\circ}$ $\angle B = \frac{180^\circ}{2}$ $\angle B = 90^{\circ}$ \therefore *ABC* is a right angled a triangle.

Millionstanse practice ABC is a triangle in which $\angle A - 72^\circ$, the internal bisectors of angles B and C meet in O. 7. Find the magnitude of $\angle ROC$.



Maths

ABC is a triangle $\angle A = 72^{\circ}$ and internal bisector of angles B and C meeting O In $\triangle ABC = \angle A + \angle B + \angle C = 180^{\circ}$ \Rightarrow 72°+ $\angle B$ + $\angle C$ =180° $\Rightarrow \angle B + \angle C = 180^{\circ} - 72^{\circ}$ divide both sides by '2' $\Rightarrow \frac{\angle B}{2} + \frac{\angle C}{2} = \frac{108^{\circ}}{2}$(1) $\Rightarrow \angle OBC + \angle OCB = 54^{\circ}$(1) Now in $\triangle BOC \Rightarrow \angle OBC + \angle OCB + \angle BOC = 180^{\circ}$ \Rightarrow 54°+ $\angle BOC = 180°$ $\Rightarrow \angle BOC = 180^{\circ} - 54^{\circ} = 126^{\circ}$ $\therefore \angle BOC = 126^{\circ}$

8. The bisectors of base angles of a triangle cannot enclose a right angle in any case. Sol:

In a $\triangle ABC$

Sum of all angles of triangles is 180°

i.e., $\angle A + \angle B + \angle C = 180^\circ$ divide both sides by

$$\Rightarrow \frac{1}{2} \angle A + \frac{1}{2} \angle B + \frac{1}{2} \angle C = 180^{\circ}$$

$$\Rightarrow \frac{1}{2} \angle A + \angle OBC + \angle OBC = 90^{\circ}$$
 [:: *OB*, *OC* insects $\angle B$ and $\angle C$]

$$\Rightarrow \angle OBC + \angle OCB = 90^\circ - \frac{1}{2}A$$

Now in $\triangle BOC$ $\therefore \angle BOC + \angle OBC + \angle OCB = 180^{\circ}$ 1

$$\Rightarrow \angle BOC + 90^{\circ} - \frac{1}{2} \angle A = 180^{\circ}$$
$$\Rightarrow \angle BOC = 90^{\circ} - \frac{1}{2} \angle A$$

Million ann a practice Hence, bisectors of a base angle cannot enclose right angle.

Class IX

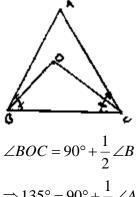
Wondershare

9. If the bisectors of the base angles of a triangle enclose an angle of 135° , prove that the triangle is a right triangle.

Sol:

Given the bisectors the base angles of an triangle enclose an angle of 135°

i.e., $\angle BOC = 135^{\circ}$ But, W.K.T



$$\Rightarrow 135^{\circ} = 90^{\circ} + \frac{1}{2} \angle A$$
$$\Rightarrow \frac{1}{2} \angle A = 135^{\circ} - 90^{\circ}$$
$$\Rightarrow \angle A = 45^{\circ}(2)$$
$$\Rightarrow \angle A = 90^{\circ}$$

dersharent $\therefore \Delta ABC$ is right angled triangle right angled at A.

In a $\triangle ABC$, $\angle ABC = \angle ACB$ and the bisectors of $\angle ABC$ and $\angle ACB$ intersect at O such 10. that $\angle BOC = 120^\circ$. Show that $\angle A = \angle B = \angle C = 60^\circ$. Sol: Given, In $\triangle ABC$ $\angle ABC = \angle ACB$ Millioneann educitice Divide both sides by '2' $\frac{1}{2} \angle ABC = \frac{1}{2} \angle ACB$ $\Rightarrow \angle OBC = \angle OCB$ [:: OB, OC bisects $\angle B$ and $\angle C$]

Class IX

Nondershare PDFelement

Maths

Now

$$\angle BOC = 90^{\circ} + \frac{1}{2} \angle A$$

$$\Rightarrow 120^{\circ} - 90^{\circ} = \frac{1}{2} \angle A$$

$$\Rightarrow 30^{\circ} \times (2) = \angle A$$

$$\Rightarrow \angle A = 60^{\circ}$$

Now in $\triangle ABC$

$$\angle A + \angle ABC + \angle ACB = 180^{\circ}$$

$$\Rightarrow 60^{\circ} + 2\angle ABC = 180^{\circ}$$

$$\Rightarrow 2\angle ABC = 180^{\circ} - 60^{\circ}$$

$$\Rightarrow \angle ABC = \frac{120^{\circ}}{2} = 90^{\circ}$$

$$\Rightarrow \angle ABC = \angle ACB$$

$$\therefore \angle ACB = 60^{\circ}$$

Hence proved.

(Sum of all angles of a triangle) $[:: \angle ABC = \angle ACB]$

(iv)

(v)

- 11. Can a triangle have:
 - Two right angles? (i)
 - (ii) Two obtuse angles?
 - Two acute angles? (iii)
 - Justify your answer in each case.

Sol:

(i) No,

> Two right angles would up to 180°, So the third angle becomes zero. This is not possible, so a triangle cannot have two right angles. [Since sum of angles in a triangle is 180°]

(ii) No,

> s practice A triangle can't have 2 obtuse angles. Obtuse angle means more than 90° So that the sum of the two sides will exceed 180° which is not possible. As the sum of all three angles of a triangle is 180°.

(iii) Yes

A triangle can have 2 acute angle. Acute angle means less the 90° angle

(iv) No,

Having angles-more than 60° make that sum more than 18°. Which is not possible [·: The sum of all the internal angles of a triangle is 180°]

- All angles more than 60° ?
- All angles less than 60° ?
- All angles equal to 60° ? (vi)

Maths

(v) No,

Having all angles less than 60° will make that sum less than 180° which is not possible.

[:: The sum of all the internal angles of a triangle is 180°]

(vi) Yes

A triangle can have three angles are equal to 60° . Then the sum of three angles equal to the 180°. Which is possible such triangles are called as equilateral triangle. [:: The sum of all the internal angles of a triangle is 180°]

12. If each angle of a triangle is less than the sum of the other two, show that the triangle is acute angled.

Sol:

Given each angle of a triangle less than the sum of the other two

 $\therefore \angle A + \angle B + \angle C$ $\Rightarrow \angle A + \angle A < \angle A + \angle B + \angle C$

 $\Rightarrow 2\angle A < 180^{\circ} \qquad [Sum of all angles of a triangle] \\\Rightarrow \angle A < 90^{\circ} \\Similarly \ \angle B < 90^{\circ} \text{ and } \ \angle C < 90^{\circ} \\Hence, the triangles acute angled.$

