Millions and Apractice
Animal Earn

CIRCLES

EXERCISE 10.1

Fill in the blanks:
(i) The centre of a circle lies in of the circle. (exterior/interior)
(ii) A point, whose distance from the centre of a circle is greater than its radius lies in of the circle. (exterior/interior)
(iii) The longest chord of a circle is a of the circle.
(iv) An arc is a when its ends are the ends of a diameter.
(v) Segment of a circle is the region between an arc and of the circle.
(vi) A circle divides the plane, on which it lies in parts.
(i) interior (ii) exterior (iii) diameter (iv) semicircle (v) the chord (vi)
three
Write True or False: Give reasons for your answers.
(i) Line segment joining the centre to any point on the circle is a radius of the circle.
(ii) A circle has only finite number of equal chords.
(iii) If a circle is divided into three equal arcs, each is a major arc.
(iv) A chord of a circle, which is twice as long as its radius, is a diameter of the circle.
(v) Sector is the region between the chord and its corresponding arc.
(vi) A circle is a plane figure.

Sol. (i) True (ii) False (iii) False (iv) True (v) False (vi) True

EXERCISE 10.2

- Q.1. Recall that two circles are congruent if they have the same radii. Prove that equal chords of congruent circles subtend equal angles at their centres.
- **Sol. Given :** Two congruent circles with centres O and O'. AB and CD are equal chords of the circles with centres O and O' respectively.

To Prove : ∠AOB = ∠COD

Proof: In triangles AOB and COD,

Proved. [CPCT] $\Rightarrow \angle AOB \cong \angle CO'D$

Ans. Given: Two congruent circles with centres O and O'. AB and CD are chords of circles with centre O and O' respectively such that ∠AOB $= \angle CO'D$

To Prove : AB = CD

Proof: In triangles AOB and CO'D,

$$AO = CO'$$
 $BO = DO'$
[Radii of congruent circle]
 $AOP = ACO'D$
[Civen]

 $\angle AOB = \angle CO'D$ [Given] [SAS axiom] $\Rightarrow \Delta AOB \cong \Delta CO'D$

AB = CDProved. [CPCT]

10

CIRCLES

EXERCISE 10.3

Q.1. Draw different pairs of circles. How many points does each pair have in common? What is the maximum number of common points?

Ans.

(ii)

(i) 0 point

(ii) 1 point

(iii) 2 points

Maximum number of common points = 2 Ans.

Q.2. Suppose you are given a circle. Give a construction to find its centre.

Ans. Steps of Construction:

- 1. Take arc PQ of the given circle.
- 2. Take a point R on the arc PQ and draw chords PR and RQ.
- 3. Draw perpendicular bisectors of PR and RQ. These perpendicular bisectors intersect at point O. Hence, point O is the centre of the given circle.

Ans. Given : AB is the common chord of two intersecting circles (O, r) and (O', r'). **To Prove :** Centres of both circles lie on the perpendicular bisector of chord AB, i.e., AB is bisected at right angle by OO'.

Construction: Join AO, BO, AO' and BO'.

Proof: In $\triangle AOO'$ and $\triangle BOO'$

AO = OB (Radii of the circle (O, r)

AO' = BO' (Radii of the circle (O', r'))

OO' = OO' (Common)

 $\triangle AOO' \cong \Delta BOO'$ (SSS congruency)

 \Rightarrow $\angle AOO' = \angle BOO'$ (CPCT)

Now in $\triangle AOC$ and $\triangle BOC$

 $\angle AOC = \angle BOC \ (\angle AOO' = \angle BOO')$

AO = BO (Radii of the circle (O, r))

OC = OC (Common)

 $\begin{array}{ll} \therefore & \Delta AOC \cong \Delta BOC \quad (SAS \ congruency) \\ \Rightarrow & AC = BC \ and \ \angle ACO = \angle BCO \quad ...(i) \ (CPCT) \\ \Rightarrow \angle ACO + \angle BCO = 180^{\circ} \qquad \qquad ..(ii) \ (Linear \ pair) \\ \end{array}$

 $\Rightarrow \angle ACO = \angle BCO = 90^{\circ}$ (From (i) and (ii)) Hence, OO' lie on the perpendicular bisector of AB

Million Stars Practice

EXERCISE 10.4

- **Q.1.** Two circles of radii 5 cm and 3 cm intersect at two points and the distance between their centres is 4 cm. Find the length of the common chord.
- **Sol.** In $\triangle AOO'$,

$$AO^{2} = 5^{2} = 25$$

 $AO'^{2} = 3^{2} = 9$
 $OO'^{2} = 4^{2} = 16$
 $AO'^{2} + OO'^{2} = 9 + 16 = 25 = AO^{2}$
 $\Rightarrow \angle AO'O$
 $= 90^{\circ}$

[By converse of pythagoras theorem]

Similarly, $\angle BO'O = 90^{\circ}$.

- $\angle AO'B = 90^{\circ} + 90^{\circ} = 180^{\circ}$
- AO'B is a straight line. whose mid-point is O.
- \Rightarrow AB = (3 + 3) cm = 6 cm **Ans.**
- **Q.2.** If two equal chords of a circle intersect within the circle, prove that the segments of one chord are equal to corresponding segments of the other chord.
- **Sol. Given:** AB and CD are two equal chords of a circle which meet at E. **To prove :** AE = CE and BE = DE

Construction: Draw OM \perp AB and ON \perp CD and join OE. **Proof**: In ΔOME and ΔONE

OM = ON [Equal chords are equidistant]

$$OE = OE$$
 [Common]

 $\angle OME = \angle ONE$ [Each equal to 90°]

$$\therefore \quad \Delta OME \cong \Delta ONE \qquad [RHS axiom]$$

$$\Rightarrow \qquad \text{EM} = \text{EN} \qquad \dots \text{(i)} \qquad \text{[CPCT]}$$

Now
$$AB = CD$$
 [Given]

$$\Rightarrow \frac{1}{2} AB = \frac{1}{2} CD$$

$$\Rightarrow$$
 AM = CN ...(ii) [Perpendicular from

centre bisects the chordl

Adding (i) and (ii), we get

$$EM + AM = EN + CN$$

$$\Rightarrow$$
 AE = CE ...(iii)

Now,
$$AB = CD$$
 ...(iv)

$$\Rightarrow$$
 AB - AE = CD - AE [From (iii)]

$$\Rightarrow$$
 BE = CD - CE **Proved.**

- **Q.3.** If two equal chords of a circle intersect within the circle, prove that the line joining the point of intersection to the centre makes equal angles with the chords.
- me ection **Sol. Given:** AB and CD are two equal chords of a circle which meet at E within the circle and a line PQ joining the point of intersection to the centre.

To Prove : $\angle AEQ = \angle DEQ$

Construction : Draw $OL \perp AB$ and $OM \perp CD$.

Proof : In \triangle OLE and \triangle OME, we have

OL = OM [Equal chords are equidistant]

OE = OE

[Common]

∠OLE = ∠OME

 $[Each = 90^{\circ}]$

 $\therefore \Delta OLE \cong \Delta OME$

[RHS congruence]

$$\Rightarrow$$
 \angle LEO = \angle MEO

[CPCT]

Sol. Given: A line AD intersects two concentric circles at A, B, C and D, where O is the centre of these circles.

To prove : AB = CD

Construction : Draw OM \perp AD.

Proof: AD is the chord of larger circle.

AM = DM..(i) [OM bisects the chord]

BC is the chord of smaller circle

..(ii) [OM bisects the chord] BM = CM

Subtracting (ii) from (i), we get

$$AM - BM = DM - CM$$

 $\Rightarrow AB = CD$ **Proved.**

Draw OL \perp RS,

$$OL^2 = OR^2 - RL^2$$

$$OL^2 = 5^2 - 3^2$$
 [RL = 3 m, because OL \perp RS]
= 25 - 9 = 16

$$OL = \sqrt{16} = 4$$

Now, area of triangle ORS =
$$\frac{1}{2} \times KR \times 05$$

$$= \frac{1}{2} \times KR \times 05$$

$$= \frac{1}{2} \times KR \times 05$$
Also, area of $\triangle ORS = \frac{1}{2} \times RS \times OL = \frac{1}{2} \times 6 \times 4 = 12 \text{ m}^2$

$$\Rightarrow \frac{1}{2} \times KR \times 5 = 12$$

$$\Rightarrow KR = \frac{12 \times 2}{5} = \frac{24}{5} = 4.8 \text{ m}$$

$$\Rightarrow RM = 2KR$$

$$\Rightarrow RM = 2 \times 4.8 = 9.6 \text{ m}$$
Hence, distance between Reshma and Mandip is 9.6 m Ans.

$$\Rightarrow \frac{1}{2} \times KR \times 5 = 12$$

$$\Rightarrow$$
 KR = $\frac{12\times2}{5} = \frac{24}{5} = 4.8 \text{ m}$

$$\Rightarrow$$
 RM = 2KR

$$\Rightarrow$$
 RM = 2 × 4.8 = 9.6 m

- **Q.6.** A circular park of radius 20 m is situated in a colony. Three boys Ankur, Syed and David are siting at equal distance on its boundary each having a toy telephone in his hands to talk each other. Find the length of the string of each phone.
- **Sol.** Let Ankur, Syed and David be represented by A, S and D respectively.

Let PD = SP = SQ = QA = AR = RD =
$$x$$
 In \triangle OPD,

$$OP^2 = 400 - x^2$$

$$\Rightarrow$$
 OP = $\sqrt{400-x^2}$

$$\Rightarrow AP = 2\sqrt{400 - x^2} + \sqrt{400 - x^2}$$
[:: centroid divides the median in the ratio 2 : 1]
$$= 3\sqrt{400 - x^2}$$

Now, in
$$\triangle APD$$
,

$$PD^2 = AD^2 - DP^2$$

$$\Rightarrow x^2 = (2x)^2 - (3\sqrt{400 - x^2})^2$$

$$\Rightarrow$$
 $x^2 = 4x^2 - 9(400 - x^2)$

$$\Rightarrow$$
 $x^2 = 4x^2 - 3600 + 9x^2$

$$\Rightarrow$$
 12 $x^2 = 3600$

$$\Rightarrow x^2 = 4x^2 - 3600 + 9x^2$$

$$\Rightarrow 12x^2 = 3600$$

$$\Rightarrow x^2 = \frac{3600}{12} = 300$$

$$\Rightarrow x = 10\sqrt{3}$$

$$\Rightarrow$$
 $x = 10\sqrt{3}$

Now, SD =
$$2x = 2 \times 10\sqrt{3} = 20\sqrt{3}$$

: ASD is an equilateral triangle.

$$\Rightarrow$$
 SD = AS = AD = $20\sqrt{3}$

Hence, length of the string of each phone is $20 \sqrt{3}$ m Ans.

EXERCISE 10.5

Q.1. In the figure, A, B and C are three points on a circle with centre O such that $\angle BOC = 30^{\circ}$ and $\angle AOB = 60^{\circ}$. If D is a point on the circle other than the arc ABC, find \angle ADC.

Sol. We have, $\angle BOC = 30^{\circ}$ and $\angle AOB = 60^{\circ}$

$$\angle AOC = \angle AOB + \angle BOC = 60^{\circ} + 30^{\circ} = 90^{\circ}$$

We know that angle subtended by an arc at the centre of a circle is double the angle subtended by the same arc on the remaining part of the circle.

$$\Rightarrow$$
 $\angle ADC = \frac{1}{2} \angle AOC = \frac{1}{2} \times 90^{\circ}$ $\Rightarrow \angle ADC = 45^{\circ}$ Ans.

- **Q.2.** A chord of a circle is equal to the radius of the circle. Find the angle subtended by the chord at a point on the minor arc and also at a point on the major arc.
- **Sol.** We have, OA = OB = AB

Therefore, $\triangle OAB$ is a equilateral triangle.

$$\Rightarrow$$
 $\angle AOB = 60^{\circ}$

We know that angle subtended by an arc at the centre of a circle is double the angle subtended by the same arc on the remaining part of the circle.

$$\Rightarrow$$
 $\angle ACB = \frac{1}{2} \angle AOB = \frac{1}{2} \times 60^{\circ}$

$$\Rightarrow$$
 $\angle ACB = 30^{\circ}$

Also,
$$\angle ADB = \frac{1}{2} \text{ reflex } \angle AOB$$

$$= \frac{1}{2}(360^{\circ} - 60^{\circ}) = \frac{1}{2} \times 300^{\circ} = 150^{\circ}$$

Hence, angle subtended by the chord at a point on the minor arc is 150° and at a point on the major arc is 30° Ans.

- Willion Son a **Q.3.** In the figure, $\angle PQR = 100^{\circ}$, where P, Q and R are points on a circle with centre O. Find $\angle OPR$.
- **Sol.** Reflex angle POR = 2∠PQR

$$= 2 \times 100^{\circ} = 200^{\circ}$$

Now, angle POR = $360^{\circ} - 200 = 160^{\circ}$ Also,

Page | 2

[Angle sum property of a triangle]. **Ans.**

Q.4. In the figure,
$$\angle ABC = 69^{\circ}$$
, $\angle ACB = 31^{\circ}$, find $\angle BDC$.

Sol. In
$$\triangle ABC$$
, we have

$$\angle ABC + \angle ACB + \angle BAC = 180^{\circ}$$

[Angle sum property of a triangle]

$$\Rightarrow$$
 69° + 31° + \angle BAC = 180°

$$\Rightarrow \qquad \angle BAC = 180^{\circ} - 100^{\circ} = 80^{\circ}$$

Also, ∠BAC= ∠BDC [Angles in the same segment]

$$\Rightarrow$$
 $\angle BDC = 80^{\circ}$ **Ans.**

Q.5. In the figrue, A, B, C and D are four points on a circle. AC and BD intersect at a point E such that $\angle BEC = 130^{\circ}$ and $\angle ECD = 20^{\circ}$. Find $\angle BAC$.

Sol.
$$\angle BEC + \angle DEC = 180^{\circ}$$
 [Linear pair]
 $\Rightarrow 130^{\circ} + \angle DEC = 180^{\circ}$
 $\Rightarrow \angle DEC = 180^{\circ} - 130^{\circ} = 50^{\circ}$
Now, in $\triangle DEC$,
 $\Rightarrow \angle DEC + \angle DCE + \angle CDE = 180^{\circ}$
[Angle sum property of a triangle]
 $\Rightarrow 50^{\circ} + 20^{\circ} + \angle CDE = 180^{\circ}$

$$\Rightarrow 50^{\circ} + 20^{\circ} + \angle CDE = 180^{\circ}$$

$$\Rightarrow$$
 $\angle CDE = 180^{\circ} - 70^{\circ} = 110^{\circ}$

∠CDE = 180 - 70 = 110 ∠CDE = ∠BAC [Angles in same segment] ∠BAC = 110° Ans. Also,

$$\Rightarrow$$
 $\angle BAC = 110^{\circ} \text{ Ans}$

- **Q.6.** ABCD is a cyclic quadrilateral whose diagonals intersect at a point E. If $\angle DBC = 70^{\circ}$, $\angle BAC = 30^{\circ}$, find $\angle BCD$. Further, if AB = BC, find $\angle ECD$.
- **Sol.** $\angle CAD = \angle DBC = 70^{\circ}$ [Angles in the same segment] Therefore, $\angle DAB = \angle CAD + \angle BAC$

Therefore,
$$\angle DAB = \angle CAD + \angle BAC$$

= $70^{\circ} + 30^{\circ} = 100^{\circ}$

But, $\angle DAB + \angle BCD = 180^{\circ}$

[Opposite angles of a cyclic quadrilateral]

So,
$$\angle BCD = 180^{\circ} - 100^{\circ} = 80^{\circ}$$

Now, we have AB = BC

Therefore, $\angle BCA = 30^{\circ}$ [Opposite angles of an isosceles triangle] Again, $\angle DAB + \angle BCD = 180^{\circ}$

[Opposite angles of a cyclic quadrilateral]

$$\Rightarrow 100^{\circ} + \angle BCA + \angle ECD = 180^{\circ} \ [\because \angle BCD = \angle BCA + \angle ECD]$$

$$\Rightarrow 100^{\circ} + 30^{\circ} + \angle ECD = 180^{\circ}$$

$$\Rightarrow$$
 130° + \angle ECD = 180°

$$\Rightarrow \angle ECD = 180^{\circ} - 130^{\circ} = 50^{\circ}$$

Hence, $\angle BCD = 80^{\circ}$ and $\angle ECD = 50^{\circ}$ Ans.

- **Q.7.** If diagonals of a cyclic quadrilateral are diameters of the circle through the vertices of the quadrilateral, prove that it is a rectangle.
- **Sol. Given :** ABCD is a cyclic quadrilateral, whose diagonals AC and BD are diameter of the circle passing through A, B, C and D.

To Prove : ABCD is a rectangle.

Proof : In $\triangle AOD$ and $\triangle COB$

∠AOD = ∠COB [Vertically opposite angles]

$$\therefore \quad \Delta AOD \cong \Delta COB \quad [SAS axiom]$$

$$\therefore$$
 $\angle OAD = \angle OCB$ [CPCT]

But these are alternate interior angles made by the transversal AC, intersecting AD and BC.

Similarly, AB || CD.

Hence, quadrilateral ABCD is a parallelogram.

And,
$$\angle ABC + \angle ADC = 180^{\circ}$$
 ...(ii)

[Sum of opposite angles of a cyclic quadrilateral is 180°]

$$\Rightarrow \angle ABC = \angle ADC = 90^{\circ}$$
 [From (i) and (ii)]

 \therefore ABCD is a rectangle. $\;$ [A $\parallel\!\text{gm}$ one of whose angles is

90° is a rectangle] **Proved.**

- Q.8. If the non-parallel sides of a trapezium are equal, prove that it is cyclic.
- **Sol. Given :** A trapezium ABCD in which AB || CD and AD = BC.

To Prove: ABCD is a cyclic trapezium.

Construction : Draw DE \perp AB and CF \perp AB.

Proof: In $\triangle DEA$ and $\triangle CFB$, we have

$$AD = BC$$
 [Given]

 $\angle DEA = \angle CFB = 90^{\circ} [DE \perp AB \text{ and } CF \perp AB]$

DE = CF

[Distance between parallel lines remains constant]

$$\Rightarrow \angle ADE + 90^{\circ} = \angle BCF + 90^{\circ}$$

$$\Rightarrow \angle ADE + \angle CDE = \angle BCF + \angle DCF$$

$$\Rightarrow \angle D = \angle C \qquad ..(iii)$$

$$[\angle ADE + \angle CDE = \angle D, \angle BCF + \angle DCF = \angle C]$$

$$\therefore$$
 $\angle A = \angle B$ and $\angle C = \angle D$ [From (i) and (iii)] (iv) $\angle A + \angle B + \angle C + \angle D = 360^{\circ}$ [Sum of the angles of a quadrilateral is 360°]

$$\Rightarrow 2(\angle B + \angle D) = 360^{\circ}$$
 [Using (iv)]

$$\Rightarrow \angle B + \angle D = 180^{\circ}$$

⇒ Sum of a pair of opposite angles of quadrilateral ABCD is 180°.

 \Rightarrow ABCD is a cyclic trapezium **Proved.**

- **Q.9.** Two circles intersect at two points B and C. Through B, two line segments ABD and PBQ are drawn to intersect the circles at A, D and P, Q respectively (see Fig.). Prove that $\angle ACP = \angle QCD$.
- **Sol. Given :** Two circles intersect at two points B and C. Through B, two line segments ABD and PBQ are drawn to intersect the circles at A, D and P, Q respectively.

To Prove :
$$\angle$$
ACP = \angle QCD.

Proof:
$$\angle ACP = \angle ABP$$
 ...(i)

$$\angle QCD = \angle QBD$$
 ..(ii)

$$\angle ACP = \angle QCD$$
 Proved.

- **Q.10.** If circles are drawn taking two sides of a triangle as diameters, prove that the point of intersection of these circles lie on the third side.
 - **Sol. Given :** Sides AB and AC of a triangle ABC are diameters of two circles which intersect at D.

Also,
$$\angle ADC = 90^{\circ}$$
 ..(ii)

Adding (i) and (ii), we get

$$\angle ADB + \angle ADC = 90^{\circ} + 90^{\circ}$$

$$\Rightarrow$$
 $\angle ADB + \angle ADC = 180^{\circ}$

 \Rightarrow BDC is a straight line.

.: D lies on BC

Hence, point of intersection of circles lie on the third side BC. Proved.

- **Q.11.** ABC and ADC are two right triangles with common hypotenuse AC. Prove that $\angle CAD = \angle CBD$.
 - **Sol. Given :** ABC and ADC are two right triangles with common hypotenuse AC. **To Prove :** ∠CAD = ∠CBD

Proof: Let O be the mid-point of AC.

Then OA = OB = OC = OD

Mid point of the hypotenuse of a right triangle is equidistant from its vertices with O as centre and radius equal to OA, draw a circle to pass through A, B, C and D.

We know that angles in the same segment of a circle are equal.

Since, $\angle CAD$ and $\angle CBD$ are angles of the same segment. Therefore, $\angle CAD = \angle CBD$. **Proved.**

Sol. Given : ABCD is a cyclic parallelogram.

To prove : ABCD is a rectangle.

Proof: $\angle ABC = \angle ADC$...(i)

[Opposite angles of a ||gm are equal]

But, $\angle ABC + \angle ADC = 180^{\circ}$... (ii)

: ABCD is a rectangle

[A ||gm one of whose angles is 90° is a rectangle]

Hence, a cyclic parallelogram is a rectangle. Proved.

EXERCISE 10.6 (Optional)

- **Q.1.** Prove that the line of centres of two intersecting circles subtends equal angles at the two points of intersection.
- **Sol. Given:** Two intersecting circles, in which OO' is the line of centres and A and B are two points of intersection.

To prove : ∠OAO′ = ∠OBO′

Construction: Join AO, BO, AO' and BO'. **Proof**: In $\triangle AOO'$ and $\triangle BOO'$, we have

> AO = BO[Radii of the same circle] AO' = BO'[Radii of the same circle]

OO' = OO'[Common] $\Delta AOO' \cong \Delta BOO'$ [SSS axiom] $\angle OAO' = \angle OBO'$ [CPCT]

Hence, the line of centres of two intersecting circles subtends equal angles at the two points of intersection. **Proved.**

- Q.2. Two chords AB and CD of lengths 5 cm and 11 cm respectively of a circle are parallel to each other and are on opposite sides of its centre. If the distance between AB and CD is 6 cm, find the radius of the circle.
- **Sol.** Let O be the centre of the circle and let its radius be r cm.

Draw OM \perp AB and OL \perp CD.

Then, AM =
$$-\frac{1}{2}$$
AB = $\frac{5}{2}$ cm

and,
$$CL = \frac{1}{2}CD = \frac{11}{2}cm$$

Since, AB || CD, it follows that the points O, L, M are

collinear and therefore, LM = 6 cm.

collinear and therefore, LM = 6 cm.
Let OL =
$$x$$
 cm. Then OM = $(6 - x)$ cm
Join OA and OC. Then OA = OC = r cm.
Now, from right-angled Δ OMA and Δ OLC, we have
OA² = OM² + AM² and OC² = OL² + CL² [By Pythagoras Theorem]

$$\Rightarrow r^2 = (6 - x)^2 + \left(\frac{5}{2}\right)^2 \quad ... (i) \text{ and } r^2 = x^2 + \left(\frac{11}{2}\right)^2 \quad ... (ii)$$

 $\Rightarrow (6 - x)^{2} + \left(\frac{5}{2}\right)^{2} = x^{2} + \left(\frac{11}{2}\right)^{2} \text{ [From (i) and (ii)]}$ $\Rightarrow 36 + x^{2} - 12x + \frac{25}{4} = x^{2} + \frac{121}{4}$ $\Rightarrow -12x = \frac{121}{4} - \frac{25}{4} - 36$ $\Rightarrow -12x = \frac{96}{4} - 36$ $\Rightarrow -12x = 24 - 36$ $\Rightarrow -12x = -12$ $\Rightarrow x = 1$

Substituting x = 1 in (i), we get

$$r^{2} = (6 - x)^{2} + \left(\frac{5}{2}\right)^{2}$$

$$\Rightarrow r^{2} = (6 - 1)^{2} + \left(\frac{5}{2}\right)^{2}$$

$$\Rightarrow r^{2} = (5)^{2} + \left(\frac{5}{2}\right)^{2} = 25 + \frac{25}{4}$$

$$\Rightarrow r^{2} = \frac{125}{4}$$

$$\Rightarrow r = \frac{5\sqrt{5}}{2}$$

Hence, radius $r = \frac{5\sqrt{5}}{2}$ cm. Ans.

- **Q.3.** The lengths of two parallel chords of a circle are 6 cm and 8 cm. If the smaller chord is at distance 4 cm from the centre, what is the distance of the other chord from the centre?
- Sol. Let PQ and RS be two parallel chords of a circle with centre O.

 We have, PQ = 8 cm and RS = 6 cm.

Draw perpendicular bisector OL of RS which meets PQ in M. Since, PQ \parallel RS, therefore, OM is also perpendicular bisector of PQ.

Also, OL = 4 cm and RL =
$$\frac{1}{2}$$
 RS \Rightarrow RL = 3 cm and PM = $\frac{1}{2}$ PQ \Rightarrow PM = 4 cm In \triangle ORL, we have OR² = RL² + OL² [Pythagoras theorem]

$$\Rightarrow$$
 OR² = 3² + 4² = 9 + 16

$$\Rightarrow$$
 OR² = 25 \Rightarrow OR = $\sqrt{25}$

$$\Rightarrow$$
 OR = 5 cm

$$\therefore$$
 OR = OP

[Radii of the circle]

$$\Rightarrow$$
 OP = 5 cm

Now, in $\triangle OPM$

$$OM^2 = OP^2 - PM^2$$
 [Pythagoras theorem]

$$\Rightarrow$$
 OM² = 5² - 4² = 25 - 16 = 9

$$OM = \sqrt{9} = 3 \text{ cm}$$

Hence, the distance of the other chord from the centre is 3 cm. Ans.

- **Q.4.** Let the vertex of an angle ABC be located outside a circle and let the sides of the angle intersect equal chords AD and CE with the circle. Prove that ∠ABC is equal to half the difference of the angles subtended by the chords AC and DE at the centre.
- **Sol. Given :** Two equal chords AD and CE of a circle with centre O. When meet at B when produced.

To Prove :
$$\angle ABC = \frac{1}{2}(\angle AOC - \angle DOE)$$

Proof: Let
$$\angle AOC = x$$
, $\angle DOE = y$, $\angle AOD = z$

$$\angle EOC = z$$

[Equal chords subtends equal angles at the centre]

$$\therefore x + y + 2z = 36^{\circ}$$

[Angle at a point]

$$OA = OD \implies \angle OAD = \angle ODA$$

: In DOAD, we have

$$\angle OAD + \angle ODA + z = 180^{\circ}$$

$$\Rightarrow 2\angle OAD = 180^{\circ} - z$$

$$[:: \angle OAD = \angle OBA]$$

$$\Rightarrow \angle OAD = 90^{\circ} - \frac{z}{2}$$

Similarly
$$\angle OCE = 90^{\circ} - \frac{z}{2}$$
 ... (iii)

$$\Rightarrow \angle ODB = \angle OAD + \angle ODA$$

$$\Rightarrow \angle OEB = 90^{\circ} - \frac{z}{2} + z$$

$$\Rightarrow \angle ODB = 90^{\circ} + \frac{z}{2}$$
 ... (iv)

Also,
$$\angle OEB = \angle OCE + \angle COE$$

[Exterior angle property]
[From (iii)]

$$\Rightarrow \angle OEB = 90^{\circ} - \frac{z}{2} + z$$

$$\Rightarrow \angle \text{OEB} = 90^{\circ} + \frac{z}{2} \qquad \dots \text{ (v)}$$

Also,
$$\angle OED = \angle ODE = 90^{\circ} - \frac{y}{2}$$
 ... (vi)

O from (iv), (v) and (vi), we have

$$\angle BDE = \angle BED = 90^{\circ} + \frac{z}{2} - \left(90^{\circ} - \frac{y}{2}\right)$$

$$\Rightarrow \angle BDE = \angle BED = \frac{y+z}{2}$$

$$\Rightarrow \angle BDE = \angle BED = y + z \qquad ... \text{ (vii)}$$

$$\therefore \angle BDE = 180^{\circ} - (y + z)$$

$$\Rightarrow \angle ABC = 180^{\circ} - (y + z)$$
 ... (viii)

Now,
$$\frac{y-z}{2} = \frac{360^{\circ} - y - 2z - y}{2} = 180^{\circ} - (y+z)$$
 ... (ix)

From (viii) and (ix), we have

$$\angle ABC = \frac{x-y}{2}$$
 Proved.

- **Q.5.** Prove that the circle drawn with any side of a rhombus as diameter, passes through the point of intersection of its diagonals.
- **Sol. Given :** A rhombus ABCD whose diagonals intersect each other at O. **To prove :** A circle with AB as diameter passes through O.

[Diagonals of a rhombus bisect each other at 90°]

- \Rightarrow \triangle AOB is a right triangle right angled at O.
- \Rightarrow AB is the hypotenuse of A B right \triangle AOB.
- ⇒ If we draw a circle with AB as diameter, then it will pass through O. because angle is a semicircle is 90° and $\angle AOB = 90^{\circ}$ **Proved.**

- **Q.6.** ABCD is a parallelogram. The circle through A, B and C intersect CD (produced if necessary) at E. Prove that AE = AD.
- Sol. Given: ABCD is a parallelogram.

Construction: Draw a circle which passes through ABC and intersect CD (or CD produced) at E.

$$\Rightarrow$$
 $\angle ABC + \angle ADE = 180^{\circ}$ [From (ii)] ... (iii)

From (i) and (iii)

$$\angle AED + \angle ABC = \angle ABC + \angle ADE$$

$$\Rightarrow \angle AED = \angle ADE$$

$$\Rightarrow \angle AD = \angle AE \quad [Sides opposite to equal angles are equal]$$

$$C: C: C: D = ADE$$

(i)

Similarly we can prove for Fig (ii) Proved.

- **Q.7.** AC and BD are chords of a circle which bisect each other. Prove that (i) AC and BD are diameters, (ii) ABCD is rectangle.
- **Sol. Given:** A circle with chords AB and CD which bisect each other at O.
 - To Prove: (i) AC and BD are diameters
 - (ii) ABCD is a rectangle.

Proof: In $\triangle OAB$ and $\triangle OCD$, we have

$$OA = OC$$

[Given]

$$OB = OD$$

[Given]

[Vertically opposite angles]

$$\Rightarrow$$
 $\triangle AOB \cong \angle COD$

[SAS congruence]

$$\Rightarrow$$
 $\angle ABO = \angle CDO$ and $\angle BAO = \angle BCO$

[CPCT]

$$\Rightarrow$$
 AB $| |$ DC

... (i)

... (ii)

Hence, ABCD is a parallelogram.

But ABCD is a cyclic parallelogram.

[Proved in Q. 12 of Ex. 10.5]

$$\Rightarrow$$
 $\angle ABC = 90^{\circ} \text{ and } \angle BCD = 90^{\circ}$

[Angle in a semicircle is 90°] **Proved.**

Q.8. Bisectors of angles A, B and C of a triangle ABC intersect its circumcircle at D, E and F respectively. Prove that the angles of the triangle DEF are

$$90^{\circ} - \frac{1}{2}A$$
, $90^{\circ} - \frac{1}{2}B$ and $90^{\circ} - \frac{1}{2}C$.

Sol. Given: ΔABC and its circumcircle. AD, BE, CF are bisectors of $\angle A$, $\angle B$, $\angle C$ respectively.

Construction: Join DE, EF and FD.

Proof: We know that angles in the same segment are equal.

$$\therefore \qquad \angle 5 = \frac{\angle C}{2} \text{ and } \angle 6 = \frac{\angle B}{2} ...(i)$$

$$\angle 1 = \frac{\angle A}{2}$$
 and $\angle 2 = \frac{\angle C}{2}$..(ii)

$$\angle 4 = \frac{\angle A}{2}$$
 and $\angle 3 = \frac{\angle B}{2}$..(iii)

From (i), we have

$$\angle 5 + \angle 6 = \frac{\angle C}{2} + \frac{\angle B}{2}$$

$$\Rightarrow \angle D = \frac{\angle C}{2} + \frac{\angle B}{2} \qquad ...(iv)$$

But
$$\angle A + \angle B + \angle C = 180^{\circ}$$

 $\Rightarrow \angle B + \angle C = 180^{\circ} - \angle A$

 $\frac{\angle B}{2} + \frac{\angle C}{2} = 90^{\circ} - \frac{\angle A}{2}$

: (iv) becomes.

$$\angle D = 90^{\circ} - \frac{\angle A}{2}$$
.

Similarly, from (ii) and (iii), we can prove that

$$\angle E = 90^{\circ} - \frac{\angle B}{2}$$
 and $\angle F = 90^{\circ} - \frac{\angle C}{2}$ **Proved.**

- **Q.9.** Two congruent circles intersect each other at points A and B. Through A any line segment PAQ is drawn so that P, Q lie on the two circles. Prove that BP = BQ.
- Sol. Given: Two congruent circles which intersect at A and B. PAB is a line through A.

To Prove : BP = BQ.

Construction: Join AB.

Proof: AB is a common chord of both the circles.

But the circles are congruent —

$$\Rightarrow$$
 $\angle APB = \angle AQB$ Angles subtended

- **Q.10.** In any triangle ABC, if the angle bisector of $\angle A$ and perpendicular bisector of BC intersect, prove that they intersect on the circumcircle of the triangle ABC.
 - **Sol.** Let angle bisector of $\angle A$ intersect circumcircle of $\triangle ABC$ at D. Join DC and DB.

[Angles in the same segment]

$$\Rightarrow \angle BCD = \angle BAD \frac{1}{2} \angle A$$

[AD is bisector of $\angle A$] ...(i)

$$\Rightarrow$$
 BD = DC [sides opposite to equal angles are equal]

 $[sides\ opposite\ to\ equal\ angles\ are\ equal]$ \Rightarrow D lies on the perpendicular bisector of BC. Hence, angle bisector of $\angle A$ and perpendicular bisector of BC intersect on the circumcircle of $\triangle ABC\ Proved.$

