

Percentage **Exercise 10A**

Q1

Answer:

We have the following:

(i)
$$\frac{47}{100} = \left(\frac{47}{100} \times 100\right)\% = 47\%$$

(ii)
$$\frac{9}{20} = \left(\frac{9}{20} \times 100\right)\% = (9 \times 5)\% = 45\%$$

(iii)
$$\frac{3}{8} = \left(\frac{3}{8} \times 100\right)\% = \left(\frac{3 \times 25}{2}\right)\% = \left(\frac{75}{2}\right)\% = 37\frac{1}{2}\%$$

(iv)
$$\frac{8}{125} = \left(\frac{8}{125} \times 100\right)\% = \left(\frac{8 \times 4}{5}\right)\% = \left(\frac{32}{5}\right)\% = 6.4\%$$

(v)
$$\frac{19}{500} = \left(\frac{19}{500} \times 100\right)\% = \left(\frac{19}{5}\right)\% = 3.8\%$$

(vi)
$$\frac{4}{15} = \left(\frac{4}{15} \times 100\right)\% = \left(\frac{4 \times 20}{3}\right)\% = \left(\frac{80}{3}\right)\% = 26\frac{2}{3}\%$$

(vii)
$$\frac{2}{3} = \left(\frac{2}{3} \times 100\right)\% = \left(\frac{200}{3}\right)\% = 66\frac{2}{3}\%$$

(viii)
$$1\frac{3}{5} = \frac{8}{5} = \left(\frac{8}{5} \times 100\right)\% = \left(8 \times 20\right)\% = 160\%$$

(i)
$$32\% = \left(\frac{32}{100}\right) = \frac{8}{25}$$

(ii)
$$6\frac{1}{4}\% = \left(\frac{25}{4}\right)\% = \left(\frac{25}{4} \times \frac{1}{100}\right) = \frac{1}{10}$$

(VII)
$$\frac{3}{3} = \left(\frac{2}{3} \times 100\right)\% = \left(\frac{25}{3}\right)\% = 00\frac{2}{3}\%$$

(VIII) $1\frac{3}{5} = \frac{8}{5} = \left(\frac{8}{5} \times 100\right)\% = \left(8 \times 20\right)\% = 160\%$

Q2

Answer:

We have the following:

(i) $32\% = \left(\frac{32}{100}\right) = \frac{8}{25}$

(ii) $6\frac{1}{4}\% = \left(\frac{25}{4}\right)\% = \left(\frac{25}{4} \times \frac{1}{100}\right) = \frac{1}{10}$

(iii) $26\frac{2}{3}\% = \left(\frac{80}{3}\right)\% = \left(\frac{80}{3} \times \frac{1}{100}\right) = \left(\frac{4 \times 1}{3 \times 5}\right) = \frac{4}{15}$

(iv) $120\% = \left(\frac{120}{100}\right) = \frac{6}{5} = 1\frac{1}{5}$

(iv)
$$120\% = \left(\frac{120}{100}\right) = \frac{6}{5} = 1\frac{1}{5}$$

(v)
$$6.25\% = \left(\frac{6.25}{100}\right) = \left(\frac{625}{100 \times 100}\right) = \left(\frac{25}{400}\right) = \frac{1}{16}$$

(vi)
$$0.8\% = \left(\frac{0.8}{100}\right) = \left(\frac{8}{10 \times 100}\right) = \left(\frac{8}{1000}\right) = \frac{1}{125}$$

(vii)
$$0.06\% = \left(\frac{0.06}{100}\right) = \left(\frac{6}{100 \times 100}\right) = \left(\frac{6}{10000}\right) = \frac{3}{5000}$$

(viii)
$$22.75\% = \left(\frac{22.75}{100}\right) = \left(\frac{2275}{100 \times 100}\right) = \frac{91}{400}$$

Williams of the Children of th

Million Stars & Practice

Q3

Answer:

We have:

(i)
$$43\% = \frac{43}{100} = 43$$
 : 100

(ii)
$$36\% = \frac{36}{100} = \frac{9}{25} = 9$$
 : 25

(iii)
$$7.5\% = \left(\frac{7.5}{100}\right) = \left(\frac{75}{10 \times 100}\right) = \frac{3}{40} = 3 \div 40$$

(iv)
$$125\% = \frac{125}{100} = \frac{5}{4} = 5$$
 : 4

Q4

Answer:

We have the following:

(i) 37 : 100 =
$$\frac{37}{100}$$
 = $\left(\frac{37}{100} \times 100\right)\%$ = 37%

(ii) 16 : 25 =
$$\frac{16}{25}$$
 = $\left(\frac{16}{25} \times 100\right)\%$ = $(16 \times 4)\%$ = 64%

(iii) 3 : 5 =
$$\frac{3}{5}$$
 = $\left(\frac{3}{5} \times 100\right)$ % = (3×20) % = 60 %

(iv) 5 : 4 =
$$\frac{5}{4} = \left(\frac{5}{4} \times 100\right)\% = (5 \times 25)\% = 125\%$$

Q5

Answer:

We have the following:

(i)
$$45\% = \left(\frac{45}{100}\right) = 0.45$$

(ii) 127% =
$$\left(\frac{127}{100}\right) = 1.27$$

(iii) 3.6% =
$$\left(\frac{3.6}{100}\right) = \left(\frac{36}{10 \times 100}\right) = \frac{36}{1000} = 0.036$$

(iv) 0.23% =
$$\left(\frac{0.23}{100}\right) = \left(\frac{23}{100 \times 100}\right) = \frac{23}{10000} = 0.0023$$

We have:

(i) $0.6 = (0.6 \times 100)\% = 60\%$ (ii) $0.42 = (0.42 \times 100)\% = 42\%$ (iii) $0.07 = (0.07 \times 100)\% = 7\%$ (iv) $0.005 = (0.005 \times 100)\% = 0.5\%$

Answer:

Q7

We have

(i) 32% of 425 =
$$\left(\frac{32}{100} \times 425\right) = \left(\frac{32 \times 17}{4}\right) = (8 \times 17) = 136$$

(ii)
$$16\frac{2}{3}\%$$
 of 16 = $\frac{50}{3}\%$ of 16 = $\left(\frac{50}{3\times 100}\times 16\right)=\left(\frac{1}{6}\times 16\right)=\frac{8}{3}=2\frac{2}{3}$

(iii) 6.5% of 400 =
$$\left(\frac{6.5}{100} \times 400\right) = \left(\frac{65}{10 \times 100} \times 400\right) = \left(\frac{65 \times 4}{10}\right) = \frac{260}{10} = 26$$

(iv) 136% of 70 =
$$\left(\frac{136}{100} \times 70\right) = \left(\frac{136 \times 7}{10}\right) = \left(\frac{952}{10}\right) = 95.2$$

(v) 2.8% of 35 =
$$\left(\frac{2.8}{100} \times 35\right) = \left(\frac{28}{10 \times 100} \times 35\right) = \left(\frac{14 \times 7}{100}\right) = \frac{98}{100} = 0.98$$

(vi) 0.6% of 45 =
$$\left(\frac{0.6}{100} \times 45\right) = \left(\frac{6}{10 \times 100} \times 45\right) = \left(\frac{3 \times 45}{5 \times 100}\right) = \left(\frac{3 \times 9}{100}\right) = \frac{27}{100} = 0.27$$

Answer:

We have the following

(i) 25% of Rs 76 = Rs
$$\left(76 \times \frac{25}{100}\right)$$
 = Rs $\left(76 \times \frac{1}{4}\right)$ = Rs 19

(ii) 20% of Rs 132 = Rs
$$\left(132 \times \frac{20}{100}\right)$$
 = Rs $\left(132 \times \frac{1}{5}\right)$ = Rs 26.4

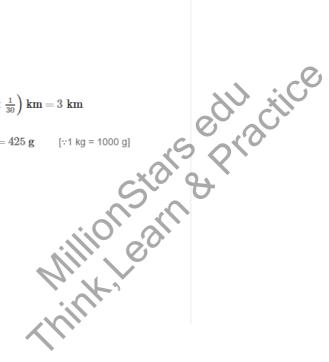
(iii) 7.5% of 600 m =
$$\left(600 \times \frac{7.5}{100}\right)$$
 m = $\left(6 \times 7.5\right)$ m = 45 m

(iv)
$$3\,\frac{1}{3}\,\%$$
 of 90 km = $\frac{10}{3}\,\%$ of 90 km = $\left(90\times\frac{10}{3\times100}\right)\,{\rm km} = \left(90\times\frac{1}{30}\right)\,{\rm km} = 3\,{\rm ~km}$

(v) 8.5% of 5 kg =
$$\left(5 \times \frac{8.5}{100}\right)$$
 kg = $\left(5 \times \frac{85}{1000}\right)$ kg = 0.425 kg = 425 g [::1 kg = 1000 g/s]

(vi) 20% of 12 L =
$$\left(12 imes \frac{20}{100}\right)$$
 $L = \left(12 imes \frac{1}{5}\right)$ $L = 2.4$ L

Answer:


Let x be the required number.

Then, 13% of
$$x = 65$$

$$\Rightarrow \left(\frac{13}{100} \times x\right) = 65$$

$$\Rightarrow x = \left(65 \times \frac{100}{13}\right) = 500$$

Hence, the required number is 500

Let x be the required number

Then,
$$6\frac{1}{4}\%$$
 of $x = 2$

$$\Rightarrow \left(6\frac{1}{4}\% \times x\right) = 2$$
$$\Rightarrow \left(\frac{25}{400} \times x\right) = 2$$

$$\Rightarrow x = \left(2 \times \frac{400}{25}\right) = 32$$
Hence, the required number is 32

Q11

Answer:

10% of Rs 90 = Rs
$$\left(\frac{10}{100} \times 90\right)$$
 = Rs 9

: Amount that is 10% more than Rs 90 = Rs (90 + 9) = Rs 99

Hence, the required amount is Rs 99

Q12

Answer:

20% of Rs 60 = Rs
$$\left(60 \times \frac{20}{100}\right)$$
= Rs 12

: Amount that is 20% less than Rs 60 = Rs (60 - 12) = Rs 48 Wondershalle Portelement

Hence, the required amount is Rs 48.

Q13

Answer:

$$3\% \text{ of } x = 9$$

$$\Rightarrow \left(\frac{3}{100} \times x\right) = 9$$

$$\Rightarrow x = \left(9 \times \frac{100}{3}\right) = 300$$

Hence, the value of x is 300.

Q14

Answer:

12.5% of
$$x = 6$$

$$\Rightarrow \left(\frac{12.5}{100} \times x\right) = 6$$

$$\Rightarrow x = \left(6 \times \frac{100}{12.5}\right) = (6 \times 8) = 48$$

Hence, the value of x is 48

Q15

Answer:

Then,
$$\left(\frac{x}{100} \times 84\right) = 14$$

 $\Rightarrow \frac{21x}{25} = 14$
 $\Rightarrow x = \left(14 \times \frac{25}{21}\right) = \left(\frac{2 \times 25}{3}\right) = \frac{50}{3} = 16\frac{2}{3}\%$
Hence, $16\frac{2}{3}\%$ of 84 is 14.

Q16

Million Stars & Practice
Williams And China Comments of the Co

(i) Let x% of Rs 120 be Rs 15.

Then, Rs
$$\left(\frac{x}{100} \times 120\right)$$
 = Rs 15
 $\Rightarrow \left(\frac{6x}{5}\right)$ = 15
 $\therefore x = \left(\frac{15 \times 5}{6}\right)\% = \left(\frac{25}{2}\right)\%$ = 12.5%
Hence, 12.5% of Rs 120 is Rs 15.

(ii) Let x% of 2 h be 36 min.

Then,
$$\left(\frac{x}{100} \times 2 \times 60\right)$$
 min = 36 min

$$\Rightarrow \left(\frac{120x}{100}\right) = 36$$

$$\therefore x = \left(\frac{36 \times 100}{120}\right)\% = 30\%$$
Hence, 30% of 2 h is 36 min.

(iii) Let x% of 2 days be 8 h.
Then,
$$\left(\frac{x}{100} \times 2 \times 24\right)$$
 h = 8 h
 $\Rightarrow \left(\frac{48x}{100}\right)$ = 8
 $\therefore x = \left(\frac{8 \times 100}{48}\right)\% = 16\frac{2}{3}\%$
Hence, $16\frac{2}{3}\%$ of 2 days is 8 h.

(iv) Let x% of 4 km be 160 m.

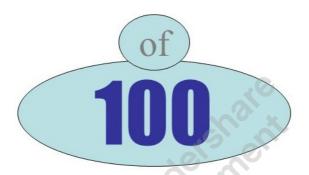
Then,
$$\left(\frac{x}{100} \times 4 \times 1000\right)$$
 m = 160 m
 $\Rightarrow 40x = 160$
 $\therefore x = \left(\frac{160}{40}\right)\% = 4\%$

Hence, 4% of 4 km is 160 m.

(iv) Let
$$x\%$$
 of 4 km be 160 m.
Then, $\left(\frac{x}{100} \times 4 \times 1000\right)$ m = 160 m
 $\Rightarrow 40x = 160$
 $\therefore x = \left(\frac{160}{40}\right)\% = 4\%$
Hence, 4% of 4 km is 160 m.
(v) Let $x\%$ of 1 L be 175 mL.
Then, $\left(\frac{x}{100} \times 1 \times 1000\right)$ mL = 175 mL
 $\Rightarrow 10x = 175$
 $\therefore x = \left(\frac{175}{10}\right)\% = 17.5\%$
Hence, 17.5% of 1 L is 175 mL.
(vi) Let $x\%$ of Rs 4 be 25 paise.
Then $\left(\frac{x}{x} \times 4 \times 100\right)$ paise = 25 paise

(vi) Let x% of Rs 4 be 25 paise.

Then,
$$\left(\frac{x}{100} \times 4 \times 100\right)$$
 paise = 25 paise
 $\Rightarrow 4x = 25$
 $\therefore x = \left(\frac{25}{4}\right)\% = 6\frac{1}{4}\%$
Hence, $6\frac{1}{4}\%$ of Rs 4 is 25 paise.



Percentage Exercise 10B

Definition

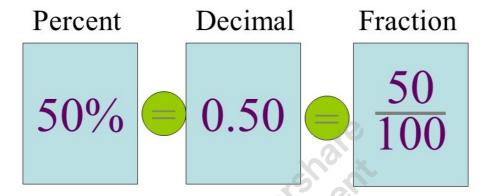
Percent can be defined as "of one hundred."

PERCENTAGE:

$$\frac{x}{n} \times 100 = p$$

where:

x = given quantity


n = total amount

p = percentage of the quantity compared to the total

Million Stars & Practice

Percentage decrease =
$$\frac{\text{actual decrease}}{\text{original amount}} \times 100\%$$

$$60\% = \frac{60}{100} = 0.6$$

Percent means "per one hundred", so to convert a percent to a fraction, divide it by 100.

Million State & Practice

Maximum marks of the examination = 750 Marks secured by Rupesh = 495 Percentage of marks secured = $\left(\frac{495}{750} \times 100\right)\% = 66\%$

Hence, Rupesh scored 66% in the examination.

Q2

Answer:

Total monthly salary = Rs 15625 Increase percentage = 12% : Amount increase = 12% of Rs 15625 = Rs $\left(15625 \times \frac{12}{100}\right)$ = Rs 1875 : New salary = Rs 15625 + Rs 1875 = Rs 17500

Hence, the new salary of the typist is Rs 17,500.

О3

Answer:

Mondelshalle Mondelshalle 50 Original excise duty on the item = Rs 950 Amount reduced on excise duty = Rs (950 - 760) = Rs 190 $\therefore \text{ Reduction percent} = \left(\frac{\text{Reduction amount}}{\text{Original value}} \times 100 \right)$ $=\left(\frac{190}{950}\times100\right)=20$

Hence, the excise duty on that item is reduced by 20%.

Q4

Answer:

Let Rs x be the total cost of the TV set.

Now, 96% of the total cost of TV = Rs 10464 \Rightarrow 96% of Rs x = Rs 10464 $\Rightarrow \left(\frac{96}{100} \times x\right) = 10464$ $\therefore x = \left(\frac{10464 \times 100}{96}\right) = 10900$ Hence, the total cost of the TV set is Rs 10900

Q5

Million Stars & Practice

Remove Watermark

Answer:

Let the total number of students be 100.

Then, number of boys = 70

∴ Number of girls = (100 - 70) = 30

Now, total number of students when the number of girls is 30 = 100

Then, total number of students when the number of girls is $504 = \left(\frac{100}{30} \times 504\right) = 1680$

: Number of boys = (1680 - 504) = 1176

Hence, there are 1176 boys in the school

Q6

Answer:

Let x kg be the amount of the required ore.

Then, 12% of
$$x \text{ kg} = 69 \text{ kg}$$

$$\Rightarrow \left(\frac{12}{100} \times x\right) \text{ kg} = 69 \text{ kg}$$

$$\Rightarrow x = \left(\frac{69 \times 100}{12}\right) \text{ kg} = 575 \text{ kg}$$

Hence, 575 kg of ore is required to get 69 kg of copper.

Q7

Answer:

Let x be the maximum marks.

Pass marks = (123 + 39) = 162

Then,
$$36\%$$
 of $x = 162$

$$\Rightarrow \left(\frac{36}{100} \times x\right) = 162$$

$$\Rightarrow x = \left(\frac{162 \times 100}{36}\right) = 450$$

:. Maximum marks = 450

Q8

Answer:

Suppose that the fruit seller initially had 100 apples.

Apples sold = 40

 \therefore Remaining apples = (100 - 40) = 60

Initial amount of apples if 60 of them are remaining = 100

Initial amount of apples if 1 of them is remaining = $\left(\frac{100}{60}\right)$

Initial amount of apples if 420 of them are remaining = $\left(\frac{100}{60} \times 420\right)$ = 700

Hence, the fruit seller originally had 700 apples.

09

Answer:

Suppose that 100 candidates took the examination.

Number of passed candidates = 72

Number of failed candidates = (100 - 72) = 28

Total number of candidates if 28 of them failed = 100

Total number of candidates if 392 of them failed = $\left(\frac{100}{28} \times 392\right)$ = 1400

Hence, the total number of examinees is 1400.

Q10

1400 PARTICE PRACTICE

Suppose that the gross value of the moped is Rs x.

Commission on the moped = 5%

Price of moped after deducting the commission = Rs (x - 5% of x)

Price of moped after deducting the commission = Rs
$$(x - 5\% \text{ of } x)$$

= Rs $\left(x - \frac{5x}{100}\right)$ = Rs $\left(\frac{100x - 5x}{100}\right)$ = Rs $\left(\frac{95x}{100}\right)$
Now, price of the moped after deducting the commission = Rs 15200
Then. Rs $\left(\frac{95x}{100}\right)$ = Rs 15200

Then, Rs
$$\left(\frac{95x}{100}\right)$$
 = Rs 15200

$$\therefore x = \text{Rs}\left(\frac{15200 \times 100}{95}\right) = \text{Rs}\left(160 \times 100\right) = \text{Rs} 16000$$

Hence, the gross value of the moped is Rs 16000.

Q11

Answer:

Total quantity of gunpowder = 8 kg = 8000 g

(1 kg = 1000 g)

Quantity of nitre in it = 75% of 8000 g

$$=\left(\frac{75}{100}\times8000\right)$$
 g = 6000 g = 6 kg

Quantity of sulphur in it = 10% of 8000 g

$$=\left(\frac{10}{100}\times8000\right)$$
 g = 800 g = 0.8 kg

: Quantity of charcoal in it = {8000 - (6000 + 800)} g

we have the following: Quantity of carbon in it = 3% of 1000 g $= \left(\frac{3}{100} \times 1000\right) = 30 \text{ g}$ Quantity of calcium in it = 10% of 1000 g $= \left(\frac{10}{100} \times 1000\right)$ Quantity of oxygen in it = 1% Hence, the amount of charcoal in 8 kg of gunpowder is 1.2 kg.

Q12

$$=\left(\frac{3}{100}\times 1000\right)=30$$

$$=\left(\frac{10}{100}\times 1000\right)$$
 g = 100 g

Quantity of oxygen in it = 12% of 1000 g
$$= \left(\frac{12}{100} \times 1000\right) g = 120 g$$

Q13

Answer:

Let x be the total number of days on which the school was open.

Number of days when Sonal went to school = 219

Percentage of attendance = 75

Thus,
$$75\%$$
 of $x = 219$

$$\Rightarrow \left(rac{75}{100} imes x
ight) = 219$$

$$\therefore x = \left(\frac{219 \times 100}{75}\right) = 292 \text{ days}$$

Hence, the school was open for a total of 292 days

Q14

Answer:

Let the total value of the property be Rs x.

Percentage of commission = 3

Amount of commission = Rs 42660

Thus, 3% of Rs x = Rs 42660

$$\Rightarrow \left(\frac{3}{100} \times x\right) = 42660$$

$$\therefore x = \left(\frac{42660 \times 100}{3}\right) = 1422000$$

Hence, the total value of the property is Rs 14,22,000.

Willion Stars & Practice

Q15

Answer:

Total number of eligible voters = 60000

Number of voters who gave their votes = 80% of 60000

$$= \left(\frac{80}{100} \times 60000\right) = 48000$$

Number of votes in favour of candidate A = 60% of 48000

$$=\left(\frac{60}{100}\times48000\right)=28800$$

: Number of votes received by candidate B = (48000 - 28800) = 19200

Hence, candidate B recieved 19,200 votes.

Q16

Answer:

Let us assume that the original price of the shirt is Rs x.

Discount on the shirt = 12%

So, value of discount on the shirt = 12% of Rs x

$$= \operatorname{Rs}\left(\frac{12}{100} \times x\right) = \operatorname{Rs}\left(\frac{12x}{100}\right)$$

Value of the shirt after discount = Rs $\left(x-\frac{12x}{100}\right)$ = Rs $\left(\frac{100x-12x}{100}\right)$ = Rs $\left(\frac{88x}{100}\right)$

$$= \operatorname{Rs}\left(\frac{100x - 12x}{100}\right) = \operatorname{Rs}\left(\frac{88x}{100}\right)$$

Present price of the shirt = Rs 1188

Then, Rs
$$\left(\frac{88x}{100}\right)$$
 = Rs 1188

$$\Rightarrow 88x = (1188 \times 100)$$

$$\Rightarrow 88x = 118800$$

$$\therefore \chi = \left(\frac{118800}{88}\right) = 1350$$

Hence, the original price of the shirt is Rs 1350.

Q17

Answer:

Let us assume that the original price of the sweater is Rs. x. Increased percentage = 80%

Increased percentage = 8%

So, value of increase on the sweater = 8% of Rs x

= Rs
$$\left(\frac{8}{100} \times x\right)$$
 = Rs $\left(\frac{2x}{25}\right)$

 $= \operatorname{Rs}\left(\frac{8}{100} \times x\right) = \operatorname{Rs}\left(\frac{2x}{25}\right)$ Increased price of the sweater = Rs $\left(x + \frac{2x}{25}\right)$ = Rs $\left(\frac{25x + 2x}{25}\right)$ = Rs $\left(\frac{27x}{25}\right)$

$$= \operatorname{Rs}\left(\frac{25x + 2x}{25}\right) = \operatorname{Rs}\left(\frac{27x}{25}\right)$$

However, increased price of the sweater = Rs 1566

Then, Rs
$$\left(\frac{27x}{25}\right)$$
 = Rs 1566

$$\therefore x = \left(\frac{1566 \times 25}{27}\right) = 1450$$

Hence, the original price of the sweater is Rs 1450

Q18

Answer:

Let the income of the man be Rs x.

Then, income spent = 80% of Rs. x

= Rs
$$\left(\frac{80}{100} \times x\right)$$
 = Rs $\left(\frac{80x}{100}\right)$ = Rs $\left(\frac{4x}{5}\right)$

Amount left after all the expenditure = Rs $\left(x - \frac{4x}{5}\right)$ = Rs $\left(\frac{5x - 4x}{5}\right)$ = Rs $\left(\frac{x}{5}\right)$

Amount given to the charity = 10% of Rs $\left(\frac{x}{5}\right)$

$$= \operatorname{Rs}\left(\frac{10}{100} \times \frac{x}{5}\right) = \operatorname{Rs}\left(\frac{10x}{500}\right) = \operatorname{Rs}\left(\frac{x}{50}\right)$$

Amount left after the charity = Rs $\left(\frac{x}{5} - \frac{x}{50}\right)$ = Rs $\left(\frac{10x - x}{50}\right)$ = Rs $\left(\frac{9x}{50}\right)$

$$= RS \left(\frac{10x-x}{50} \right) = RS \left(\frac{9x}{50} \right)$$

Now, we have:

$$\operatorname{Rs}\left(\frac{9x}{50}\right) = \operatorname{Rs} 46260$$

$$\therefore x = \text{Rs}\left(\frac{46260 \times 50}{9}\right) = \text{Rs} \ 257000$$

Hence, the income of the man is Rs 2,57,000

Q19

Allin Stars & Practice

Let the number be 100

Increase in the number = 20%

Increased number = (100 + 20) = 120

Now, decrease in the number = (20% of 120)

$$=\left(\frac{20}{100}\times 120\right)=24$$

New number = (120 - 24) = 96

Net decrease = (100 - 96) = 4

Net decrease percentage = $\left(\frac{4}{100} \times 100\right)$ = 4

Hence, the net decrease is 4%

Q20

Answer:

Let the original salary be Rs 100

Increase in it = 20%

Salary after increment = Rs (100 + 20) = Rs 120

To restore the original salary, reduction required = Rs (120 - 100) = Rs 20

Reduction on Rs 120 = Rs 20

 \therefore Reduction percentage = $\left(\frac{20}{120} \times 100\right) = \left(\frac{100}{6}\right) = 16\frac{2}{3}$

Hence, the required reduction on the new salary is $16\,\frac{2}{3}\,\%$

Q21

Answer:

Total cost of the property = Rs 540000

Commission on the first Rs 200000 = 2% of Rs 200000

$$=\left(\frac{2}{100}\times200000\right)$$
 = Rs 4000

Commission on the next Rs 200000 = 1% of Rs 200000 $= \left(\frac{1}{100} \times 200000\right) = \text{Rs } 2000$

$$=\left(\frac{1}{100}\times200000\right)$$
 = Rs 2000

Remaining amount = Rs (540000 - 400000) = Rs 140000

∴ Commission on Rs 140000 = 0.5% of Rs 140000

= Rs
$$\left(\frac{0.5}{100} \times 140000\right)$$

= Rs $\left(\frac{5}{1000} \times 140000\right)$ = Rs 700

Thus, total commission on the property worth Rs 540000 = Rs (4000 + 2000 + 700)

= Rs 6700

Hence, the commission of the property dealer on the property that has been sold for Rs 540000 is Rs 6700

Q22

Answer:

Let Akhil's income be Rs 100

: Nikhil's income = Rs 80

Akhil's income when Nikhil's income is Rs 80 = Rs 100

Akhil's income when Nikhil's income is Rs 100 = Rs $\left(\frac{100}{80} \times 100\right)$ = Rs 125

Income of Mr. Thomas.

Income = Rs 120

Mr. Thomas' income when John's income is Rs 120 = Rs 100

Mr. Thomas' income when John's income is Rs 100 = Rs $\left(\frac{100}{120} \times 100\right)$ = Rs $83\frac{1}{3}$ Hence, Mr Thomas' income is less than that of John's by $16\frac{2}{3}\%$.

Let Rs x be the value of the machine one year ago

Then, its present value = 90% of Rs x

= Rs
$$\left(\frac{90}{100} \times x\right)$$
 = Rs $\left(\frac{9x}{10}\right)$
It is given that present value of the machine = Rs 387000

$$\Rightarrow x = \text{Rs}\left(\frac{387000 \times 10}{9}\right) = \text{Rs}\left(43000 \times 10\right) = \text{Rs} \ 430000$$

Hence, the value of the machine a year ago was Rs 430000

Q25

Answer:

The present value of the car = Rs 450000

The decrease in its value after the first year = 20% of Rs 450000

= Rs
$$\left(\frac{20}{100} \times 450000\right)$$
= Rs 90000

The depreciated value of the car after the first year = Rs (450000 - 90000) = Rs 360000

The decrease in its value after the second year = 20% of Rs 360000

= Rs
$$\left(\frac{20}{100} \times 360000\right)$$
 = Rs 72000

The depreciated value of the car after the second year = Rs (360000 - 72000) = Rs 288000

Hence, the value of the car after two years will be Rs 288000.

Q26

Answer:

Present population of the town = 60000

Increase in population of the town after the 1 year = 10% of 60000

$$=\left(\frac{10}{100}\times60000\right)=6000$$

Thus, population of the town after 1 year = 60000 + 6000 = 66000

Increase in population after 2 years = 10% of 66000

$$= \left(\frac{10}{100} \times 66000\right) = 6600$$

Thus, population after the second year = 66000 + 6600 = 72600 Hence, the population of the town after 2 years will be 72600

Q27

Answer:

Let the consumption of sugar originally be 1 unit and let its cost be Rs 100

New cost of 1 unit of sugar = Rs 125

Now, Rs 125 yield 1 unit of sugar.

 \therefore Rs 100 will yield $\left(\frac{1}{125} \times 100\right)$ unit = $\left(\frac{4}{5}\right)$ unit of sugar.

Reduction in consumption = $\left(1 - \frac{4}{5}\right) = \left(\frac{1}{5}\right)$ unit

∴ Reduction percent in consumption = $\left(\frac{1}{5} \times \frac{1}{1} \times 100\right)$ %= $\left(\frac{100}{5}\right)$ %= 20%

Million State & Practice
Williams & Practice

Percentage Exercise 10C

Q1

Answer:

(b) 75%

$$\frac{3}{4} = \left(\frac{3}{4} \times 100\right)\% = 75\%$$

Q2

Answer:

(c) 40%

2:5 =
$$\frac{2}{5}$$
 = $\left(\frac{2}{5} \times 100\right)$ % = 40%

Q3

Answer:

(c) $\frac{1}{12}$

$$8\frac{1}{3}\% = \frac{25}{3}\% = \left(\frac{25}{3} \times \frac{1}{100}\right) = \left(\frac{1}{3\times 4}\right) = \frac{1}{12}$$

Q4

Answer:

(c) 12

We have x% of 75 = 9

$$\Rightarrow \left(\frac{x}{100} \times 75\right) = 9$$

$$\therefore x = \left(\frac{9 \times 100}{75}\right) = 12$$

Hence, the value of x is 12

Q5

Million Stars & Practice

(d) 10%

Let x be the required percent.

Then,
$$x \%$$
 of $\frac{2}{7} = \frac{1}{35}$

$$\Rightarrow \left(\frac{x}{100} \times \frac{2}{7}\right) = \frac{1}{35}$$

$$\therefore x = \left(\frac{100 \times 7}{35 \times 2}\right) = 10$$
Hence, 10% of $\frac{2}{7}$ is $\frac{1}{35}$

Q6

Answer:

(b) 2.5%

Let x % of 1 day be 36 min.

Then,
$$\left(\frac{x}{100} \times 1 \times 24 \times 60\right)$$
 min = 36 min

$$\therefore x = \left(\frac{36 \times 100}{24 \times 60}\right) = \left(\frac{3 \times 5}{2 \times 3}\right)\% = \left(\frac{5}{2}\right)\% = 2.5\%$$

Hence, 2.5% of 1 day is 36 min.

Q7

Answer:

(a) 35

Let the required number be x

Answer:

(a)
$$35$$
Let the required number be x .

Then, $x + 20\%$ of $x = 42$

$$\Rightarrow \left(x + \frac{20x}{100}\right) = 42$$

$$\Rightarrow \left(x + \frac{x}{5}\right) = 42$$

$$\Rightarrow \left(\frac{5x + x}{5}\right) = 42 \quad [\because LCM \text{ of 1 and 5 = 5}]$$

$$\Rightarrow \left(\frac{6x}{5}\right) = 42$$

$$\therefore x = \left(\frac{42 \times 5}{6}\right) = 35$$
Hence, the required number is 35 .

Hence, the required number is 35

Q8

Answer:

(b) 75

Let the required number be x.

Then,
$$x - 8\%$$
 of $x = 69$

$$\Rightarrow \left(x - \frac{8x}{100}\right) = 69$$

$$\Rightarrow \left(x - \frac{2x}{25}\right) = 69$$

$$\Rightarrow \left(\frac{25x - 2x}{25}\right) = 69$$

$$\Rightarrow \left(\frac{23x}{25}\right) = 69$$

$$\Rightarrow \left(\frac{23x}{25}\right) = 69$$

$$\therefore x = \left(\frac{69 \times 25}{23}\right) = 75$$
[Since L.C.M. of 1 and 25 = 25]

Hence, the required number is 75

Q9

Answer:

(d) 8 kg

Let x kg be the required amount of ore.

Then, 5% of x kg = 400 g = 0.4 kg [
$$\because$$
 1 kg = 1000 g]
 $\Rightarrow \left(\frac{5}{100} \times x\right) = 0.4$
 $\Rightarrow x = \left(\frac{0.4 \times 100}{5}\right) = 8$

Hence, 8 kg of ore is required to obtain 400 g of copper.

Q10

Million Stars & Practice
Williams And China Chin

(b) Rs. 20000

Suppose that the gross value of the TV is Rs x.

Commission on the TV = 10%

Price of the TV after deducting the commission = Rs (x - 10% of x)

= Rs
$$\left(x - \frac{10}{100}x\right)$$
 = Rs $\left(\frac{100x - 10x}{100}\right)$ = Rs $\left(\frac{9x}{10}\right)$

However, price of the TV after deducting the commission = Rs 18000

Then, Rs
$$\left(\frac{9x}{10}\right)$$
 = Rs 18000

$$\therefore x = \left(\frac{18000 \times 10}{9}\right) = \text{Rs } (2000 \times 10) = \text{Rs } 20000$$

Hence, the gross value of the TV is Rs 20,000

Q11

Answer:

(b) Rs. 16000

Let us assume that the original salary of the man is Rs x.

Increase in it = 25%

Value increased in the salary = 25% of Rs. x

= Rs
$$\left(\frac{25}{100} \times x\right)$$
 = Rs $\left(\frac{x}{4}\right)$

Salary after increment= Rs $\left(x+\frac{x}{4}\right)$ = Rs $\left(\frac{5x}{4}\right)$

However, increased salary = Rs 20000

Then, Rs
$$\left(\frac{5x}{4}\right)$$
 = Rs 20000
 $\therefore x = \text{Rs}\left(\frac{20000 \times 4}{5}\right)$ = Rs 16000

Hence, the original salary of the man is Rs 16,000

Q12

Answer:

(c) 560

Suppose that the number of examinees is 100,

Number of passed examinees = 95

Number of failed examinees = (100 - 95) = 5

Total number of examinees if 5 of them failed = 100

Total number of examinees if 28 of them failed = $\left(\frac{100}{5} \times 28\right) = (20 \times 28) = 560$

Hence, there were 560 examinees

Q13

Answer:

(c) 700

Suppose that the fruit seller initially had 100 apples.

Number of apples sold = 40

∴ Number of remaining apples = (100 - 40) = 60

Initial number of apples if 60 of them are remaining = 100

Initial number of apples if 420 of them are remaining = $\left(\frac{100}{60} \times 420\right)$ = 700

Hence, the fruit seller originally had 700 apples with him.

Q14

Answer:

(c) Rs. 25250

Present value of the machine = Rs 25000

Decrease in its value after 1 year = 10% of Rs 25000

= Rs
$$\left(\frac{10}{100} \times 25000\right)$$
 = Rs 2500

Depreciated value after 1 year = Rs (25000 - 2500) = Rs 22500

Hence, the value of the machine after 1 year will be Rs 22500

(c)75

Let the required number be x. Then, we have

8% of x = 6

$$\Rightarrow \left(\frac{8}{100} \times x\right) = 6$$

$$\therefore x = \left(\frac{6 \times 100}{8}\right) = 75$$

Hence, the required number is 75

Q16

Answer:

(c) 270

60% of 450 =
$$\left(\frac{60}{100} \times 450\right)$$

= $\left(\frac{3}{5} \times 450\right)$ = (3×90) = 270

Q17

Answer:

(d) Rs. 700

Let us assume that the original price of the chair is Rs x.

Reduce percentage on the chair = 6%

So, value of reduction on the chair = 6% of Rs. x

$$= \operatorname{Rs}\left(\frac{6}{100} \times x\right) = \operatorname{Rs}\left(\frac{3x}{50}\right)$$
 Reduced price of the chair = Rs $\left(x - \frac{3x}{50}\right)$ = Rs $\left(\frac{50x - 3x}{50}\right)$ = Rs $\left(\frac{47x}{50}\right)$

However, present price of the chair = Rs 658
Then, Rs
$$\left(\frac{47x}{50}\right)$$
 = Rs 658
 \Rightarrow Rs $\left(\frac{47x}{50}\right)$ = Rs 658
 \Rightarrow x = Rs $\left(\frac{658 \times 50}{47}\right)$ = Rs (14×50) = 700

Hence, the original price of the chair is Rs 700

Q18

Answer:

(b) 560

Let the total number of students be 100

Then, number of boys = 70

∴ Number of girls = (100 - 70) = 30

Now, total number of students if there are 30 girls = 100

Total number of students if there are 240 girls = $\left(\frac{100}{30} \times 240\right) = 800$

∴ Number of boys = (800 - 240) = 560

Hence, there are 560 boys in the school.

Q19

Answer:

(c) 450

Let x be the number.

(11% of x) - (7% of x) = 18

$$\Rightarrow \left(\frac{11x}{100} - \frac{7x}{100}\right) = 18$$

$$\Rightarrow \frac{4x}{100} = 18$$

$$\therefore x = \left(\frac{18 \times 100}{4}\right) = (18 \times 25) = 450$$

Hence, the required number is 450

(a) 60

Let x be the number.

According to question, we have:

$$(35\% \text{ of } x) + 39 = x$$

$$\Rightarrow \left(\frac{35}{100} \times x\right) + 39 = x$$

$$\Rightarrow \left(\frac{7x}{20}\right) + 39 = x$$
$$\Rightarrow \left(x - \frac{7x}{20}\right) = 39$$

$$\Rightarrow \left(\frac{20x - 7x}{20}\right) = 39$$

$$\Rightarrow \left(\frac{13x}{20}\right) = 39$$

$$\therefore \chi = \left(\frac{39 \times 20}{13}\right) = 60$$

Hence, the required number is 60

Q21

Answer:

(c) 500

Let x be the maximum marks.

Pass marks = (145 + 35) = 180

$$36\%$$
 of $x = 180$

$$\Rightarrow \left(\frac{36}{100} \times x\right) = 180$$

$$\Rightarrow x = \left(\frac{180 \times 100}{36}\right) = (5 \times 100) = 500$$
Hence, maximum marks = 500

Q22

Answer:
(d) 225

Let x be the number.

According to question, we have:
$$x - 40\% \text{ of } x = 135$$

$$\Rightarrow \left(x - \frac{40x}{100}\right) = 135$$

$$\Rightarrow \left(\frac{100x - 40x}{100}\right) = 135$$

Hence, maximum marks = 500

Q22

Answer:

(d) 225

Let x be the number.

According to question, we have:

$$\Rightarrow \left(x - \frac{40x}{100}\right) = 135$$

$$\Rightarrow \left(\frac{100x - 40x}{100}\right) = 135$$

$$\Rightarrow \left(\frac{60x}{100}\right) = 135$$

$$\Rightarrow x = \left(\frac{135 \times 100}{60}\right) = 225$$

Hence, the required number is 225

Millions and Practice