

11

CONSTRUCTIONS

EXERCISE 11.1

Q.1. Construct an angle of 90° at the initial point of a given ray and justify the construction.

Steps of Construction

- (i) Let us take a ray AB with initial point A.
- (ii) Taking A as centre and some radius, draw an arc of a circle, which intersects AB at C.
- (iii) With C as centre and the same radius as before, draw an arc, intersecting the previous arc at E.
- (iv) With E as centre and the same radius, as before, draw an arc, which intersects the arc drawn in step (ii) at F.
- (v) With E as centre and some radius, draw an arc.
- (vi) With F as centre and the same radius as before, draw another arc, intersecting the previous arc at G.
- (vii) Draw the ray AG.
 - Then ∠BAG is the required angle of 90°.

Justification: Join AE, CE, EF, FG and GE

AC = CE = AE

[By construction]

- $\Rightarrow \Delta ACE$ is an equilateral triangle
- $\Rightarrow \angle CAE = 60^{\circ}$
- ... (i)

Similarly, $\angle AEF = 60^{\circ}$... (ii)

From (i) and (ii), FE | AC ... (iii)

[Alternate angles are equal]

Also, FG = EG

[By construction]

- ⇒ G lies on the perpendicular bisector of EF
- $\Rightarrow \angle GIE = 90^{\circ}$
- ... (iv)

 $\therefore \angle GAB = \angle GIE = 90^{\circ}$

[Corresponding angles]

GF = GE

[Arcs of equal radii]

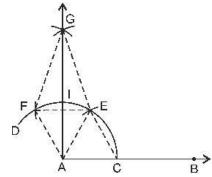
Q.2. Construct an angle of 45° at the initial point of a given ray and justify the construction.

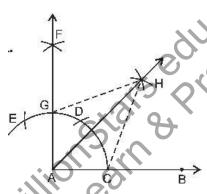
Steps of Construction

- (i) Let us take a ray AB with initial point A.
- (ii) Draw $\angle BAF = 90^{\circ}$, as discussed in Q. 1.
- (iii) Taking C as centre and radius more

than $\frac{1}{2}$ CG, draw an arc.

- (iv) Taking G as centre and the same radius as before, draw another arc, intersecting the previous arc at H.
- (v) Draw the ray AH. Then ∠BAH is the required angle of 45°.





Justification: Join GH and CH.

In \triangle AHG and \triangle AHC, we have

HG = HC[Arcs of equal radii] AG = AC[Radii of the same arc]

AH = AH[Common]

 $\therefore \Delta AHG \cong \Delta AHC$ [SSS congruence] $\Rightarrow \angle HAG = \angle HAC$ [CPCT] ... (i)

But $\angle HAG + \angle HAC = 90^{\circ}$ [By construction]

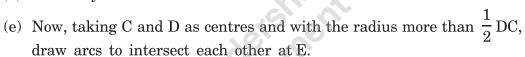
 $\Rightarrow \angle HAG = \angle HAC = 45^{\circ}$ [From (i) and (ii)]

Q.3. Construct the angles of the following measurements.

(ii) $22\frac{1}{2}$ ° (i) 30° (iii) 15°

(i) Steps of Construction

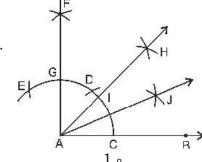
- (a) Draw a ray AB, with initial point A.
- (b) With A as centre and some convenient radius, draw an arc, intersecting AB at C.
- (c) With C as centre and the same radius as before, draw another arc, intersecting the previously drawn arc at D.
- (d) Draw ray AD.



(f) Draw ray AE. Then ∠BAE is the required angle of 30°.

(ii) Steps of Construction

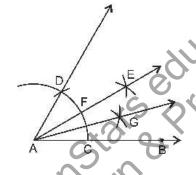
- (a) Draw a ray AB with initial point A.
- (b) Draw $\angle BAH = 45^{\circ}$ as discussed in Q. 2.
- (c) Taking I and C as centres and with the radius more than $\frac{1}{2}$ CI, draw arcs to intersect each other at J.



(d) Draw ray AJ. Then $\angle BAJ$ is the required angle of $22\frac{1}{2}$ °.

(iii) Steps of Construction

- (a) Draw $\angle BAE = 30^{\circ}$ as discussed in part (i).
- (b) Taking C and F as centres and with the radius more than $\frac{1}{2}$ CF, draw arcs to intersect each other at G.
- (c) Draw ray AG. Then $\angle BAG$ is the required angle of 15°.

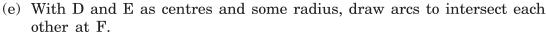


- Q.4. Construct the following angles and verify by measuring them by protractor.

 (i) 75° (ii) 105° (iii) 135°

(i) Steps of Construction

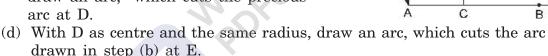
- (a) Draw a ray AB with initial point A.
- (b) With A as centre and any convenient radius, draw an arc, intersecting AB at C.
- (c) With C as centre and the same radius, draw an arc, cutting the previous arc at D.
- (d) With D as centre and the same radius, draw another arc, cutting the arc drawn in step (b) at E.



- (f) Draw ray AF and AD.
- (g) With D and G as centres, and radius more than $\frac{1}{2}$ GD, draw arcs to intersect. each other at H.
- (h) Draw ray AH. Then \angle BAH is the required angle of 75°. On measuring using a protractor, we find that \angle BAH = 75°.

(ii) Steps of Construction

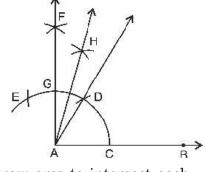
- (a) At A, draw an ∠BAF = 90°, as discussed in Q. 1.
- (b) With A as centre and some convenient radius, draw an arc, intersecting AB at C.
- (c) With C as centre and the same radius, draw an arc, which cuts the precious arc at D.

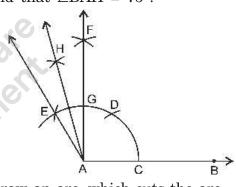


- (e) Draw ray AE.
- (f) With G and E as centres and radius more than $\frac{1}{2}$ GE, draw arcs to intersect each other at H.
- (g) Join AH. Then ∠BAH is the required angle of 105°.
 On measuring using a protractor, we find that ∠BAH = 105°.

(iii) Steps of Construction

- (a) At A, draw angle BAF = 90°, as discussed in Q.1.
- (b) Produce BA to X.
- (c) With A as centre and some convenient radius, draw an arc, which cuts AF and AX at G and H respectively.
- (d) With G and H as centres and radius more than $\frac{1}{2}$ GH, draw arcs to intersect each other at I.
- (e) Draw ray AI. Then \angle BAI is the required angle of 135°. On measuring using a protractor, we find that \angle BAI = 135°





Q.5. Construct an equilateral triangle, given its side and justify the construction.

(i) Steps of Construction

- (i) Draw a line segment AB of given length.
- (ii) With A and B as centres and radius equal to AB, draw arcs to intersect each other at C.
- (iii) Join AC and BC. Then ABC is the required equilateral triangle.

Justification: AB = AC

[By construction]

AB = BC

[By construction]

 \Rightarrow AB = AC = BC

Hence, ΔABC is an equilateral triangle.

CONSTRUCTIONS

EXERCISE 11.2

Q.1. Construct a triangle ABC in which BC = 7 cm, $\angle B = 75^{\circ}$ and AB + $AC = 13 \ cm$.

Steps of Construction

- (i) Draw a line segment BC = 7 cm.
- (ii) At B, draw $\angle CBX = 75^{\circ}$.
- (iii) Cut a line segment BD = 13 cm from BX.
- (iv) Join DC
- (v) Draw the perpendicular bisector LM of CD, which intersects BD at A.
- (vi) Join AC. Then ABC is the required triangle.

$$AC = AD$$

[A lies on the perpendicular bisector of DC.]

$$AB = BD - AD$$

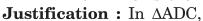
$$= BD - AC$$

$$\Rightarrow$$
 AB + AC = BD

Q.2. Construct a triangle ABC, in which BC = 8 cm, $\angle B = 45^{\circ}$ and AB - AC = 3.5 cm.

Steps of Construction

- (i) Draw a line segment BC = 3.5 cm
- (ii) At B, draw $\angle CBX = 45^{\circ}$.
- (iii) From BX, cut off BD = 3.5 cm.
- (iv) Join DC.
- (v) Draw the perpendicular bisector LM of DC, which intersects BX at A. (vi) Join AC. Then ABC is the required triangle.



$$AD = AC$$

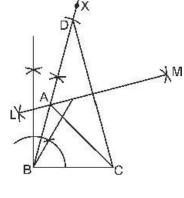
[A lies on the perpendicular bisector of DC]

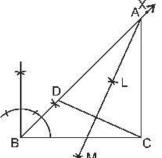
$$BD = AB - AD$$

$$\Rightarrow$$
 BD = AB - AC

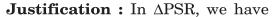
Q.3. Construct a triangle PQR in which QR = 6 cm, ∠Q = 60° and PR PQ = 2 cm.
Steps of Construction

(i) Draw a line segment QR = 6 cm
(ii) At Q, draw ∠RQX = 60°.





- (iii) Produce XQ to Y.
- (iv) Cut off QS = 2 cm from QY.
- (v) Join SR.
- (vi) Draw the perpendicular bisector LM of SR, which intersect QX at P.
- (vii) Join PR. Then PQR is the required triangle..



$$QS = PS - PQ$$

= $PR - PQ$

Q.4. Construct a $\triangle XYZ$ in which $\angle X = 30^{\circ}$, $\angle Z = 90^{\circ}$ and XY + YZ + ZX = 11 cm.

Steps of Construction

- (i) Draw a line segment AB = 11 cm
- (ii) At A, draw $\angle BAP = 30^{\circ}$ and at B, draw $\angle ABR = 90^{\circ}$
- (iii) Draw the bisector of ∠BAP and ∠ABR, which intersect each other at Y.
- (iv) Join AY and BY.
- (v) Draw the perpendicular bisectors LM and ST of AY and BY respectively. LM and ST intersect AB at X and Z respectively.
- (vi) Join XY and YZ. Then XYZ is the required triangle.

Justification : In $\triangle AXY$, we have

$$AX = XY$$
 [X lies on the perpendicular bisector of AY] ...(i)

Similarly,
$$ZB = YZ$$
 ... (ii)

$$\therefore XY + YZ + ZX = AX + ZB + ZX$$
 [From (i) and (ii)]

= AB

From (i), AX = AY

$$\Rightarrow$$
 $\angle XAY = \angle XYA$ [Angles opposite to equal

sides are equal] ... (iii)

In $\triangle AXY$, $\angle YXZ = \angle XAY + \angle XYA$ [Exterior angle is equal to sum of interior opposite angles]

$$\Rightarrow$$
 $\angle YXZ = 2\angle XAY$ [From (iii)]

$$\Rightarrow$$
 $\angle YXZ = \angle XAP$ [: AY bisects $\angle XAP$]

Similarly, $\angle YZX = \angle ZBR$.

Q.5. Construct a right triangle whose base is 12 cm and sum of its hypotenuse and other side is 18 cm.

Steps of Construction

- (i) Draw a line segment AB = 12 cm.
- (ii) At A, draw $\angle BAX = 90^{\circ}$.
- (iii) From AX, cut off AD = 18 cm.
- (iv) Join DB.
- (v) Draw the perpendicular bisector LM of BD, which intersects AD at C.
- (vi) Join BC. Then ΔABC is the required triangle

