Time and Work

Remove Watermark

1. Work from Days:

Ex 13A

If A can do a piece of work in n days, then A's 1 day's work = $\frac{1}{n}$

2. Days from Work:

If A's 1 day's work = $\frac{1}{n}$, then A can finish the work in n days.

If A is thrice as good a workman as B, then:

Ratio of work done by A and B = 3: 1.

Ratio of times taken by A and B to finish a work = 1:3.

01.

Answer:

Work done by Rajan in 1 day = $\frac{1}{24}$

Work done by Amit in 1 day = $\frac{1}{30}$

Work done by Amit and Rajan together in 1 day $=\frac{1}{24}+\frac{1}{30}=\frac{54}{720}=\frac{3}{40}$

 \therefore They can complete the work in $\frac{40}{3}$ days, i.e., $13\frac{1}{3}$ days if they work together.

Answer:

Time taken by Ravi $= 15 \,\mathrm{h}$

Time taken by Raman = 12 h

Work done per hour by Ravi $=\frac{1}{15}$

Work done per hour by Raman $= \frac{1}{12}$

Work done per hour by Ravi and Raman together $=\frac{1}{15}+\frac{1}{12}=\frac{9}{60}=\frac{3}{20}$

... Time taken by Ravi and Raman together to finish the work = $\frac{20}{3}$ h = $6\frac{2}{3}$ h Q3.

Answer:

Time taken by A and B to finish a piece of work = 6 days

Work done per day by A and B = $\frac{1}{6}$

Time taken by A alone = 9 days

Work done per day by A alone $= \frac{1}{6}$

Work done per day by B = (work done by A and B) - (work done by A)

$$=\frac{1}{6}-\frac{1}{9}=\frac{3-2}{18}=\frac{1}{18}$$

 \therefore B alone will take 18 days to complete the work.

Q4.

Answer:

Time taken by Raju = 15 h

Work done by Raju in $1 \text{ h} = \frac{1}{15}$

Time taken by Raju and Siraj working together $= 6 \, \mathrm{h}$

Work done by Raju and Siraj in $1 h = \frac{1}{6}$

Work done by Siraj in 1 h = (work done by Raju and Siraj)

$$=\frac{1}{6}-\frac{1}{15}=\frac{5-2}{30}=\frac{3}{30}=\frac{1}{10}$$

days $=\frac{1}{10}$ $\text{day by B} = \frac{1}{12}$ $\text{done per day by C} = \frac{1}{15}$ Total work done per day = $\frac{1}{10} + \frac{1}{12} + \frac{1}{15} = \frac{6+5+4}{60} = \frac{15}{60} = \frac{1}{4}$ A, B and C will take 4 days to complete the work if they work together.

Time taken by A to complete the piece of work = 24 h

Work done per hour by $A = \frac{1}{24}$

Time taken by B to complete the work $\,=\,16\,\mathrm{h}$

Work done per hour by $B = \frac{1}{16}$

Total time taken when A, B and C work together $= 8 \, h$

Work done per hour by A, B and $C = \frac{1}{8}$

Work done per hour by A, B and C = (work done per hour by A) +

(work done per hour by B) + (work done per hour by C)

(Work done per hour by C) = (work done per hour by A, B and C) -

(work done per hour by A) - (work done per hour by B)

 $=\frac{1}{8}-\frac{1}{24}-\frac{1}{16}=\frac{6-2-3}{48}=\frac{1}{48}$

Thus, C alone will take 48 h to complete the work.

Q7.

Answer:

A can complete the work in 20 h.

Work done per hour by $A = \frac{1}{20}$

B can complete the work in 24 h.

Work done per hour by $B = \frac{1}{24}$

It takes 8 h to complete the work if A, B and C work together.

Work done together per hour by A, B and $C = \frac{1}{8}$

(Work done per hour by A, B and C) = (work done per hour by A)

+ (work done per hour by B) + (work done per hour by C)

(Work done per hour by C) = (work done per hour by A, B and C)

- (work done per hour by A) - (work done per hour by B)

$$= \frac{1}{8} - \frac{1}{24} - \frac{1}{20} = \frac{1}{30}$$

.. C alone will take 30 h to complete the work.

Q8.

Answer:

Time taken by A to complete the work = 16 days

Work done per day by $A = \frac{1}{16}$

Time taken by B to complete the work = 12 days

Work done per day by $B = \frac{1}{12}$

Work done per day by A and B = $\frac{1}{12} + \frac{1}{16} = \frac{4+3}{48} = \frac{7}{48}$

Work done by A in two days $=\frac{2}{16}=\frac{1}{8}$

Work left $= 1 - \frac{1}{8} = \frac{7}{8}$

A and B together can complete $\frac{7}{48}$ of the work in 1 day.

Willionsian a practice with a practice of the property of the Then, time taken to complete $\frac{7}{8}$ of the work $=\frac{7}{8}\div\frac{7}{48}=\frac{7}{8}\times\frac{48}{7}=6$ days

 \therefore Total time taken = 6 + 2 = 8 days.

Q9.

Time taken by A to complete the work = 14 days

Work done by A in one day $=\frac{1}{14}$

Time taken by B to complete the work = 21 days

Work done by B in one day $=\frac{1}{21}$

Work done jointly by A and B in one day $= \frac{1}{14} + \frac{1}{21} = \frac{3+2}{42} = \frac{5}{42}$

Work done by A and B in 6 days $=\frac{5}{42}\times 6=\frac{5}{7}$

Work left = $1 - \frac{5}{7} = \frac{2}{7}$

With B working alone, time required to complete the work $=\frac{2}{7}\div\frac{1}{21}=\frac{2}{7}$ \times 21 =

 $2 \times 3 = 6 \text{ days}$

So, the total time taken to complete the work = 6 + 6 = 12 days

Q10.

Answer:

A can do $\frac{2}{3}$ work in 16 days

So, work done by A in one day $=\frac{2}{48}=\frac{1}{24}$

B can do $\frac{1}{4}$ work in 3 days

So, work done by B in one day $=\frac{1}{12}$

Work done jointly by A and B in one day $=\frac{1}{24} + \frac{1}{12} = \frac{1+2}{24} = \frac{3}{24} = \frac{1}{8}$

So, A and B together will take 8 days to complete the work

Q11.

Answer:

Time taken by A = 15 days

Time taken by B = 12 days

Time taken by C = 20 days

Work d by A in one day $=\frac{1}{15}$

Work done by B in one day $=\frac{1}{12}$

Work done by C in one day $=\frac{1}{20}$

Work done in one day by A, B and C together $=\frac{1}{15} + \frac{1}{12} + \frac{1}{20} = \frac{4+5+3}{60} = \frac{12}{60} = \frac{1}{5}$

Work done by A, B and C together in 2 days = $\frac{2}{5}$

Work remaining $=1-\frac{2}{5}=\frac{3}{5}$

Work done by A and B in one day $=\frac{1}{15} + \frac{1}{12} = \frac{9}{60} = \frac{3}{20}$

Time required by A and B to complete the remaining work together $=\frac{3}{5} \div \frac{3}{20} = \frac{3}{5}$ $\times \frac{20}{3} = 4 \text{ days}$

Q12.

Answer:

Time needed by A and B to finish the work = 18 days

Time needed by B and C to finish the work = 24 days

Time needed by C and A to finish the work =36 days

Work done by A and B in one day $=\frac{1}{18}$

Work done by B and C in one day $=\frac{1}{24}$

Work done by C and A in one day $=\frac{1}{36}$

Williams of the Children of th $2 \times \text{Work done by A, B and C in one day} = \frac{1}{18} + \frac{1}{24} + \frac{1}{36} = \frac{4+3+2}{72} = \frac{9}{72} = \frac{1}{8}$

 \therefore Work done by A, B and C in one day $=\frac{1}{16}$

So, A, B and C working together will take 16 days to complete the work.

Q13.

(A + B) can complete the work in 12 days.

(B+C) can complete the work in 15 days.

(C+A) can complete the work in 20 days.

$$(A+B)$$
's 1 day work = $\frac{1}{12}$

$$(B+C)$$
's 1 day work $=\frac{1}{15}$

$$(C+A)$$
's 1 day work $=\frac{1}{20}$

$$2\Big(A+B+C\Big)\text{'s }1\ day\ work\ = \tfrac{1}{12}+\tfrac{1}{15}+\tfrac{1}{20}=\tfrac{5+4+3}{60}=\tfrac{12}{60}=\tfrac{1}{5}$$

$$\left(A+B+C\right)$$
's 1 day work $=\frac{1}{10}$

A's 1 day work = {(A+B+C)'s 1 day work} - {(B+C)'s 1 day work} =
$$\frac{1}{10}$$
 - $\frac{1}{15}$ = $\frac{3-2}{30}$ = $\frac{1}{30}$

A will take 30 days to complete the work, if he works alone.

Q14.

Answer:

A can fill a tank in 10 hours.

B can fill a tank in 15 hours.

Pipe A fills $\frac{1}{10}$ of the tank in one hour.

Pipe B fills $\frac{1}{15}$ of the tank in one hour.

Part of tank filled by pipes A and B together $=\frac{1}{10}+\frac{1}{15}=\frac{3+2}{30}=\frac{5}{30}=\frac{1}{6}$ Thus, pipes A and B require 6 hours to fill the tank.

Thus, pipes A and B require 6 hours to fill the tank. elemer

Q15.

Answer:

Pipe A can fill a tank in 5 hours.

Pipe B can empty a full tank in 6 hours.

Pipe A fills $\frac{1}{5}$ of the tank in one hour.

Pipe B empties $\frac{1}{6}$ of the tank in one hour.

Part of the tank filled in one hour using both pipes A and B = $\frac{1}{5} - \frac{1}{6} = \frac{6-5}{30} = \frac{1}{30}$

It takes $\frac{30}{1}$ or 30 hours to fill the tank completely.

Q16.

Answer:

Time taken by tap A to fill the tank = 6 hours

Time taken by tap B to fill the tank = 8 hours

Time taken by tap C to fill the tank = 12 hours

A fills $\frac{1}{6}$ of the tank in one hour.

B fills $\frac{1}{8}$ of the tank in one hour.

C fills $\frac{1}{12}$ of the tank in one hour.

Millions are edulactice whillions are a practice. Part of the tank filled in one hour using all the three pipes $=\frac{1}{6}+\frac{1}{8}+\frac{1}{12}=\frac{4+3+2}{24}=$ $\frac{9}{24}$

Time taken by A, B and C together to fill the tank $=\frac{24}{9}=\frac{8}{3}=2\frac{2}{3}$ hours

Q17.

Inlet A can fill the cistern in 12 minutes. Inlet B can fill the cistern in 15 minutes.

Outlet C empties the filled cistern in 10 minutes.

Part of the cistern filled by inlet A in one minute $=\frac{1}{12}$

Part of the cistern filled by inlet B in one minute $=\frac{1}{15}$

Part of the cistern emptied by outlet C in one minute $= -\frac{1}{10}$

(water flows out from C and empties the cistern)

Part of the cistern filled in one minute with A, B and C working together $=\frac{1}{12}+\frac{1}{15}-\frac{1}{10}$ $=\frac{5+4-6}{60}=\frac{3}{60}=\frac{1}{20}$

The time required to fill the cistern with all inlets, A, B and C, open is 20 minutes.

Q18.

Answer:

A pipe can fill a cistern in 9 hours.

Part of the cistern filled by the pipe in one hour $=\frac{1}{9}$

Let the leak empty the cistern in x hours.

Part of the cistern emptied by the leak in one hour $= -\frac{1}{x}$

(The leak drains out the water)

Considering the leak, the tank is filled in 10 hours.

Part of the tank filled in one hour $=\frac{1}{10}$

Therefore,

$$\frac{1}{9} - \frac{1}{x} = \frac{1}{10}$$
 or, $\frac{1}{x} = \frac{1}{9} - \frac{1}{10} = \frac{10-9}{90} = \frac{1}{90} x = 90$

The leak will empty the filled cistern in 90 hours.

Q19.

Answer:

Pipe A can fill a cistern in 6 hours.

Pipe B can fill a cistern in 8 hours.

Part of the cistern filled by pipe A in one hour $=\frac{1}{6}$

Part of the cistern filled by pipe B in one hour $=\frac{1}{8}$

Part of the cistern filled by pipes A and B in one hour $=\frac{1}{6}+\frac{1}{8}=\frac{4+3}{24}=\frac{7}{24}$

Part of the cistern filled by pipes A and B in 2 hours $=\frac{7}{24}\times 2=\frac{7}{12}$

Part of the tank empty after 2 hours $= 1 - \frac{7}{12} = \frac{5}{12}$

Time taken by pipe B to fill the remaining tank = $\frac{5}{12} \div \frac{1}{8} = \frac{5}{12} \times 8 = \frac{10}{3} = 3\frac{1}{3}$ hours

Time and Work Ex 13B

1. Work from Days:

If A can do a piece of work in n days, then A's 1 day's work = $\frac{1}{n}$

2. Days from Work:

If A's 1 day's work = $\frac{1}{n}$, then A can finish the work in n days.

3. Ratio

If A is thrice as good a workman as B, then:

Ratio of work done by A and B = 3: 1.

Ratio of times taken by A and B to finish a work = 1:3.

Q1.

Answer:

(b) 6 days

A can do a work in 10 days.

A's 1 day work $= \frac{1}{10}$

B can do a work in 15 days.

B's 1 day work = $\frac{1}{15}$

$$(A+B)$$
's 1 day work = $\frac{1}{10} + \frac{1}{15} = \frac{5}{30} = \frac{1}{6}$

A and B together will take 6 days to complete the work.

Q2.

Answer:

(c) $7\frac{1}{2} \ days$

A man can do a work in 5 days.

The man's 1 day work $=\frac{1}{5}$

The man and the son can do the work in 3 days.

The man and his son's 1 day work = $\frac{1}{3}$

Let the son's 1 day work be $\frac{1}{x}$.

Therefore,

$$\frac{1}{3} = \frac{1}{5} + \frac{1}{x}$$

or,
$$\frac{1}{\mathbf{x}} = \frac{1}{3} - \frac{1}{5} = \frac{5-3}{15} = \frac{2}{15}$$

$$x = \frac{15}{2} = 7\frac{1}{2} \text{ days}$$

Q3.

Answer:

(d) 48 days

A can do a job in 16 days.

B can do the job in 12 days.

Suppose C can do the job in x days.

A's 1 day work $= \frac{1}{16}$

B's 1 day work $= \frac{1}{12}$

C's 1 day work $= \frac{1}{x}$

A, B and C together can complete the work in 6 days.

$$(A+B+C)$$
's 1 day work = $\frac{1}{6}$

Therefore,
$$\frac{1}{6} = \frac{1}{16} + \frac{1}{12} + \frac{1}{x}$$

$$\Rightarrow \frac{1}{\mathbf{x}} = \frac{1}{6} - \frac{1}{16} - \frac{1}{12} = \frac{8 - 3 - 4}{48} = \frac{1}{48}$$

 $\mathbf{x} = 48$

Therefore, C alone can complete the job in 48 days.

Q4.

Willion States Bractice
Williams States Bractice

Answer:

(a) 30 days

Let B take x days to complete the work.

Then A takes
$$\left(x + \frac{50}{100}x\right) = 1.5x$$

$$A's \ 1 \ day's \ work = \frac{1}{1.5x} = \frac{2}{3x}$$

$$B$$
's 1 day's work = $\frac{1}{x}$

(A+B) takes 18 days to complete the work.

$$(A+B)$$
's 1 day's net work $=\frac{1}{18}$

or
$$\frac{1}{18} = \frac{2}{3x} + \frac{1}{x}$$

$$\Rightarrow \frac{1}{18} = \frac{5}{3x}$$

 $By\ cross-multiplication,\ we\ get:$

 $x = 30 \ days$

 \therefore B alone will take 30 days to complete the work.

Q5.

Answer:

(c) 36 days

Let A take x days to complete the work. Then B takes 2x days to complete the

A's 1 day 's work = $\frac{1}{x}$

B's 1 day's work = $\frac{1}{2x}$

A and B take 12 days to complete the work.

Net work done by
$$(A+B)$$
 in $1 day = \frac{1}{12} = \frac{1}{x} + \frac{1}{2x} = \frac{3}{2x}$

$$\Rightarrow 2\mathbf{x} = 36$$

$$\Rightarrow$$
 x = 18

A can complete the work by himself in 18 days.

B will take 36 days, i.e., twice as long as the time taken by A.

Q6.

Answer:

(c) Rs. 1800

Since the wage distribution will follow the work distribution ratio, we have

Work done by A in 1 day
$$=\frac{1}{10}$$

Work done by B in 1 day $=\frac{1}{15}$

Work done by B in 1 day =
$$\frac{1}{15}$$

Net work done by (A+B) in 1 day
$$=\frac{1}{10}+\frac{1}{15}=\frac{5}{30}=\frac{1}{6}$$

i.e., (A+B) will take 6 days to complete the work.

A's share of work in a day =
$$\frac{1}{10} \div \frac{1}{6} = \frac{1}{10} \times \frac{6}{1} = \frac{6}{10} = \frac{3}{5}$$

$$\therefore$$
 A's wage = $\frac{3}{5} \times 3000 = Rs~1800$

Q7.

Answer:

(c) 4:3

The number of days taken for working is the reciprocal of the rate of work.

i.e., number of days taken
$$=\frac{1}{\text{rate of work}} = \frac{1}{\frac{3}{4}} = \frac{4}{3}$$

Q8.

Answer:

(c) 10 days

(A+B) can do a work in 12 days.

(B+C) can do a work in 20 days.

(C+A) can do a work in 15 days.

Now, we have:

Work done by (A+B) in 1 day = $\frac{1}{12}$

Work done by (B+C) in 1 day $=\frac{1}{20}$

Work done by (C+A) in 1 day = $\frac{1}{15}$

Net work done by $2(A+B+C) = \frac{1}{12} + \frac{1}{20} + \frac{1}{15} = \frac{5+3+4}{60} = \frac{12}{60} = \frac{1}{5}$

Net work done by (A+B+C) in $1 day = \frac{1}{10}$

 \therefore If A, B and C work together, they will complete the work in 10 days.

Q9.

Answer:

(c) 4 days

Three men can complete the work in 12 days.

Thus, one man can complete the work in 36 days.

Rate of work done by one man in 1 day = $\frac{1}{36}$

Similarly, rate of work done by one woman in 1 day = $\frac{1}{5\times12} = \frac{1}{60}$

Now, six men will do $\frac{6}{36}$, i.e., $\frac{1}{6}$ unit of work in a day.

Five women will do $\frac{5}{60}$, i,e., $\frac{1}{12}$ unit of work in a day.

 \therefore Total work done in $1 \text{ day} = \frac{1}{6} + \frac{1}{12} = \frac{1}{4}$ unit

Thus, six men and five women will take 4 days to complete the work.

The work can be completed in 4 days.

Q10.

Million Stars & Practice

(a) 10 days

Work done by A in $1 day = \frac{1}{15}$

B is 50% more efficient than A.

... Work done by B in $1 \text{ day} = \frac{150}{100} \times \frac{1}{15} = \frac{1}{10}$

Thus, B can complete the work in 10 days.

Q11.

Answer:

(c) 6 hours

Time taken by A to finish the piece of work = $7\frac{1}{2}$ hours = $\frac{15}{2}$ hours

Work done by A in 1 hour = $\frac{2}{15}$

Let B take x hours to finish the work.

Work done by B in 1 hours = $\frac{1}{r}$

A can work 20% less than B, or A can do 4/5 of B's work.

Now,
$$\frac{\left(\frac{4}{5}\right)}{1} = \frac{\left(\frac{2}{15}\right)}{\left(\frac{1}{5}\right)}$$

$$\Rightarrow \tfrac{4}{5} = \tfrac{2\textbf{x}}{15}$$

$$\Rightarrow$$
 $\mathbf{x} = \frac{15 \times 4}{5 \times 2} = 6$ hours

Q12.

Answer:

(b) 5 days

A can complete the work in 20 days.

Work done by A in $1 day = \frac{1}{20}$

B can complete the work in 12 days.

Work done by B in $1 \text{ day} = \frac{1}{12}$

In 9 days, B completes $\frac{9}{12}$, i.e., $\frac{3}{4}$ of the work and leaves $1-\frac{3}{4}$, i.e., $\frac{1}{4}$ of the

 \therefore Time taken by $A = \frac{1}{4} \div \frac{1}{20} = \frac{1}{4} \times 20 = 5$ days

Q13.

Answer:

A can do the piece of work in 25 days.

Work done by A in $1 \text{ day} = \frac{1}{25}$

B can do the same work in 20 days.

Work done by B in $1 day = \frac{1}{20}$

A alone completes $\frac{10}{25}$, i,e., $\frac{2}{5}$ of the work in 10 days. Now, work remaining =1

Million Stars & Practice
Williams and Stars of the Children of $-\frac{2}{5} = \frac{3}{5}$ Work done by (A+B) in $1 day = \frac{1}{25} + \frac{1}{20} = \frac{9}{100}$.. Time taken if they

work together = $\frac{3}{5} \div \frac{9}{100} = \frac{3}{5} \times \frac{100}{9} = \frac{20}{3} = 6\frac{2}{3}$ days

Q14.

(b) 12 minutes

First pipe can fill a tank in 20 minutes.

Second pipe can fill the tank in 30 minutes.

Part of tank filled by the first pipe in one minute $=\frac{1}{20}$

Part of tank filled by the second pipe in one minute $\frac{1}{30}$ Part of tank filled by both pipes

in one minute
$$=\frac{1}{20}+\frac{1}{30}=\frac{5}{60}=\frac{1}{12}$$

Thus, it takes 12 minutes to fill the tank using both the pipes.

Q15.

Answer:

(c) 16 hours

A tap can fill a cistern in 8 hours.

Part of cistern filled in one hour $=\frac{1}{8}$

A tap can empty the cistern in 16 hours.

Part of cistern emptied in one hour $=-\frac{1}{16}$ (negative sign shows that the cistern

is being drained)

:. Part of cistern filled in one hour $=\frac{1}{8}-\frac{1}{16}=\frac{1}{16}$

Time required to fill the cistern = 16 hours

Q16.

Answer:

(d) 14 hours

A pump can fill a tank in 2 hours.

Part of the tank filled by the pump in one hour $=\frac{1}{2}$

Suppose the leak empties a full tank in x hours.

Part of the tank emptied by the leak in one hour $= -\frac{1}{x}$

Part of tank filled in one hour $=\frac{1}{2} - \frac{1}{x} = \frac{3}{7}$ (given)

$$\frac{1}{\mathbf{x}} = \frac{1}{2} - \frac{3}{7} = \frac{7 - 6}{14} = \frac{1}{14}$$

x = 14 hours

Q17.

Answer:

(b) 7 hours 30 minutes

Part of the tank filled by the first pipe in one hour $=\frac{1}{10}$

Part of the tank filled by the second pipe in one hour $=\frac{1}{12}$

Part of the tank filled by the third pipe in one hour $=\frac{-1}{20}$

Part of the tank filled by three pipes in one hour $=\frac{1}{10}+\frac{1}{12}-\frac{1}{20}=\frac{2}{15}$

Total time taken to fill the tank = $\frac{15}{2}$ hrs = 7 hours 30 minutes

 $\frac{1}{20} = \frac{2}{15}$ O minutes $\frac{1}{20} = \frac{2}{15}$ O minutes