

Construction of Quadrilaterals Exercise 17A

Туре	Properties	
Parallelogram	 Opposite sides are equal and parallel Opposite angles are equal Opposite sides are equal and parallel All angles are right angles (90°) 	
Rectangle		
Square	 Opposite sides are parallel All sides are equal All angles are right angles (90°) 	
Rhombus	Opposite sides are parallel All sides are equal Opposite angles are equal Diagonals bisect each other at right angles (90°)	
Trapezoid	One pair of opposite sides is parallel	
Kite	 Two pairs of adjacent sides are equal One pair of opposite sides are equal One diagonal bisects the other Diagonals intersect at right angle (90°) 	

Construction of Quadrilaterals RS Aggarwal Class 8 Maths Solutions Exercise 17A Q1 $\,$

aths Solutions Exercise 17A

https://millionstar.godaddysites.com/

Remove Watermark

Answer:

Steps of construction:

Step 1: Draw AB = 4.2 cm.

Step 2: With A as the centre and radius equal to 8 cm, draw an arc.

Step 3: With B as the centre and radius equal to 6 cm, draw another arc, cutting the previous arc at C.

Step 4: Join BC.

Step 5: With A as the centre and radius equal to $5\ \mathrm{cm},$ draw an arc.

Step 6: With C as the centre and radius equal to $5.2\,$ cm, draw another arc, cutting the previous arc at

D.

Step 7: Join AD and CD.

Thus, ABCD is the required quadrilateral

Q2

Answer:

Steps of construction:

Step 1: Draw PQ = 5.4 cm.

Step 2: With P as the centre and radius equal to 4 cm, draw an arc.

Step 3: With Q as the centre and radius equal to $4.6\ cm$, draw another arc, cutting the previous arc at

R.

Step 4: Join QR.

Step 5: With P as the centre and radius equal to 3.5 cm, draw an arc.

Step 6: With R as the centre and radius equal to $4.3\ cm$, draw another arc, cutting the previous arc at

3.

Step 7: Join PS and RS.

Thus, PQRS is the required quadrilateral,

Q3

Answer:

Steps of construction:

Step 1: Draw AB = 3.5 cm.

Step 2: With B as the centre and radius equal to 5.6 cm, draw an arc.

Step 3: With A as the centre and radius equal to $4.5\,$ cm, draw another arc, cutting the previous arc at

D.

Step 4: Join BD and AD.

Step 5: With D as the centre and radius equal to $4.5~\mathrm{cm}$, draw an arc.

Step 6: With B as the centre and radius equal to $3.8\,$ cm, draw another arc, cutting the previous arc at

C.

Step 7: Join BC and CD.

Thus, ABCD is the required quadrilateral.

other arc, cutting the previous arc at

Steps of construction:

Step 1: Draw AB = 3.6 cm

Step 2: With B as the centre and radius equal to 4 cm, draw an arc.

Step 3: With A as the centre and radius equal to 2.7 cm, draw another arc, cutting the previous arc at

Step 4: Join BD and AD.

Step 5: With A as the centre and radius equal to 4.6 cm, draw an arc.

Step 6: With B as the centre and radius equal to 3.3 cm, draw another arc, cutting the previous arc at

Step 7: Join AC, BC and CD.

Thus, ABCD is the required quadrilateral.

Q5

Answer:

Steps of construction:

Step 1: Draw QR = 7.5 cm.

Step 2: With Q as the centre and radius equal to 10 cm, draw an arc.

Step 3: With R as the centre and radius equal to 5 cm, draw another arc, cutting the previous arc at S.

Step 4: Join QS and RS.

Step 5: With S as the centre and radius equal to $6\ \mathrm{cm}$, draw an arc.

Step 6: With R as the centre and radius equal to 6 cm, draw another arc, cutting the previous arc at P.

Step 7: Join PS and PR.

Step 8: PQ = 4.9 cm

Thus, PQRS is the required quadrilateral

Q6

Answer:

Steps of construction:

Step 1: Draw AB = 3.4 cm.

Step 2: With B as the centre and radius equal to 4 cm, draw an arc.

Step 3: With A as the centre and radius equal to 5.7 cm, draw another arc, cutting the previous arc at

Step 4: Join BD and AD.

Step 5: With A as the centre and radius equal to 8 cm, draw an arc.

Step 6: With D as the centre and radius equal to 3 cm, draw another arc, cutting the previous arc at C.

Step 7: Join AC, CD and BC.

Thus, ABCD is the required quadrilateral.

Steps of construction:

Step 1: Draw AB= 3.5 cm

Step 2: Make $\angle ABC = 120^{\circ}$

Step 3: With B as the centre, draw an arc 3.5 cm and name that point C.

Step 4: With C as the centre, draw an arc 5.2 cm.

Step 5: With A as the centre, draw another arc $5.2\,$ cm, cutting the previous arc at D.

Step 6: Join CD and AD.

Thus, ABCD is the required quadrilateral.

Q8

Answer:

Steps of construction:

Step 1: Draw AB= 2.9cm

Step 2: Make $\angle A = 70^{\circ}$

Step 3: With A as the centre, draw an arc of 3.4cm. Name that point as D_{\odot}

Step 4: With D as the centre, draw an arc of 2.7cm.

Step 5: With B as the centre, draw an arc of 3.2 cm, cutting the previous arc at C.

Step 6: Join CD and BC.

Then, ABCD is the required quadrilateral.

Q9

Answer:

Steps of construction:

Step 1: Draw BC= 5cm

Step 2: Make $\angle B = 125^{
m o}$ and $\angle C = 60^{
m o}$

Step 3: With $\it B$ as the centre, draw an arc of $\it 3.5~cm$. Name that point as $\it A$.

Step 4: With $\it C$ as the centre, draw an arc of $\it 4.6~cm$. Name that point as $\it D$.

Step 5: Join A and D.

Then, ABCD is the required quadrilateral.

Q10

Steps of construction:

Step 1: Draw QR= 5.6 cm

Step 2: Make $\angle Q = 45^{\circ}$ and $\angle R = 90^{\circ}$ Step 3: With Q as the centre, draw an arc of 6 cm. Name that point as P.

Step 4: With R as the centre, draw an arc of 2.7cm. Name that point as S.

Step 6: Join P and S.

Then, PQRS is the required quadrilateral.

Q11

Answer:

Steps of construction:

Step 1: Draw AB= 5.6 cm

Step 2: Make $\angle A = 50^{\circ}$ and $\angle B = 105^{\circ}$

Step 3: With B as the centre, draw an arc of 4cm.

Step 3: Sum of all the angles of the quadrilateral is 360°.

$$\angle A + \angle B + \angle C + \angle D = 360^{\circ}$$

$$50^{\circ} + 105^{\circ} + \angle C + 80^{\circ} = 360^{\circ}$$

$$235^{\circ} + \angle C = 360^{\circ}$$

$$\angle C = 360^{\circ} - 235^{\circ}$$

$$\angle C = 125^{\circ}$$

Step 5: With C as the centre, make $\angle C$ equal to $\angle 125^{\rm o}$

Step 6: Join C and D.

Step 7: Measure $\angle D = 80^{\circ}$

Then, ABCD is the required quadrilateral.

Q12

Steps of construction:

Step 1: Draw PQ= 5cm

Step 2:

$$\angle P + \angle Q + \angle R + \angle S = 360^{\circ}$$

$$100^{\circ} + \angle Q + 100^{\circ} + 75^{\circ} = 360^{\circ}$$

 $275^{\circ} + \angle Q = 360^{\circ}$

$$\angle Q = 360^{\circ} - 275^{\circ}$$

 $\angle Q = 85^{\circ}$

Step 3: Make $\angle P = 100^{
m o}$ $\it and$ $\it \angle Q = 85^{
m o}$

Step 3: With Q as the centre, draw an arc of 6.5 cm.

Step 4: Make $\angle R = 100^{\circ}$

Step 6: Join R and S.

Step 7: Measure $\angle S = 75^{\circ}$

Then, PQRS is the required quadrilateral.

Million State & Practice

Q13

Answer:

Steps of construction:

Step 1: Draw AB=4cm

Step 2: $Make \angle B = 90^{\circ}$

Step 3: $AC^2 = AB^2 + BC^2$

 $5^2 = 4^2 + BC^2$

 $25 - 16 = BC^2$ BC = 3cm

With B as the centre, draw an arc equal to 3 cm.

Step 4: Make $\angle C = 90^{
m o}$

Step 5: With A as the centre and radius equal to $5.5\ cm$, draw an arc and name that point as D.

Then, ABCD is the required quadrilateral.

Million Stars Practice
William Rearing Practice

Construction of Quadrilaterals Ex 17B

Туре	Properties	1
Parallelogram	 Opposite sides are equal and parallel Opposite angles are equal 	
Rectangle	 Opposite sides are equal and parallel All angles are right angles (90°) 	
Square	Opposite sides are parallel All sides are equal All angles are right angles (90°)	
Rhombus	Opposite sides are parallel All sides are equal Opposite angles are equal Diagonals bisect each other at right angles (90°)	-
Trapezoid	One pair of opposite sides is parallel	2): (CE
Kite	Two pairs of adjacent sides are equal One pair of opposite sides are equal One diagonal bisects the other Diagonals intersect at right angle (90°)	ale black
	Willion S	are edivactice

Steps of construction:

Step 1: Draw AB = 5.2cm

Step 2: With B as the centre, draw an arc of 4.7 cm.

Step 3: With A as the centre, draw another arc of 7.6 cm, cutting the previous arc at C.

Step 4: Join A and C

Step 5: We know that the opposite sides of a parallelogram are equal. Thus, with C as the centre, draw

an arc of 5.2cm.

Step 6: With A as the centre, draw another arc of 4.7 cm, cutting the previous arc at D.

Step 7: Join CD and AD.

Then, ABCD is the required parallelogram.

Q2

Answer:

Steps of construction:

Step 1: Draw AB= 4.3cm

Step 2: With B as the centre, draw an arc of $6.8 \ cm$.

Step 3: With A as the centre, draw another arc of 4cm, cutting the previous arc at D.

Step 4: Join BD and AD.

Step 5: We know that the opposite sides of a parallelogram are equal.

Thus, with D as the centre, draw an arc of 4.3cm.

Step 6: With \emph{B} as the centre, draw another arc of $4~\emph{cm}$, cutting the previous arc at \emph{C} .

Step 7: Join CD and BC.

then, ABCD is the required parallelogram.

Q3

Answer:

Steps of construction:

Step 1: Draw PQ= 4 cm

Step 2: Make $\angle PQR = 60^{\circ}$

Step 2: With Q as the centre, draw an arc of 6 cm and name that point as R.

Step 3: With R as the centre, draw an arc of 4 cm and name that point as S.

Step 4: Join SR and PS.

Then, PQRS is the required parallelogram.

Q4

Steps of construction:

Step 1: Draw BC= 5cm

Step 2: Make an $\angle BCD = 120^{\circ}$

Step 2: With C as centre draw an arc of 4.8 cm, name that point as D

Step 3: With D as centre draw an arc 5 cm, name that point as A

Step 4: With B as centre draw another arc 4.8 cm cutting the previous arc at A.

Step 5: Join AD and AB

then, ABCD is a required parallelogram.

Q5

Answer:

We know that the diagonals of a parallelogram bisect each other.

Steps of construction:

Step 1: Draw AB= 4.4cm

Step 2: With A as the centre and radius 2.8cm, draw an arc.

Step 3: With B as the centre and radius 3.5cm, draw another arc, cutting the previous arc at point O.

Step 4: Join OA and OB.

Step 5: Produce OA to C, such that OC= AO. Produce OB to D, such that OB=OD.

Step 5: Join AD, BC, and CD.

Thus, ABCD is the required parallelogram. The other side is 4.5 cm in length.

Q6

Answer:

Steps of construction:

Step 1: Draw AB= 6.5cm

Step 2: Draw a perpendicular at point *A. Name* that ray as *AX*. From point *A*, draw an arc of length 2.5 cm on the ray *AX* and name that point as L.

Step 3: On point L, make a perpendicular. Draw a straight line YZ passing through L, which is perpendicular to the ray AX.

Step 4: Cut an arc of length 3.4 cm on the line YZ and name it as C.

Step 5: From point C, cut an arc of length 6.5 cm on the line YZ. Name that point as D.

Step 6: Join BC and AD.

Therefore, quadrilateral ABCD is a parallelogram.

The altitude from C measures 2.5 cm in length.

Q7

We know that the diagonals of a parallelogram bisect each other.

Steps of construction:

Step 1: Draw AC= 3.8cm

Step 2: Bisect AC at O.

Step 3: Make $\angle COX = 60^{\circ}$

Produce XO to Y.

Step 4:

$$OB = \frac{1}{2} \left(4.6 \right)$$
 cm

$$OB = 2.3$$
 cm

and
$$OD = \frac{1}{2} (4.6)$$
 cm

$$OD = 2.3$$
 cm

Step 5: Join AB, BC, CD and AD.

Thus, ABCD is the required parallelogram.

Q8

Answer:

Steps of construction:

Step 1: Draw AB = 11cm

Step 2: Make $\angle A = 90^{\circ}$

$$\angle B = 90^{\circ}$$

Step 3: Draw an arc of 8.5 cm from point A and name that point as D.

Step 4: Draw an arc of 8.5 cm from point B and name that point as C.

Step 5: Join C and D.

Thus, ABCD is the required rectangle

Q9

Million Stars & Practice

All the sides of a square are equal.

Steps of construction:

Step 1: Draw AB = 6.4cm

Step 2: Make $\angle A = 90^{\circ}$

$$\angle B = 90^{\circ}$$

Step 3: Draw an arc of length 6.4 cm from point A and name that point as D.

Step 4: Draw an arc of length 6.4 cm from point B and name that point as C.

Step 5: Join C and D.

Thus, ABCD is a required square.

Q10

Answer:

We know that the diagonals of a square bisect each other at right angles.

Steps of construction:

Step 1: Draw AC= 5.8 cm

Step 2: Draw the perpendicular bisector XY of AC, meeting it at O.

Step 3:

From O:

$$OB = \frac{1}{2} \left(5.8 \right) \text{ cm} = 2.9 \text{ cm}$$

$$OD = \frac{1}{2} (5.8) \text{ cm} = 2.9 \text{ cm}$$

Step 4: Join AB, BC, CD and DA.

ABCD is the required square.

Q11

Answer:

Steps of construction;

Step 1: Draw QR = 3.6cm

Step 2: Make $\angle Q = 90^{\circ}$

$$\angle R = 90^{\circ}$$

Step 3:

$$PR^2 = PQ^2 + QR^2$$

$$6^2 = PQ^2 + 3.6^2$$

$$PQ^2 = 36 - 12.96$$

$$PQ^2 = 23.04$$

$$PQ = 4.8$$
 cm

Step 3: Draw an arc of length 4.8 cm from point Q and name that point as P.

Step 4: Draw an arc of length 6 cm from point R, cutting the previous arc at P.

Step 5: Join PQ

Step 6: Draw an arc of length 4.8 cm from point R.

From point P, draw an arc of length 3.6 cm, cutting the previous arc. Name that point as S.

Step 7: Join P and S.

Thus, PQRS is the required rectangle. The other side is 4.8 cm in length.

We know that the diagonals of a rhombus bisect each other.

.Steps of construction:

Step 1: Draw AC= 6cm

Step 2:Draw a perpendicular bisector(XY) of AC, which bisects AC at O.

Step 3:

$$OB = \frac{1}{2} \left(8 \right)$$
 cm

$$OB = 4 \, \mathrm{cm}$$

and
$$OD = \frac{1}{2} \left(8 \right)$$
 cm

$$OD = 4 \, \mathrm{cm}$$

Draw an arc of length 4 cm on OX and name that point as B.

Draw an arc of length 4 cm on OY and name that point as D.

Step 4: Join AB, BC, CD and AD.

Thus, ABCD is the required rhombus, as shown in the figure.

Q13

Answer:

Steps of construction:

Step 1: Draw AB = 4cm

Step 2: With B as the centre, draw an arc of 4 cm.

Step 3: With A as the centre, draw another arc of $6.5~\mathrm{cm}$, cutting the previous arc at C.

Step 4: Join AC and BC.

Step 5: With C as the centre, draw an arc of 4 cm.

Step 6: With A as the centre, draw another arc of $4~\mathrm{cm}$, cutting the previous arc at D.

Step 7: Join AD and CD.

ABCD is the required rhombus

Q14

Steps of construction:

Step1: Draw AB = 7.2 cm

Step2: Draw $\angle ABY = 60^\circ$

$$\angle BAX = 120^{\circ}$$

Sum of the adjacent angles is 180°

$$\angle BAX + \angle ABY = 180^{\circ}$$

$$=> \angle BAX = 180^{\circ} - 60^{\circ} = 120^{\circ}$$

Step 3:

Set off AD (7.2 cm) along AX and BC (7.2 cm) along BY.

Step 4: Join C and D.

Then, ABCD is the required rhombus.

Q15

Answer:

Steps of construction:

Step 1: Draw AB=6 cm

Step 2: Make $\angle ABX = 75^{\circ}$

Step 3: With *B* as the centre, draw an arc at 4*cm*. Name that point as C.

Step 4: $AB \parallel CD$

$$\therefore \angle ABX + \angle BCY = 180^{\circ}$$

$$\Rightarrow \angle BCY = 180\,^{\circ} - 75\,^{\circ} = 105\,^{\circ}$$
 Make $\angle BCY = 105\,^{\circ}$

At C, draw an arc of length 3.2 cm.

Step 5: Join A and D.

Thus, ABCD is the required trapezium.

Q16

Million Stars & Practice

Steps of construction :

Step1: Draw AB equal to 7 cm.

Step2: Make an angle, $\angle ABX$, equal to 60° .

Step3: With B as the centre, draw an arc of 5 cm. Name that point as C. Join B and C.

Step4

 $AB \parallel DC$

$$\therefore \angle ABX + \angle BCY = 180^{\circ}$$

$$\Rightarrow \angle BCY = 180^{\circ} - 60^{\circ} = 120^{\circ}$$

Draw an angle, $\angle BCY$, equal to 120° .

Step4: With A as the centre, draw an arc of length 6.5 cm, which cuts CY. Mark that point as D.

Step5: Join A and D.

Thus, ABCD is the required trapezium.

Millions are a practice