
Constructions Exercise 17A

Q1

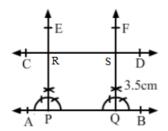
Answer:

Steps of construction:

- 1. Draw a line AB.
- 2. Take a point Q on AB and a point P outside AB, and join PQ.
- 3. With Q as the centre and any radius, draw on arc to cut AB at X and PQ at Z.
- 4. With P as the centre and the same radius, draw an arc cutting QP at Y .
- 5. With Y as the centre and the radius equal to XZ, draw an arc to cut the previous arc at E.
- 6. Join PE and produce it on both the sides to get the required line.

Q2

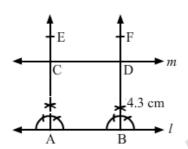
Answer:


Steps for construction:

- 1. Let AB be the given line.
- 2. Take any two points P and Q on AB.
- 3. Construct $\angle BPE = 90^{\circ}$ and $\angle BQF = 90^{\circ}$
- 4. With P as the centre and the radius equal to 3.5 cm, cut PE at R.
- 5. With Q as the centre and the radius equal to 3.5cm, cut QF at S.
- 6. Join RS and produce it on both the sides to get the required line, parallel to

AB and at a distance of 3.5 cm from it.

Million State & Practice


Q3

Answer:

Steps of construction:

- 1. Let l be the given line.
- 2. Take any two points A and B on line l.
- 3. Construct $\angle BAE = 90^{\circ}$ and $\angle ABF = 90^{\circ}$
- 4. With A as the centre and the radius equal to 4.3 cm, cut AE at C.
- 5. With B as the centre and the radius equal to 4.3 cm, cut BF at D.
- 6. Join CD and produce it on either side to get the required line m, parallel to

l and at a distance of 4.3 cm from it.

Millions and Bracilice Alillions and Aracilice Alillions and Aracilice Araci

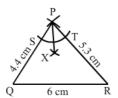
Remove Watermark

termark Wondershare PDFelement

MILLIONST R Think Learn and Practice

Exercise 17B

Q2

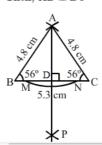

Answer:

Steps of construction:

- 1. Draw a line segment QR of length 6 cm.
- 2. Draw arcs of 4.4 cm and 5.3 cm from Q and R, respectively. They intersect at P.
- 3. Draw an arc of any radius from the centre (P), cutting PQ and PR at S and T, respectively.
- 4. With S as the centre and the radius more than half of ST, draw an arc .
 - 5. With T as the centre and the same radius, draw another arc cutting the previously drawn arc at X.

6. Join P and X.

Then, PX is the bisector of $\angle P$.

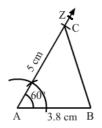

Q4

Answer:

Steps of construction:

- 1. Draw BC=5.3 cm
- 2. Draw an arc of radius 4.8 cm from the centre, B.
- 3. Draw another arc of radius 4.8 cm from the centre, C.
- 4. Both of these arcs intersect at A.
- 5. Join AB and AC.
- 6. With A as the centre and any radius, draw an arc cutting BC at M and N.
- 7. With M as the centre and the radius more than half of MN, draw an arc.
- 8. With N as the centre and the same radius, draw another arc cutting the previously drawn
- 9. Join AP, cutting BC at D.

Then, AD $\perp BC$

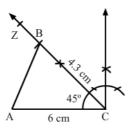

Q5

Answer:

Steps of construction:

- 1. Draw AB of length 3.8 cm.
- 2. Draw \(\text{BAZ} = 60^\circ\)
- 3. With the centre as A, cut ray AZ at 5 cm at C.
- 4 Join BC.

Then, ABC is the required triangle.

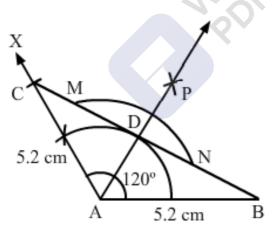


Steps of construction:

- 1. Draw AC = 6 cm
- 2. Draw $\angle ACZ = 45^{\circ}$
- 3. With C as the centre, cut ray BZ at 4.3 cm at point B.
- 4. Join AB.

Then, ABC is the required triangle.

Q7

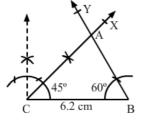

Answer:

Steps of construction:

- 1. Draw AB=5.2 cm
- 2. Draw \(\text{BAX} = 120 \cdot \)
- 3. With A as the centre, cut the ray AX at 5.3 cm at point C.
- 4. Join BC.
- 5. With A as the centre and any radius, draw an arc cutting BC at M and N.
- 6. With M as the centre and the radius more than half of MN, draw an arc.
- 7. With N as the centre and the same radius as before, draw another arc cutting the previously drawn arc at P.

8. Join AP meeting BC at D.

∴ AD ⊥ BC


Q8

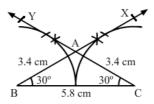
Answer:

Steps of construction:

- 1. Draw BC=6.2 cm
- 2. Draw \(\text{BCX}=45 \) \(\text{o} \)
- 3. Draw ∠CBY=60°
- 4. The ray CX and BY intersect at A.

Then, ABC is the required triangle.

Millionsting edulactice
Anink realing


Steps of construction:

- 1. Draw BC=5.8 cm
- 2. Draw $\angle BCY = 30^{\circ}$
- 3. Draw $\angle CBX = 30^{\circ}$
- 4. The ray BX and CY intersect at A.

Then, ABC is the required triangle.

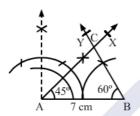
On measuring AB and AC:

$$AB = AC = 3.4 \text{ cm}$$

Q10

Answer:

By angle sum property:


$$\angle B = 180^{\circ} - \angle A - \angle C$$

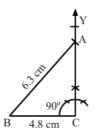
= $180^{\circ} - 45^{\circ} - 75^{\circ}$

 $=60^{\circ}$

Steps of construction:

- 1. Draw AB=7cm
- $2\,\mathrm{Draw}\,\angle\mathrm{BAX}{=}\,45\,^\circ$
- 3. Draw ∠ABY= 60°
- 4. The ray AX and BY intersect at C.

Then, ABC is the required triangle.



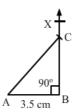
Q11

Answer:

Steps of construction:

- $1.Draw\ BC=4.8\ cm$
- 2. Draw a perpendicular on C such that $\angle \mathrm{C}$ is equal to $90\,^\circ.$
- 3.Draw an arc of radius 6.3 cm from the centre B.
- 4. Join AB.

Q12



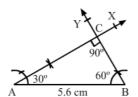
Steps of construction:

- 1. Draw AB=3.5 cm
- 2. Construct $\angle ABX = 90^{\circ}$
- 3. With centre A, draw an arc of radius 6 cm cutting BX at C.
- 4. Join AC.

Then, ABC is the required triangle.

Q13

Answer:


Here, $\angle A=30^{\circ}$ and $\angle C=90^{\circ}$

By angle sum property:

∠B=60°

- 1. Draw the hypotenuse AB of length $5.6~\mathrm{cm}$.
- 2. Draw $\angle BAX=30^{\circ}$ and $\angle ABY=60^{\circ}$
- 3. The ray AX and BY intersect at C.

Then, ABC is the required triangle.

Constructions Exercise 17C

Q1

Answer:

$$\begin{pmatrix} c \end{pmatrix}$$
 135

Supplement of
$$45^{\circ} = 180^{\circ} - 45^{\circ}$$

= 135°

Q2

Answer:

$$\begin{array}{l} \text{Complement of } 80^{\circ} = 90^{\circ} - 80^{\circ} \\ = 10^{\circ} \end{array}$$

Q3

Answer:

(b)45°

Suppose the angle is x° .

Then, the complement is also x° .

Complement of $x^{\circ} = 90^{\circ} - x^{\circ}$

$$\Rightarrow x^{\circ} = 90^{\circ} - x^{\circ}$$

$$\Rightarrow x^{\circ} + x^{\circ} = 90^{\circ}$$

$$\Rightarrow 2x^{\circ} = 90^{\circ}$$

$$\Rightarrow x = rac{90}{2}$$

$$\Rightarrow x = 45$$

Q4

Millions and Practice Alink, Learn Practice

Mondershare

Answer:

$$(a) 30^{\circ}$$

Suppose the angle is x.

$$x = \frac{(180-x)}{5}$$

$$\Rightarrow 5x = 180 - x$$

$$\Rightarrow 5x + x = 180$$

$$\Rightarrow x = \frac{180}{6}$$

$$\Rightarrow x = 30^{\circ}$$

Q5

Answer:

$$(b)$$
 57°

S uppose the angle is \mathbf{x} .

$$x = 90 - x + 24$$

$$\Rightarrow x + x = 114$$

$$\Rightarrow 2x = 114$$

$$\Rightarrow x = \frac{114}{2}$$

$$\Rightarrow x = 57^{\circ}$$

Q6

Answer:

$$(b)$$
 74°

Suppose the angle is x.

$$\begin{aligned} x &= 180 - x - 32 \\ \Rightarrow x + x &= 148 \\ \Rightarrow 2x &= 148 \\ \Rightarrow x &= \frac{148}{2} \\ \Rightarrow x &= 74^{\circ} \end{aligned}$$

Q7

Answer:

Supplementary angles:

$$3x + 2x = 180$$
 $=>x = \frac{180}{5}$
 $\Rightarrow x = 36^{\circ}$
Smaller angle = $(2 \times 36^{\circ})$
 $=72^{\circ}$

Q8

Answer:

(b)
$$48^{\circ}$$

 $\angle AOC + \angle BOC = 180^{\circ}$ (linear pair)
 $\angle AOC = 180^{\circ} - \angle BOC$
 $= 180^{\circ} - 132^{\circ}$
 $= 48^{\circ}$

Q9

Answer:

(x) 112
$$\angle AOC + \angle AOB = 180^{\circ}$$
 (linear pair) $68^{\circ} + x^{\circ} = 180^{\circ}$ $\Rightarrow x^{\circ} = 180^{\circ} - 68^{\circ}$ $\Rightarrow x^{\circ} = 112^{\circ}$

Q10

Million Stars & Practice

$$(c)x = 35$$

$$(2x - 10) + (3x + 15) = 180$$

$$=> 2x - 10 + 3x + 15 = 180$$

$$=> 5x + 5 = 180$$

$$=> 5x = 180 - 5$$

$$=> 5x = 175$$

$$=> x = \frac{1 + 7 + 5}{5}$$

$$=> x = 35$$

Q11

Answer:

(d)
$$x = 80$$

 $x + 55 + 45 = 180$ (linear pair)
 $\Rightarrow x = 180 - 55 - 45$
 $\Rightarrow x = 180 - 100$
 $\Rightarrow x = 80$

Q12

Answer:

$$x + y = 180$$
 (linear pair)
=> $x + \frac{4}{5}x = 180^{\circ}$
=> $9x = 5 \times 180$
=> $x = 100$

Q13

Answer:

Here, ∠AOC and ∠BOD are vertically opposite angles.

014

Answer:

$$\begin{pmatrix} a \\ 32 \\ (3x-8)^{\circ} + (x+10)^{\circ} + 50^{\circ} = 180^{\circ} \text{ (linear pair)} \\ => 4x^{\circ} + 52^{\circ} = 180^{\circ} \\ => 4x^{\circ} = 128^{\circ}$$

$$\therefore x = 32$$

 $=>x^{\circ}=32^{\circ}$

Million Stars & Practice

$$\begin{pmatrix} a \\ 32 \\ (3x-8)^{\circ} + (x+10)^{\circ} + 50^{\circ} = 180^{\circ} \text{ (linear pair)} \\ => 4x^{\circ} + 52^{\circ} = 180^{\circ} \\ => 4x^{\circ} = 128^{\circ} \\ => x^{\circ} = 32^{\circ} \end{pmatrix}$$

 $\therefore x = 32$

Q16

Answer:

$$\begin{pmatrix} c \\ 100^{\circ} \\ \angle ACB = \angle ABC + \angle BAC \text{ (exterior angle property)} \\ = (45^{\circ} + 55^{\circ}) \\ = 100^{\circ} \end{pmatrix}$$

Q17

Answer:

$$\angle BCA = 180^0 - 120^0$$
 (linear pair)
= 60^0
 $\angle BAC = 180^0 - \left(60^0 + 70^0\right)$ (angle sum property of triangles)
= 50^0

Q18

Answer:

$$\begin{pmatrix} c \\ c \\ 150^{\circ} \\ x^{0} + 70^{0} + 50^{0} + 90^{0} = 360^{0} \text{ (complete angle)} \\ => x^{0} = 360^{0} - 210^{0} \\ = 150^{0} \\ \end{pmatrix}$$

Q19

Answer:

$$\begin{pmatrix} c \\ 70^{\circ} \end{pmatrix}$$

Here,
$$\angle ACE = \angle BAC = 50^{0}$$
 [alternate angles]
 $\angle ACB + \angle ACE + \angle DCE = 180^{\circ}$ (linear pair)
 $\angle ACB = 180^{0} - \left(50^{\circ} + 60^{\circ}\right)$
 $= 180^{\circ} - 110^{\circ}$
 $= 70^{\circ}$

Williams and Allian States of the Children of

Q20

Answer:

$$\angle A + \angle B + \angle C = 180^{0}$$

=> $\angle B = 180^{0} - (65^{0} + 85^{0})$
=> $\angle B = 180^{0} - 150^{0}$
=> $\angle B = 30^{0}$

Q21

Answer:

(d) 1800

Q22

Answer:

(c) 360°

Q23

Answer:

Draw a parallel line through O and produce AB and CD on R and P, respectively.

 \therefore \angle OCD = \angle COQ=120° (alternate angles)

$$\angle COS=180^{0}-120^{0}$$
 (linear pair)

 $=60^{0}$

Similarly, $\angle AOQ = \angle BAO = 150^{0}$ (alternate angles)

$$\angle AOS=180^{o}-150^{0}$$
 (linear pair)

$$= 30^{0}$$

$$\angle AOC = \angle AOS + \angle COS$$

$$\therefore \angle AOC = 60^{0} + 30^{0} = 90^{0}$$

Q24

Answer:

$$\angle PAC = \angle ACS = 100^{0}$$
 [alternate angles]
 $\angle PAB + \angle BAC = 100^{0}$
 $=> \angle BAC = 100^{\circ} - 60^{\circ} = 40^{\circ}$

Q25

 $\begin{pmatrix} c \\ 30 \end{pmatrix}$

Here, $\angle DCG + \angle CGF = 180^{0}$ (angles on the same side of a transversal line are

supplementary)

(Pythagoras theorem)

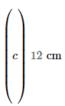
=> ∠CGF =
$$180^{0} - 100^{\circ} = 80^{\circ}$$

∠ABG = ∠BGF = 110^{0} [alternate angles]
 $x^{0} + ∠$ CGF = 110^{0}
=> $x^{0} = 110^{0} - 80^{0}$
=> $x^{0} = 30^{0}$
∴ $x = 30$

Q26

Answer:

(d) greater than the 3rd side


Q27

Answer:

(d) The diagonals of a rhombus always bisect each other at right angles

Q28

Answer:

In a right angle triangle:

$$AC^2 = AB^2 + BC^2$$

=> $BC^2 = 13^2 - 5^2$
=> $BC^2 = 169 - 25$
=> $BC^2 = 144$
=> $BC = \pm 12$

The length cannot be negative.

Q29

Answer:

In triangle ABC:

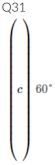
$$\angle A + \angle B + \angle C = 180^{0}$$

$$= > \angle A = 180^{0} - (37^{0} + 29^{0})$$

$$= > \angle A = 180^{0} - (66^{0})$$

$$= 114^{0}$$

Q30



Suppose the angles of a triangle are 2x, 3x and 7x.

Sum of the angles of a triangle is 180° .

$$2x + 3x + 7x = 180$$

=> $12x = 180$
=> $x = 15^{0}$

Measure of the largest angle = $15^0 \times 7 = 105^0$

Given:

$$2\angle A = 3\angle B$$
 or $\angle A = \frac{3}{2}\angle B$

$$3\angle B = 6\angle C$$
, or $\angle C = \frac{1}{2}\angle B$

In a \triangle ABC:

Den:
$$A = 3\angle B \text{ or } \angle A = \frac{3}{2}\angle B$$

$$B = 6\angle C, \text{ or } \angle C = \frac{1}{2}\angle B$$

$$A \triangle ABC:$$

$$\angle A + \angle B + \angle C = 180^{0}$$

$$= > \frac{3}{2}\angle B + \angle B + \frac{1}{2}\angle B = 180^{0}$$

$$= > \frac{3\angle B + 2\angle B + \angle B}{2} = 180^{0}$$

$$= > \frac{6\angle B}{2} = 180^{0}$$

$$= > \angle B = \frac{360^{0}}{6}$$

$$= > \angle B = 60^{0}$$

Q32

Answer:

(a) 25°

Given:

$$\angle A + \angle B = 65^{\circ}$$

$$\angle A = 65^{\circ} - \angle B$$

$$\dots (i)$$

$$\angle B + \angle C = 140^{\circ}$$

$$\angle C = 140^{\circ} - \angle B$$
 ... (ii)

In ABC:

$$\angle A + \angle B + \angle C = 180^{\circ}$$

Putting the value of $\angle B$ and $\angle C$:

$$\Rightarrow$$
 65° $-\angle B + \angle B + 140° - \angle B = 180°$

$$\Rightarrow -\angle B = 180^{\circ} - 205^{\circ}$$

$$\Rightarrow \angle B = 25^{\circ}$$

Q33

Millions and Bracilce Alilions and Ariacilce Alilions and Ariacilce Ariacilc

In \triangle ABC:

$$\angle A + \angle B + \angle C = 180^0 \qquad \dots (i)$$

Given:

$$\angle A - \angle B = 33^0 = > \angle A = \angle B + 33^0 \qquad \dots$$
 (ii)

$$\angle B - \angle C = 18^0 = > \angle C = \angle B - 18^0 \dots (iii)$$

Using (ii) and (iii) in equation (i):

$$=> \angle B + 33^0 + \angle B + \angle B - 18^0 = 180^0$$

$$=>3\angle B+15^0=180^0$$

$$=>3\angle B=165^0$$

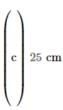
$$=>$$
 $\angle B=\frac{165^{0}}{3}=55^{0}$

Q34

Answer:

Sum of the angles of a triangle is 180° .

$$(3x)^{\circ} + (2x-7)^{\circ} + (4x-11)^{\circ} = 180^{\circ}$$


$$=>9x=19$$

$$=> x^{\circ} = 22^{\circ}$$

$$\Rightarrow \mathbf{x} = 22$$

Q35

Answer:

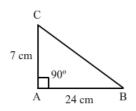
In a right angle triangle ABC:

$$AC^{2} = BC^{2} + AB^{2}$$

$$=>BC^{2} = 24^{2} + 7^{2}$$

$$=>BC^{2} = 576 + 49$$

$$=>BC^{2} = 625$$


$$=>BC = \pm 25 \text{ cm}$$

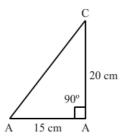
Since the length cannot be negative, we will negelect -25.

 \therefore BC = 25 cm

Million Stars & Practice
Williams Realth

Q36

Answer:



In right triangle ABC:

$$\begin{aligned} AC^2 &= AB^2 + BC^2 \\ &= 15^2 + 20^2 \\ &=> AC^2 = 625 \\ &=> AC = \pm 25 \end{aligned}$$

Since the length cannot be negative, we will negelect -25.

 \therefore Length of the ladder = 25 m

Q37

Answer:

$$(a)$$
 13 m

Suppose there are two poles AE and BD.

$$EC = AB = 12 \text{ m}$$
 (ABCE is a rectangle)

$$AE = BC = 6 m$$
 (ABCE is a rectangle)

$$\begin{aligned} \mathbf{DC} &= \mathbf{BD} - \mathbf{AE} \\ &= 11 - 6 \\ &= 5 \ \mathbf{m} \end{aligned}$$

In the right angled triangle ECD:

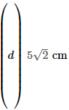
$$ED^2 = EC^2 + DC^2$$
 (Pythagoras theorem)

$$ED^2 = 5^2 + 12^2$$

$$ED^2 = 25 + 144$$

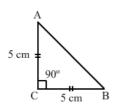
$$\mathbf{ED^2} = 169$$

$$ED = \pm 13$$


The length cannot be negative.

$$\therefore \mathbf{ED} = 13~\mathbf{m}$$

Q38


Million Stars & Practice
Williams and Stars of the Practice
Chink I early

In right angled isoceles triangle, right angled at C, AC is equal to BC and AB is the hypotenuse.

$$AB^{2} = AC^{2} + BC^{2}$$
=5² +5²
=50
∴ AB= $\sqrt{2 \times 25}$ = 5 $\sqrt{2}$ cm

Millions and Practice