

Areas Of Circle, Sector & Segment

Exercise 18

Area of a circle = π x radius²

Circumference of a circle = π x diameter

remember that the diameter = 2 x radius

AREA OF A SEMICIRCLE

- A semicircle is just half of a circle. To find the area of a semicircle we just take half of the area of a circle.
- So, the formula for the area of a semicircle is:

Area =
$$\frac{1}{2}\pi r^2$$

AREA OF A SECTOR

The area of a sector, A is proportional to the angle subtended at the centre of the circle.

$$\frac{\text{Area of sector OPQR}}{\text{Area of circle}} = \frac{\theta}{2\pi}$$

$$\frac{A}{\pi r^2} = \frac{\theta}{2\pi}$$

$$A = \frac{\theta}{2\pi} \times \pi r^2$$
$$A = \frac{1}{2}r^2\theta$$

$$A = \frac{1}{2}r^2\theta$$

Measurement of area of sector of a circle in Radian

In general, if the angle of a sector, θ , is measured in degree,

then the area of the sector, $A = \frac{\theta}{360} \times \pi r^2$

$$A = \frac{\theta}{360} \times \pi r^2$$

If θ is measured in radians,

then the area of the sector, $A = \frac{\theta}{2\pi} \times \pi r^2$

$$A = \frac{\theta}{2\pi} \times \pi r^2$$

$$\therefore A = \frac{1}{2} r^2 \theta$$

Area =
$$\frac{1}{2}r^2(\theta - \sin \theta)$$
 (radians)
= $\frac{1}{2}r^2(\frac{\pi}{180}\theta - \sin \theta)$ (degrees)

0 rad

$$\mathsf{Radius} = \frac{\textit{Diameter}}{2} = \frac{35}{2}cm$$

Circumference of circle =
$$2\pi r = \left(2 \times \frac{22}{7} \times \frac{35}{2}\right) cm = 110$$
 cm

$$\therefore \text{ Area of circle} = \pi r^2 = \left(\frac{22}{7} \times \frac{35}{2} \times \frac{35}{2}\right) \text{ cm}^2$$

$$= 962.5 \text{ cm}^2$$

Question 2:

Circumference of circle = $2\pi r = 39.6$ cm

⇒
$$2x\frac{22}{7}xr = 39.6$$

 $r = \left(39.6x\frac{7}{44}\right)cm = 6.3$
 $r = 6.3 cm$

Area of circle =
$$\pi r^2 = \left(\frac{22}{7} \times 6.3 \times 6.3\right) \text{cm}^2$$

= 124.74 cm²

= 124.74 cm²

Question 3:
Area of circle =
$$\pi r^2$$
 = 301.84

$$\Rightarrow r^2 = 301.84 \times \frac{7}{22} = 96.04$$

$$r = \sqrt{96.04} \text{ cm} = 9.8 \text{ cm}$$
Circumference of circle = $2\pi r = (2 \times \frac{22}{7} \times 9.8) = 61.6 \text{ cm}$
Question 4:

Circumference of circle =
$$2\pi r = (2 \times \frac{22}{7} \times 9.8) = 61.6$$
 cm

Question 4:

Let radius of circle be r Then, diameter = 2 rcircumference - Diameter = 16.8

⇒
$$2\pi r - 2r = 16.8$$

⇒ $\frac{44}{7}r - 2r = 16.8$
⇒ $\frac{30r}{7} = 16.8 \Rightarrow r = \frac{16.8 \times 7}{30} = 3.92 \text{ cm}$

circumference – Diameter = 16.8

$$\Rightarrow 2\pi r - 2r = 16.8$$

$$\Rightarrow \frac{44}{7}r - 2r = 16.8$$

$$\Rightarrow \frac{30r}{7} = 16.8 \Rightarrow r = \frac{16.8 \times 7}{30} = 3.92 \text{ cm}$$
Circumference of circle = $2\pi r = (2 \times \frac{22}{7} \times 3.92) \text{ cm} = 24.64 \text{ cm}$

Question 5:
Let the radius of circle be r cm
Then, circumference – radius = 37 cm

Ouestion 5:

Let the radius of circle be r cm Then, circumference – radius = 37 cm

Willion Stars & Practice
Williams Stars & Practice

$$-r = 37$$

$$\frac{44r}{7} - r = 37$$

$$\frac{37r}{7} = 37 \Rightarrow r = \frac{37 \times 7}{37} = 7 \text{ cm}$$

Area of circle =
$$\pi r^2 = \frac{22}{7} \times 7 \times 7 = 154 \text{ cm}^2$$

Question 6:

Area of square =
$$(\text{side})^2 = 484 \text{ cm}^2$$

 $\Rightarrow \text{side} = \sqrt{484}cm = 22 \text{ cm}$
Perimeter of square = $4 \times \text{side} = 4 \times 22 = 88 \text{ cm}$
Circumference of circle = Perimeter of square

$$2\pi r = 88 \text{cm} \Rightarrow r = \frac{88 \times 7}{2 \times 22} = 14 \text{ cm}$$

Area of circle = $\pi r^2 = \left(\frac{22}{7} \times 14 \times 14\right) \text{cm}^2 = 616 \text{ cm}^2$

Question 7:

Area of equilateral =
$$\frac{\sqrt{3}}{4}a^2$$
 = 121 $\sqrt{3}$

$$a^2 = 121 \times \frac{\sqrt{3}}{\sqrt{3}} \times 4$$

 $a^2 = 484 \Rightarrow a = \sqrt{484}$
 $a = 22$ cm

Perimeter of equilateral triangle = $3a = (3 \times 22)$ cm = 66 cm

Circumference of circle = Perimeter of circle

$$2\pi r = 66$$

$$\Rightarrow \left(2 \times \frac{22}{7} \times r\right) \text{ cm} = 66$$

$$\Rightarrow$$
 r = 10.5 cm

Area of circle =
$$\pi r^2 = \left(\frac{22}{7} \times 10.5 \times 10.5\right) \text{ cm}^2$$

= 346.5 cm²

Question 8:

Let the radius of park be r meter

integrand Practice in Signature,
$$\pi r + 2r = 90 \Rightarrow \frac{22r}{7} + 2r = 90$$

$$\Rightarrow \frac{36r}{7} = 90 \Rightarrow r = \frac{90 \times 7}{36}$$

$$r = 17.5 \text{ cm}$$

Area of semicircle =
$$\frac{1}{2}\pi r^2 = \left(\frac{1}{2} \times \frac{22}{7} \times 17.5 \times 17.5\right) m^2$$

= 481.25 m²

Question 9:

Let the radii of circles be x cm and (7 - x) cm Then,

$$2\pi x - [2\pi(7-x)] = 8$$

$$2\pi x - [14\pi - 2\pi x] = 8$$

$$2\pi x - 14\pi + 2\pi x = 8$$

$$4\pi x - 14\pi = 8$$

$$2\pi x = 4 + 7\pi$$

$$2\pi x = 4 + 22$$

$$2\pi x = 26$$

Substitute the value of $2\pi x$ in $2\pi (7 - x)$

of
$$2\pi x$$
 in $2\pi (7 - x)$
= $14\pi - 2\pi x = 14 \times \frac{22}{7} - 26$
= $44 - 26 = 18$ cm
e circles are 26 cm and 18 cm

Circumference of the circles are 26 cm and 18 cm

Question 10:

Area of first circle = πr^2 = 962.5 cm²

$$r^2 = \left(962.5 \times \frac{7}{22}\right) \text{cm}$$

$$r^2 = 306.25$$

Area of second circle = $\pi R^2 = 1386 \text{ cm}^2$

$$R^2 = \left(1386 \times \frac{7}{22}\right) cm$$

$$R^2 = 441$$

Width of ring R - r = (21 - 17.5) cm = 3.5 cm

Million Stars Practice
Anillion Stars Practice

Question 11:

Area of outer circle = $\Pi^{r_1^2}$ = $\left(\frac{22}{7} \times 23 \times 23\right)$ cm² = 1662.5Area of inner circle = $\pi r_2^2 = \left(\frac{22}{7} \times 12 \times 12\right) \text{ cm}^2$ $= 452.2 \text{ cm}^2$ Area of ring = Outer area - inner area $= (1662.5 - 452.5) \text{ cm}^2 = 1210 \text{ cm}^2$

Question 12:

Inner radius of the circular park = 17 mWidth of the path = 8 mOuter radius of the circular park = (17 + 8)m = 25 m Area of path = $\pi[(25)^2-(17)^2] = \text{cm}^2$

=
$$\pi (25 + 17)(25 - 17) \text{m}^2$$

= $\left[\frac{22}{7} \times 42 \times 8\right] \text{m}^2$

Question 13:
Let the inner and outer radii of the circular tacks be r meter and R meter respectively. Then
Inner circumference = 440 meter

$$\Rightarrow 2\pi r = 440$$

$$2 \times \frac{22}{7} \times r = 440$$

$$\Rightarrow r = 70 \text{ m}$$

Since the track is 14 m wide every where.

Therefore,

Outer radius R = r + 14m = (70 + 14) m = 84 m

Outer circumference = $2\pi R$

$$= (2 \times \frac{22}{7} \times 84) m = 528 \text{ m}$$

Rate of fencing = Rs. 5 per meter

Total cost of fencing = Rs. (528×5) = Rs. 2640

Area of circular ring = $\pi R^2 - \pi r^2$

$$= \pi (84^2 - 70^2) = \frac{22}{7} \times 2156 = 6776 \text{ m}^2$$

Cost of levelling = Rs 0.25 per m2 Cost of levelling the track = Rs (6776×0.25) = Rs. 1694

Question 14:

Let r m and R m be the radii of inner circle and outer boundaries respectively. Then, 2r = 352 and 2R = 396

$$r = \frac{352}{2\pi}$$
, $R = \frac{396}{2\pi}$

Width of the track = (R - r) m

$$= \left(\frac{396}{2\pi} - \frac{352}{2\pi}\right) m = \left(\frac{44}{2\pi}\right) m$$
$$= \left(\frac{44}{2} \times \frac{7}{22}\right) m = 7 m$$

Willion Stars Bractice
Williams Stars Bractice

MILLIONST a the track =
$$\pi(R^2 - r^2) = \pi(R+r)(R-r)$$

= $\left[\pi\left(\frac{352}{2\pi} + \frac{396}{2\pi}\right) \times 7\right] m^2$
= $\left[\left(\pi \times \frac{748}{2\pi}\right) \times 7\right] m^2 = (374 \times 7) m^2$
= 2618 m^2

Question 15:

Area of rectangle = (120×90)

$$= 10800 \text{ m}^2$$

Area of circular lawn = [Area of rectangle - Area of park excluding circular lawn]

$$= [10800 - 2950] \text{ m}^2 = 7850 \text{ m}^2$$

Area of circular lawn = 7850 m^2

$$\Rightarrow$$
 $\pi r^2 = 7850 \text{ m}^2$

3.14×
$$r^2$$
 = 7850 m²

$$r^2 = \left(\frac{7850}{3.14}\right) m^2$$
= 2500 m²

$$r = \sqrt{2500} \text{ m}$$
or $r = 50 \text{ m}$

Hence, radius of the circular lawn = 50 m

Question 16:

Area of the shaded region = (area of circle with OA as diameter) + (area of semicircle ΔDBC) - (area of ΔBCD)

Area of circle with OA as diameter = πr^2 = $\left(\frac{22}{7} \times \frac{7}{2} \times \frac{7}{2}\right) \text{cm}^2$ = 38.5 m²

$$= \left(\frac{22}{7} \times \frac{7}{2} \times \frac{7}{2}\right) \text{cm}^2$$

Area of semicircle
$$\triangle DBC = \frac{1}{2}\pi^2 - \left(\frac{1}{2} \times \frac{22}{7} \times 7 \times 7\right) \text{cm}^2$$

= 72

Area of
$$\triangle BCD = \frac{1}{2} \times DC \times OB$$

= $\frac{1}{2} \times 14 \times 7$
= 49 cm^2

Question 17:

Diameter of bigger circle = AC = 54 cm

Radius of bigger circle = $\frac{AC}{2}$

$$= {\frac{54}{2}} \text{ cm} = 27 \text{ cm}$$

Diameter AB of smaller circle = AC - BC = 54-10 = 44 cm

Radius of smaller circle = $\frac{44}{2}$ cm = 22 cm

Area of bigger circle = $\pi R^2 = \left(\frac{22}{7} \times 27 \times 27\right) \text{ cm}^2$

 $= 2291.14 \text{ cm}^2$

Area of smaller circle = $\pi r^2 = \left(\frac{22}{7} \times 22 \times 22\right)$ cm²

 $= 1521. 11 \text{ cm}^2$

Million Stars & Practice
Williams Stars & Practice Area of shaded region = area of bigger circle - area of smaller circle

 $= (2291. 14 - 1521. 11) \text{ cm}^2 = 770 \text{ cm}^2$

Million Stars & Practice
Anny Property of the Children of the

MILLIONST estion 18:

PS = 12 cm PQ = QR = RS = 4 cm, QS = 8 cm Perimeter = arc PTS + arc PBQ + arc QES

- $= (\pi \times 6 + \pi \times 2 + \pi \times 4)$ cm
- = 12x cm
- $= 12x = 12 \times 3.14$ cm
- 37.68 cm

Area of shaded region = (area of the semicircle PBQ) + (area of semicircle PTS)-(Area of semicircle QES)

$$= \frac{1}{2} \pi \times (2)^2 + \frac{1}{2} \times \pi \times (6)^2 - \frac{1}{2} \times \pi \times (4)^2 \text{ cm}^2$$

$$= [2\pi + 18\pi - 8\pi] = 12\pi \text{ cm}^2 = (12 \times 3.14) \text{ cm}^2$$

 $= 37.68 \text{ cm}^2$

Question 19:

Length of the inner curved portion

$$= (400 - 2 \times 90) \text{ m}$$

= 220 m

Let the radius of each inner curved part be r

MILLIONSTYR Think Learn and Practice en,
$$\frac{22}{7} \times r = 110 \text{ m}$$

$$r = \left(110 \times \frac{7}{22}\right) \text{m} = 35 \text{ m}$$

Inner radius = 35 m, outer radius = (35 + 14) = 49 m Area of the track = (area of 2 rectangles each 90 m \times 14 m) + (area of circular ring with R = 49 m, r = 35 m

$$= \left[2 \times 90 \times 14 + \frac{22}{7} \left((49)^2 - (35)^2 \right) \right] m^2$$

$$= \left[2520 + \frac{22}{7} (49 + 35) (49 - 35) \right] m^2$$

$$= \left[2520 + 3696 \right] m^2 = 6216 m^2$$

Length of outer boundary of the track

$$= \left[2 \times 90 + 2 \times \frac{22}{7} \times 49\right] m = 488 \text{ m}$$

Question 20:

OP = OR = OQ = rLet OQ and PR intersect at S

We know the diagonals of a rhombus bisect each other at right angle.

Alling Stars Practice

MILLIONSTIR refore we have

$$OS = \frac{1}{2}r$$
 and $\angle OSR = 90^{\circ}$

:
$$SR = \sqrt{OR^2 - OS^2}$$

$$=\sqrt{r^2-\frac{r^2}{4}}=\frac{\sqrt{3}r}{2}$$

Area of rhombus
$$=\frac{1}{2} \times OQ \times PR$$

$$=\frac{1}{2}\times r\times \sqrt{3}r=\frac{\sqrt{3}r^2}{2}$$

$$\therefore \frac{\sqrt{3}r^2}{2} = 32\sqrt{3} \Rightarrow r^2 = \frac{32\sqrt{3}}{\sqrt{3}} \times 2 = 64cm$$

$$r = 8 cm$$

Question 21:

Diameter of the inscribed circle = Side of the square = 10 cm Radius of the inscribed circle = 5 cm

Diameter of the circumscribed circle

- = Diagonal of the square
- $= (\sqrt{2} \times 10)$ cm

Radius of circumscribed circle = $5\sqrt{2}$ cm

- (i) Area of inscribed circle = $\left(\frac{22}{7} \times 5 \times 5\right)$ = 78.57 cm²
- Million Stars Practice

 Williams Practice $=\left(\frac{22}{7}\times5\sqrt{2}\times5\sqrt{2}\right)=157.14$ cm² (ii) Area of the circumscribed circle

Question 22:

Let the radius of circle be r cm

Remove Watermark

Then diagonal of square = diameter of circle = 2r cm Area of the circle = πr^2 cm²

Area of square =
$$\frac{1}{2}$$
 x (diagonal)²
= $\frac{1}{2}$ x 4r² = 2r² cm

Ratio =
$$\frac{\text{Area of circle}}{\text{Area of square}} = \frac{\pi r^2}{2r^2} = \frac{\pi}{2} = (\pi:2)$$

Question 23:

Let the radius of circle be r cm

Then,
$$\pi r^2 = 154$$

$$\Rightarrow r^2 = \left(154 \times \frac{7}{22}\right)$$

$$\Rightarrow r = 7 \text{ cm}$$

Let each side of the triangle be a cm

MILLIONST I height be h cm

Then,
$$r = \frac{n}{3}$$

$$\Rightarrow h = 3r = 21 \text{ cm}$$

$$h = \sqrt{a^2 - \frac{a^2}{4}} = \frac{\sqrt{3a^2}}{2} = \frac{\sqrt{3}a}{2} = 21$$

$$a = \frac{42}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = 14\sqrt{3} \text{ cm}$$
Perimeter = $3a = (3 \times 14 \times \sqrt{3}) = (42 \times 1.73) \text{ cm}$

$$= 72.66 \text{ cm}$$

Question 24:

Radius of the wheel = 42 cm

Circumference of wheel =
$$2\pi r = \left(2 \times \frac{22}{7} \times 42\right) = 264$$
 cm Distance travelled = 19.8 km = 1980000 cm Number of revolutions = $\frac{1980000}{264}$ = 7500

Question 25:

Radius of wheel = 2.1 m

Circumference of wheel =
$$2\pi r = \left(2 \times \frac{22}{7} \times 2.1\right) = 13.2 \text{ m}$$

Distance covered in one revolution = 13.2 m
Distance covered in 75 revolutions = $(13.2 \times 75) \text{ m} = 990 \text{ m}$
= $\frac{990}{1000} \text{ km}$

Distance a covered in 1 minute = $\frac{33}{100}$ km

Distance covered in 1 hour = $\frac{99}{100} \times 60$ km = 59.4 km

Question 26:

Distance covered by the wheel in 1 revolution

$$= \left(\frac{4.95 \times 1000 \times 100}{2500}\right) \text{cm} = 198 \text{ cm}$$

The circumference of the wheel = 198 cm Let the diameter of the wheel be d cm

Then,
$$\pi d = 198 \Rightarrow \frac{22}{7} \times d = 198$$

 $\Rightarrow d = \frac{198 \times 7}{22} = 63 \text{ cm}$

Kadius of the wheel = $r=\frac{60}{2}=30$ cm Circumference of the wheel = $2\pi r=\left(2\times\frac{22}{7}\times30\right)=\frac{1320}{7}$ cm Distance covered in 140 revolution

MILLIONSTYR Think Learn and Practice
$$\frac{1320}{7} \times 140$$
 cm = (1320×20) cm

$$= 26400 \,\mathrm{cm} = \frac{26400}{100} \,\mathrm{m} = 264 \,\mathrm{m} = \frac{264}{1000} \,\mathrm{km}$$

Distance covered in one hour = $\frac{264}{1000} \times 60 = 15.84$ km

Question 28:

Distance covered by a wheel in 1minute

$$=\left(\frac{72.6\times1000\times100}{60}\right)$$
cm = 121000 cm

Circumference of a wheel = 2nr = $\left(2 \times \frac{22}{7} \times 70\right)$ = 440 cm Number of revolution in 1 min = $\frac{121000}{440}$ = 275

Question 29:

Area of quadrant = $\frac{1}{4} \pi r^2$ Circumference of circle = $2\pi r = 22$

$$2 \times \frac{22}{7} \times r = 22$$

⇒ $r = \frac{22 \times 7}{2 \times 22} = 3.5 \text{ cm}$

$$2x\frac{22}{7}xr = 22$$

$$\Rightarrow r = \frac{22 \times 7}{2 \times 22} = 3.5 \text{ cm}$$
Area of quadrant = $\frac{1}{4}xr^2 = \left(\frac{1}{4}x\frac{22}{7}x3.5x3.5\right)\text{cm}^2$
= 9.625 cm²

Question 30:

$$=\left(\frac{1}{4}\times\frac{22}{7}\times21\times21\right)$$
m²

$$-346.5 \text{ m}^2$$

= 3293.5 m²

Question 31:

Each angle of equilateral triangle is 60°

Area which cannot be grazed =(area of equilateral AABC)

$$= \left[\frac{\sqrt{3}}{4} \times (12)^2 - \frac{22}{7} \times (7)^2 \times \frac{60}{360} \right] m^2$$

$$= \left[(\sqrt{3} \times 12 \times 3) - \frac{(22 \times 7)}{6} \right]$$

$$= 62.35 - 25.66 \text{ m}^2$$

$$= 36.68 \text{ m}^2$$

Area that the horse cannot graze is 36.68 m²

Question 32:

Each side of the square is 14 cm

Then, area of square = (14×14) cm²

Thus, radius of each circle 7 cm Required area = area of square ABCD – 4 (area of sector with r = 7 cm, θ = 90°)

$$= [196 - 154]$$
cm²

 -42 cm^2

Area of the shaded region = 42 cm^2

Question 33:

Area of square = (4×4) cm² $= 16 \text{ cm}^2$ Area of four quadrant corners

$$=4\left[\frac{1}{4}\pi^2\right]$$

$$= (\pi \times 1 \times 1) \text{ cm}^2$$

 $= 3.14 \text{ cm}^2$

Radius of inner circle = 2/2 = 1 cm

Area of circle at the center = πr^2 = (3.14 × 1 × 1) cm²

$$= 3.14 \text{ cm}^2$$

Area of shaded region = [area of square - area of four corner quadrants - area of circle at the centre]

$$= [16 - 3.14 - 3.14] \text{ cm}^2 = 9.72 \text{ cm}^2$$

Million State & Practice
Anima Learn

MILLIONST estion 34:

Area of rectangle = $(20 \times 15) \text{ m}^2 = 300 \text{ m}^2$ Area of 4 corners as quadrants of circle

$$= 4 \times \left(\frac{1}{4} \pi r^2\right)$$
$$= \left[\frac{22}{7} \times 3.5 \times 3.5\right] m^2$$

 $= 38.5 \, \text{m}^2$

Area of remaining part = (area of rectangle – area of four quadrants of circles) = $(300 - 38.5) \text{ m}^2 = 261.5 \text{ m}^2$

Question 35:

Ungrazed area

- shaded area

$$= \left[(50 \times 50) - \frac{4 \times \pi \times (25)^2 \times 90}{360} \right] \text{m}^2$$

$$= [2500 - 3.14 \times 25 \times 25] \text{m}^2$$

MILLIONSTAR estion 36:

Shaded area = (area of quadrant) - (area of DAOD)

$$= \left[\frac{1}{4}\pi^2 - \frac{1}{2}xhxb\right]$$

$$= \left[\frac{1}{4} \times \frac{22}{7} \times 3.5 \times 3.5 - \frac{1}{2} \times 2 \times 3.5 \right] \text{cm}^2$$

$$= (9.625 - 3.5)$$
cm² $= 6.125$ cm²

Question 37:

Area of flower bed = (area of quadrant OPQ) - (area of the quadrant ORS)

$$= \left[\frac{1}{4} \pi _1^2 - \frac{1}{4} \pi _2^2 \right]$$

$$= \left[\frac{1}{4} \times \frac{22}{7} \times 21 \times 21 - \frac{1}{4} \times \frac{22}{7} \times 14 \times 14 \right] m^2$$

$$= [346.5 - 154] m^2 = 192.5 m^2$$

Million Stars Practice

(Nink rearing Practice)

MILLIONSTIR estion 38:

Let A, B, C be the centres of these circles. Joint AB, BC, CA Required area=(area of \triangle ABC with each side a = 12 cm) – 3(area of sector with r $= 6, \theta = 60^{\circ}$

$$= \left[\frac{\sqrt{3}}{4} \times (12)^2 - 3 \times \left(3.14 \times (6)^2 \times \frac{60}{360} \right) \right]$$

$$= \left[\frac{\sqrt{3}}{4} \times 12 \times 12 - 3 \times 3.14 \times 6 \right] \text{ cm}$$

$$= (36 \times 1.73 - 56.52) \text{ cm}^2$$

$$= 5.76 \text{ cm}^2$$

Let A, B, C be the centers of these circles. Join AB, BC, CA Required area= (area of Δ ABC with each side 2) – 3[area of sector with r = a cm, θ = 60°]

$$= \left[\frac{\sqrt{3}}{4} \times (2a)^2 - \frac{3\pi a^2 \times 60}{360} \right]$$

$$= \left(1.73a^2 - 1.57 \ a^2 \right)$$

$$= 0.16 \ a^2$$

$$= \frac{16}{100} a^2$$

$$= \left(\frac{4}{25} a^2 \right) \text{sq. unit}$$

Question 40:

Let A, B, C, D be the centres of these circles Join AB, BC, CD and DA Side of square = 10 cmArea of square ABCD

$$= (10 \times 10) \text{ cm}^2$$

$$= 100 \text{ cm}^2$$

Area of each sector = $\left(\pi^2 \times \frac{\theta}{360}\right) = 3.14 \times 5 \times 5 \times \frac{90}{360}$

 $= 19.625 \text{ cm}^2$

Required area = [area of sq. ABCD - 4(area of each sector)]

$$= (100 - 4 \times 19.625) \text{ cm}^2$$

$$= (100 - 78.5) = 21.5 \text{ cm}^2$$

Question 41:

MILLIONSTER a of square = (side \times side) = (2a \times 2a) sq. units = $4a^2$ sq.units Area of quadrant = $\frac{1}{4}\pi r^2$

Area of 4 quadrants =
$$4 \times \frac{1}{4} \pi r^2 = \pi r^2 = \frac{22}{7} \times a \times a = \frac{22}{7} a^2$$
 sq.unit
Required area = $\left(4a^2 - \frac{22}{7}a^2\right)$ sq.unit = $\frac{6a^2}{7}$

Question 42:

Let the side of square = a m Area of square = $(a \times a)$ cm = a^2m^2

∴
$$e^2 = 1600$$

a = $\sqrt{1600}$ m
a = 40 m

Side of square = 40 mTherefore, radius of semi circle = 20 m

Area of semi circle =
$$\frac{1}{2}\pi^2 - \left(\frac{1}{2} \times 3.14 \times 20 \times 20\right) \text{m}^2$$

= 628 m²

-2) Stars Practice
Williams Aring Area of four semi circles = $(4 \times 628) \text{ m}^2 = 2512 \text{ m}^2$ Cost of turfing the plot of of area $1 \text{ m}^2 = \text{Rs. } 1.25$ Cost of turfing the plot of area 2512 m^2 = Rs. (1.25 × 2512) = Rs. 3140

MILLIONST Restion 43:

Area of rectangular lawn in the middle

$$= (50 \times 35) = 1750 \text{ m}^2$$

Radius of semi circles = $\frac{35}{2}$ = 17.5 m

Area of two semidrdes = 2(area of semi circle)

$$-\left[2\left(\frac{1}{2}\pi r^{2}\right)\right]m^{2}$$

$$-\left(2\times\frac{1}{2}\times\frac{22}{7}\times17.5\times17.5\right)m^{2}$$

$$-962.5 m^{2}$$

Area of lawn = (area of rectangle + area of semi circle) $= (1750 + 962.5) \text{ m}^2 = 2712.5 \text{ m}^2$

Question 44:

Area of plot which cow can graze when r = 16 m is πr^2 $= (\frac{22}{7} \times 10.5 \times 10.5)$

 $= 804.5 \text{ m}^2$

Area of plot which cow can graze when radius is increased to 23 m $= (\frac{22}{7} \times 10.5 \times 10.5)$

 $= 1662.57 \text{ m}^2$

Additional ground = Area covered by increased rope - old area Million Stars & Practice
Anny Learn & Practice

 $= (1662.57 - 804.5) \text{m}^2 = 858 \text{ m}^2$

Given: ABC is right angled at A with AB = 6 cm and AC = 8 cm

BC =
$$\sqrt{AB^2 + AC^2} = \sqrt{(6)^2 + (8)^2}$$
 cm

$$= \sqrt{36 + 64}$$
 cm

$$BC = \sqrt{100}$$
 cm = 10 cm

Let us join OA, OB and OC

 $ar(\Delta AOC) + ar(\Delta OAB) + ar(\Delta BOC) = ar(\Delta ABC)$ $\Rightarrow (\frac{1}{2} \times 8 \times r) + (\frac{1}{2} \times 6 \times r) + (\frac{1}{2} \times 10 \times r)$

$$\Rightarrow \left(\frac{1}{2} \times 8 \times r\right) + \left(\frac{1}{2} \times 6 \times r\right) + \left(\frac{1}{2} \times 10 \times r\right)$$

$$=\frac{1}{2}\times 6\times 8$$

$$4r + 3r + 5r = 24$$

$$12r = 24$$

$$\Rightarrow r = \frac{24}{12} = 2$$

Radius = 2 cm

MILLIONSTAR estion 46:

Given BP \perp CD, HQ \perp FI and EL \perp DF, DC=8 cm, BP = HQ = 4 cm and DE = EF = 5 cm Area of parallelogram ABCD = BP \times DC

$$= 4 \times 8 = 32 \text{ cm}^2$$

Area of parallelogram FGHI = FI x HQ

$$= 8 \times 4 = 32 \text{ cm}^2$$

Area of semicircle CKI = $\frac{1}{2}\pi r^2$

$$=\frac{1}{2}\times3.14\times(4)^2=25.12$$
 cm²

Area of isosceles $\triangle DEF = \frac{1}{4}b\sqrt{4a^2 - b^2}$

$$= \frac{1}{4}(8)\sqrt{4(5)^2 - (8)^2} = 2\sqrt{100 - 64}$$
$$= 2\sqrt{36} = 12 \text{ cm}^2$$

Area of square CDFI =
$$(side)^2 = (8)^2 = 64 \text{ cm}^2$$

Area of whole figure = area of | |gm ABCD + area of | |gm FGHI

+ area of semi-drde CKI+ area of △DEF

+ area of square CDFI

=(32+32+25.12+12+64) cm²

 $= 165.12 \text{ cm}^2$

Million Stars & Practice
Williams Stars & Practice

MILLIONSTAR estion 47:

Area of region ABCDEFA = area of square ABDE + area of semi circle BCD - area of ΔAFE

$$= \left[10 \times 10 + \frac{1}{2} \times 3.14 \times 5 \times 5 - \frac{1}{2} \times 6 \times 8\right] \text{cm}^2$$

$$= [100 + 39.25 - 24]$$
cm² = 115.25 cm²

Question 48:

Side of the square ABCD = 14 cmArea of square ABCD = $14 \times 14 = 196 \text{ cm}^2$ Radius of each circle = $\frac{14}{4}$ = 3.5 cm Area of the circles = $4 \times$ area of one circle

$$=4 \times \frac{22}{7} \times 3.5 \times 3.5$$

= 154 cm²

es ciale practice Area of shaded region = Area of square - area of 4 circles $= 196 - 154 = 42 \text{ cm}^2$

MILLIONST Restion 49:

Diameter AC = 2.8 + 1.4

= 4.2 cm

Radius $r_1 = \frac{4.2}{2} = 2.1 \text{ cm}$

Length of semi-circle ADC = $\pi r_1 = \pi \times 2.1 = 2.1 \pi$ cm

Diameter AB = 2.8 cm

Radius $r_2 = 1.4$ cm

Length of semi- circle AEB = $\pi r_2 = \pi \times 1.4 = 1.4 \pi \text{ cm}$

Diameter BC = 1.4 cm

Radius $r_3 = \frac{1.4}{2} = 0.7$ cm

Length of semi – circle BFC = $\pi \times 0.7 = 0.7 \,\pi$ cm

Perimeter of shaded region = $2.1 + 1.4 + 0.7 = 4.2 \, \pi$ cm

$$= 4.2 \times \frac{22}{7} = 13.2 \text{ cm}$$

Question 50:

Area of shaded region = Area of $\triangle ABC$ + Area of semi-circle APB + Area of semi circle AQC - Area of semicircle BAC

Now, Area of a
$$\triangle ABC = \frac{1}{2} \times 3 \times 4 = 6 \text{ cm}^2 --(1)$$

Circle AQC – Area of semicircle BAC

Now, Area of a
$$\triangle$$
ABC = $\frac{1}{2} \times 3 \times 4 = 6 \text{ cm}^2 - -(1)$

Area of semi – drde APB = $\frac{1}{2} \times \pi^2 = \frac{1}{2} \times \left(\frac{3}{2}\right)^2 = \frac{9}{8} \times --(2)$

Area of semi – drde AQC = $\frac{1}{2} \times \pi^2 = \frac{1}{2} \times \left(\frac{4}{2}\right)^2 = 2 \times \text{ cm}^2 - ----(3)$

Area of semi – dirde AQC = $\frac{1}{2}\pi r_2^2$

$$= \frac{1}{2}\pi \left(\frac{4}{2}\right)^2 = 2\pi \text{ cm}^2 - - - - (3)$$

ther in $\triangle ABC$, $\angle A = 90^{\circ}$

$$\therefore BC^2 = AB^2 + AC^2 = 9 + 16 = 25$$

Area of semi – drdeBAC =
$$\frac{1}{2}\pi \left(\frac{5}{2}\right)^2 = \frac{25}{8}\pi - -(4)$$

Adding (1), (2), (3) and subtracting (4)

: Area of shaded region =
$$6 + \frac{9}{8}x + 2x - \frac{25}{8}x$$

= $6 + \frac{25}{8}x - \frac{25}{8}x = 6$ cm²

Question 51:

In $\triangle PQR$, $\angle P = 90^{\circ}$, PQ = 24 cm, PR = 7 cm

$$\therefore QR^2 = RP^2 + PQ^2 = 7^2 + 24^2$$
$$= 49 + 576 = 625$$

Area of semicircle

$$= \frac{1}{2} \times \pi \times \left(\frac{25}{2}\right)^{2}$$

$$= \frac{1}{2} \times 3.14 \times \frac{25 \times 25}{4} \text{ cm}^{2}$$

$$= \frac{625 \times 3.14}{8} = 245.31 \text{ cm}^{2}$$

Area of
$$\triangle PQR = \frac{1}{2} \times 7 \times 24 \text{ cm}^2 = 84 \text{ cm}^2$$

Shaded area = 245.31 - 84 = 161.31 cm²

Willion Stars & Practice
Williams Stars & Practice

ABCDEF is a hexagon.

$$\angle AOB = 60^{\circ}$$
, Radius = 35 cm

Area of sector AOB

$$= \pi r^2 \times \frac{60^\circ}{360^\circ} = \frac{\pi \times 35 \times 35}{6} \text{ cm}^2$$

$$=\frac{3.14\times35\times35}{6}$$
 cm²

 $= 641.083 \, \text{cm}^2$

Area of
$$\triangle AOB = \frac{\sqrt{3}}{4} \times r^2 = \frac{\sqrt{3}}{4} \times 35 \times 35 \text{ cm}^2$$

 $= 530.425 \text{ cm}^2$

Area of segment APB = (641.083 - 530.425) cm² = 110.658 cm² Area of design (shaded area) = $6 \times 110.658 \text{ cm}^2 = 663.948 \text{ cm}^2$ $= 663.95 \text{ cm}^2$

Question 53:

In $\triangle ABC$, $\angle A = 90^{\circ}$, AB = 6cm, BC = 10 cm

$$BC^2 = AC^2 + AB^2$$

$$\therefore AC^2 = BC^2 - AB^2 = 10^2 - 6^2 = 100 - 36 = 64$$

In
$$\triangle ABC$$
, $\angle A = 90^{\circ}$, $AB = 6cm$, $BC = 10 cm$

$$BC^{2} = AC^{2} + AB^{2}$$

$$AC^{2} = BC^{2} - AB^{2} = 10^{2} - 6^{2} = 100 - 36 = 64$$

$$AC = 8 cm$$
Area of $\triangle ABC = \frac{1}{2} \times AC \times AB = \frac{1}{2} \times 8 \times 6 cm^{3} = 24 cm^{2}$

MILLIONSTYR r be the radius of circle of centre O

Area of
$$\triangle OCB = \frac{1}{2} \times 10 \times r \text{ cm}^2 = 5r \text{ cm}^2$$

Area of $\triangle OAB = \frac{1}{2} \times 6 \times r \text{ cm}^2 = 3r \text{ cm}^2$
Area of $\triangle OCA = \frac{1}{2} \times 8 \times r \text{ cm}^2 = 4r \text{ cm}^2$
Area of $(\triangle OCB + \triangle OAB + \triangle OCA) = Area \text{ of } \triangle ABC$
 $\therefore 5r + 3r + 4r = 24$
or $12r = 24 \therefore r = 2 \text{ cm}$
 $\therefore Area \text{ of incircle} = \pi r^2 = 3.14 \times 2 \times 2 \text{ cm}^2$
 $= 12.56 \text{ cm}^2$
 $\Rightarrow \text{Shaded area} = \text{Area of } \triangle ABC - \text{Area of incircle}$
 $= (24 - 12.56) \text{ cm}^2 = 11.44 \text{ cm}^2$

Question 54:

Area of equilateral triangle ABC = $49\sqrt{3}$ cm²

Let a be its side

∴
$$\frac{\sqrt{3}}{4}$$
 $e^2 = 49\sqrt{3}$
or $e^2 = 49 \times 4$

$$=\frac{22}{7} \times 7 \times 7 \times \frac{60}{360}$$
 cm

$$=\frac{11\times7}{3}$$
 cm² $=\frac{77}{3}$ cm²

Area of sector BDF = Area of sector CDE = Area of sector AEF
Sum of area of all the sectors

$$\times$$
 3 cm² = 77 cm²

$$S_{\text{III}}$$
 and ded area = Area of Δ ABC – sum of area of all sectors

$$= 49\sqrt{3} - 77 = (84.77 - 77.00) \text{ cm}^2$$

 $= 77.7 \text{ cm}^2$

Question 55:

In $\triangle ABC$, $\angle B = 90^{\circ}$, AB = 48 cm, BC = 14 cm

$$AC^2 = AB^2 + AC^2 = 48^2 + 14^2$$
$$= 2304 + 196 = 2500$$

= 2304 + 196 = 2500
∴ AC = 50 cm
Area of △ABC =
$$\frac{1}{2}$$
 × 48 × 14 cm² = 336 cm²
Area of semi-circle APC
= $\frac{1}{2}$ xr² = $\frac{1}{2}$ x $\frac{22}{7}$ x 25 x 25 cm²

$$= \frac{1}{2}\pi^2 = \frac{1}{2} \times \frac{22}{7} \times 25 \times 25 \text{ cm}^2$$

$$=\frac{11\times625}{7}$$
 cm² $=\frac{6875}{7}$ cm²

 $= 982.14 \text{ cm}^2$

Area of quadrant BDC with radius 14 cm

$$=\frac{1}{4} \times \frac{22}{7} \times 14 \times 14 \text{ cm}^2 = 154 \text{ cm}^2$$

Shaded area = Area of \triangle ABC + Area of semi-circle APC - Area of quadrant BDC = (336+982.14-154) cm² = (1318.14-154) cm² = 1164.14 cm²

$$= (336+982.14-154) \text{ cm}^2$$

$$= (1318.14-154) \text{ cm}^2 = 1164.14 \text{ cm}^2$$

MILLIONSTAR estion 56:

Radius of quadrant ABED = 16 cm

Its area =
$$\frac{1}{4} \times \frac{22}{7} \times 16 \times 16 \text{ cm}^2$$

Area of $\triangle ABD = \left(\frac{1}{2} \times 16 \times 16\right) \text{ cm}^2$ = 128 cm² Area of segment DEB

Area of segment DEB
$$= \frac{11 \times 128}{7} - 128$$

$$= 128 \left(\frac{11-7}{7}\right) \text{cm}^2 = \frac{128 \times 4}{7} \text{cm}^2 = \frac{512}{7} \text{cm}^2$$
Area of segment DFB = $\frac{512}{7} \text{cm}^2$

Area of segment DFB = $\frac{512}{7}$ cm²
Total area of segments = $2 \times \frac{512}{7}$ cm² = $\frac{1024}{7}$ cm²
Shaded area = Area of square ABCD – Total area of segments

$$= \left(16 \times 16 - \frac{1024}{7}\right) \text{cm}^2$$

$$= \left(256 - \frac{1024}{7}\right) \text{cm}^2 = \frac{1792 - 1024}{7} \text{cm}^2$$

$$= \frac{768}{7} \text{cm}^2 = 109.7 \text{ cm}^2$$

Million Stars & Practice
Williams Stars & Practice

Radius of circular table cover = 70 cm

Area of the circular cover =
$$\pi^2 = \frac{22}{7} \times 70 \times 70 \text{ cm}^2 = 15400 \text{ cm}^2$$

In
$$\triangle$$
 BOD, \angle D = 90°, \angle OBD = 30°

$$\therefore \frac{BD}{OB} = \cos 30^{\circ} = \frac{\sqrt{3}}{2}$$

$$\Rightarrow BD = OB \cos 30^{\circ}$$

$$= 70 \times \frac{\sqrt{3}}{2} \text{ cm}$$

$$= 35\sqrt{3} \text{ cm}$$

$$\Rightarrow BC = 2BD = 2 \times 35\sqrt{3} = 70\sqrt{3}$$

Area of ABC =
$$\frac{\sqrt{3}}{4} \times a^2 = \frac{\sqrt{3}}{4} \times 70\sqrt{3} \times 70\sqrt{3}$$

[: \triangle ABC is equilateral]
= $\frac{4900 \times 3 \times \sqrt{3}}{4}$ cm² = $1225 \times 3 \times \sqrt{3}$
= $3675\sqrt{3}$ cm² = 6365.1 cm²

Shaded area = Area of circle - Area of \triangle ABC = (15400 - 6365.1)

Question 58:

Area of the sector of circle =
$$\frac{\pi^2 6}{360^{\circ}}$$

Million Stars & Practice
Williams Rain & Practice

Million Stars & Practice
Williams Stars & Practice

MILLIONST 14 cm and $\theta = 45^{\circ}$

: Area of sector =
$$\left(\frac{\pi \times 14 \times 14 \times 45}{360}\right) \text{cm}^2$$

= $\left(24.5\pi\right) \text{cm}^2$
= $\left(24.5 \times \frac{22}{7}\right) \text{cm}^2 = 77 \text{ cm}^2$

Question 59:

Length of the arc = $\frac{2\pi r\theta}{360}$, r = 21cm, θ = 150°

$$-\left(\frac{2\pi \times 21 \times 150}{360}\right)$$
cm $-\left(17.5\pi\right)$ cm

Length of arc = $(17.5 \times \frac{22}{7})$ cm = 55 cm

Area of the sector =
$$\frac{\pi r^2 \theta}{360} - \left(\frac{\pi \times 21 \times 21 \times 150}{360}\right) \text{cm}^2$$

$$= (\frac{22}{7} \times 183.75) \text{ cm}^2 = 577.5 \text{ cm}^2$$

Question 60:

Length of arc of circle = 44 cm Radius of circle = 17.5 cm

Area of sector =
$$\frac{1}{2}$$
lr = $\left(\frac{1}{2} \times 44 \times 17.5\right)$ cm²
= (22×17.5) cm² = 385 cm²

Question 61:

Let sector of circle is OAB

Perimeter of a sector of circle =31 cm

OA + OB + length of arc AB = 31 cm

$$6.5 + 6.5 + arc AB = 31 cm$$

arc AB = $31 - 13$
= $18 cm$

Area of circle =
$$\frac{1}{2}$$
 | r
= $\frac{1}{2}$ x 18 x 6.5 = 58.5 cm²

Question 62:

Area of the sector of circle =
$$\frac{\pi^2 \theta}{360}$$
 = 69.3
Radius = 10.5 cm

$$\Rightarrow \frac{\pi \times (10.5)^{2} \times \theta}{360} = 69.3$$

$$\Rightarrow \qquad \theta = \frac{69.3 \times 360 \times 7}{10.5 \times 10.5 \times 22} = 72^{\circ}$$

Question 63:

Length of the pendulum = radius of sector = r cm

Arc length =
$$8.8 \Rightarrow 2 \times \frac{22}{7} \times r \times \frac{30}{360} = 8.8$$

$$\Rightarrow r = \frac{8.8 \times 7 \times 360}{2 \times 22 \times 30} = 16.8 \text{ cm}$$

Question 64:

Length of arc =
$$\frac{2\pi r\theta}{360}$$
 = 16.5 cm

$$2 \times \frac{22}{7} \times r \times \frac{54^9}{360^9} = 16.5$$

$$r = \frac{16.5 \times 7 \times 360}{2 \times 22 \times 54} = 17.5 \text{cm}$$

Million Stars Practice
Williams Practice

Willion Stars Bractice
Williams Stars Bractice

$$\left(2 \times \frac{22}{7} \times 17.5\right)$$
 = 110 cm

Area of circle =

$$\pi r^2 = \left(\frac{22}{7} \times 17.5 \times 17.5\right) \text{ cm}^2$$

$$= 962.5 \text{ cm}^2$$

Question 65:

Circumference of circle = $2\pi r$

$$2\pi r = 88 \Rightarrow r = \frac{88 \times 7}{2 \times 22} = 14 \text{ cm}$$

Area of sector =
$$\frac{\pi r^2 \theta}{360}$$

= $\left(\frac{22}{7} \times 14 \times 14 \times \frac{72}{360}\right) \text{cm}^2 = 123.2 \text{cm}^2$

Question 66:

Angle described by the minute hand in 60 minutes $\theta = 360^{\circ}$ Angle described by minute hand in 20 minutes

$$-\left(\frac{360}{60} \times 20\right) - 120^{\circ}$$

Required area swept by the minute hand in 20 minutes = Area of the sector(with r = 15 cm and $\theta = 120^{\circ}$)

$$= \left(\frac{\pi r^2 \theta}{360^{\circ}}\right) \text{cm}^2 = \left(3.14 \times 15 \times 15 \times \frac{120^{\circ}}{360^{\circ}}\right)$$

Question 67:

 θ = 56° and let radius is r cm

Area of sector =
$$\frac{\pi r^2 \theta}{360^\circ}$$
 = 17.6 cm²

MILLIONST R
$$\frac{22}{7} \times r^2 \times \frac{56^\circ}{360^\circ} = 17.6$$

$$r^2 = \left(\frac{17.6 \times 360 \times 7}{22 \times 56}\right) \text{cm}^2$$

$$r^2 = 36 \text{ cm}^2 \Rightarrow r = \sqrt{36} \text{ cm} = 6 \text{ cm}$$

Hence radius = 6cm

Question 68:

Area of sector with
$$\theta = 150^{\circ}$$
 = $\frac{\pi \times (6)^2 \times \frac{150}{360}}{\pi \times (6)^2}$ = $\frac{150}{360} = \frac{5}{12}$ Required ratio = $\left(36\pi \times \frac{90}{360}\right) : \left(36\pi \times \frac{120}{360}\right) : \left(36\pi \times \frac{150}{360}\right)$ = $\frac{1}{4} : \frac{1}{3} : \frac{5}{12} = 3 : 4 : 5$

Question 69:

In 2 days, the short hand will complete 4 rounds

- \therefore Distance travelled by its tip in 2 days
- =4(circumference of the circle with r = 4 cm)
- $= (4 \times 2 \times 4) \text{ cm} = 32 \text{ cm}$

In 2 days, the long hand will complete 48 rounds

- \therefore length moved by its tip
- = 48(circumference of the circle with r = 6cm)
- $= (48 \times 2 \times 6) \text{ cm} = 576 \text{ cm}$
- : Sum of the lengths moved
- = (32 + 576) = 608 cm
- $= (608 \times 3.14) \text{ cm} = 1909.12 \text{ cm}$

Question 70:

 Δ OAB is equilateral.

arcACB=
$$\left(2\pi \times 12 \times \frac{60}{360}\right)$$
cm
= 4π cm
= $\left(4 \times 3.14\right)$ cm
= 12.56 cm

Length of arc BDA = $(2\pi \times 12 - arc ACB)$ cm = $(24\pi - 4\pi)$ cm = (20π) cm = (20×3.14) cm = 62.8 cm Area of the minor segment ACBA

$$= \left[x \times (12)^2 \times \frac{60}{360} - \frac{\sqrt{3}}{4} \times (12)^2 \right] \text{cm}^2$$

$$= \left(3.14 \times 12 \times 12 \times \frac{60}{360} - \frac{1.73}{4} \times 12 \times 12 \right) \text{cm}^2$$

$$= (75.36 - 62.28) \text{cm}^2 = 13.08 \text{ cm}^2$$

Question 71:

Let AB be the chord of circle of centre O and radius = 6 cm such that $\angle AOB = 90^{\circ}$

Area of sector = OACBO

Million Stars & Practice
Williams Rain & Practice

$$=\left(\frac{22}{7}\times6\times6\times\frac{90}{360}\right)$$
cm²

 $= 28.29 \text{ cm}^2$

Area of
$$\triangle AOB = \frac{1}{2}r^2 \sin\theta = \left(\frac{1}{2} \times 6 \times 6 \times \sin 90^{\circ}\right) = 18 \text{ cm}^2$$

Area of minor segment ACBA = (area of sector OACBO) – (area of \triangle OAB) = (28.29 – 18) cm² = 10.29 cm² Area of major segment BDAB

- (area of circle) - (area of min or segment)

$$=\left[\left(\frac{22}{7}\times6\times6\right)-10.29\right]$$
cm²

 $= (113.14 - 10.29) \text{ cm}^2 = 102.85 \text{ cm}^2$

Question 72:

Let $OA = 5\sqrt{2}$ cm , $OB = 5\sqrt{2}$ cm And AB = 10 cm

Then,
$$OA^2 + OB^2 = AB^2$$

 $\Rightarrow \angle AOB = 90^\circ$

Area of the sector OACBO

$$= \frac{\pi r^2 \theta}{360} \text{ cm}^2$$

$$= \left(3.14 \times \left(5\sqrt{2}\right) \times \left(5\sqrt{2}\right) \times \frac{90}{360}\right) \text{ cm}^2$$

$$= 39.25 \text{ cm}^2$$

Area of
$$\triangle AOB = \frac{1}{2}r^2 \sin \theta = \left(\frac{1}{2} \times 5\sqrt{2} \times 5\sqrt{2} \times \sin 90^{\circ}\right)$$

Million Stars Practice

Williams Stars Practice

 \mathbb{R} a of minor segment = (area of sector OACBO) – (area of Δ OAB)

$$= (39.25 - 25) \text{ cm}^2 = 14.25 \text{ cm}^2$$

Area of the major segment BDAB

= area of circle - area of minor segment

$$= \left(\frac{22}{7} \times 5\sqrt{2} \times 5\sqrt{2} - 14.25\right) \text{cm}^2$$
$$= \left(\frac{1100}{7} - 14.25\right) \text{cm}^2 = (157 - 14.25) \text{cm}^2$$
$$= 142.75 \text{ cm}^2$$

Question 73:

Area of sector OACBO

$$= \frac{\pi r^2 \theta}{360} \text{ cm}^2 = \left(\frac{22}{7} \times 42 \times 42 \times \frac{120}{360}\right) \text{ cm}^2 = 1848 \text{ cm}^2$$

Area of
$$\triangle OAB = \frac{1}{2}r^2 \sin \theta$$

$$= \left(\frac{1}{2} \times 42 \times 42 \times \sin 120^{\circ}\right)$$

$$= \left(21 \times 42 \times \frac{\sqrt{3}}{2}\right) \text{cm}^2$$

$$= (21 \times 21 \times 1.73) \text{cm}^2 = 762.93 \text{ cm}^2$$

Area of minor segment ACBA

- (area of sector OACBO) (area of the ∆OAB)
- $= (1848 762.93) \text{ cm}^2 = 1085.07 \text{ cm}^2$

Area of major segment BADB

(area of the orde) – (area of min or segment)

$$=\frac{22}{7} \times 42 \times 42 - 1085.07$$

 $= (5544 - 1085.07) \text{ cm}^2 = 4458.93 \text{ cm}^2$

Million Stars Practice
William Stars Practice

MILLIONST estion 74:

AB be the chord of circle of centre O and radius = 30 cm such that AOB = 60°

Area of the sector OACBO

$$=\frac{\pi r^2 \theta}{360} \text{ cm}^2$$

$$=$$
 $\left(3.14 \times 30 \times 30 \times \frac{60}{360}\right)$ cm²

$$= 471 \, \text{cm}^2$$

Area of
$$\triangle OAB = \frac{1}{2}r^2 \sin \theta = \left(\frac{1}{2} \times 30 \times 30 \times \sin 60^{\circ}\right) cm^2$$

$$= \left(\frac{1}{2} \times 30 \times 30 \times \frac{\sqrt{3}}{2}\right) \text{cm}^2 = \left(225\sqrt{3}\right) \text{cm}^2$$

$$= (225 \times 1.73) \text{ cm}^2 = 389.25 \text{ cm}^2$$

Area of the minor segment ACBA

= (area of the sector OACBO) – (area of the Δ OAB)

$$=(471 - 389.25) \text{ cm}^2 = 81.75 \text{ cm}^2$$

Area of the major segment BADB

= (area of circle) - (area of the minor segment)

$$= [(3.14 \times 30 \times 30) - 81.75)] \text{ cm}^2 = 2744.25 \text{ cm}^2$$
Question 75:
Let the major arc be x cm long
Then, length of the minor arc = $\frac{1}{5}$ x cm

Circumference = $\left(x + \frac{1}{5}x\right) \text{cm} - \frac{6x}{5} \text{ cm}$

Question 75:

Let the major arc be x cm long

Then, length of the minor arc = $\frac{1}{5}$ x cm

Circumference =
$$\left(x + \frac{1}{5}x\right)$$
cm - $\frac{6x}{5}$ cm

$$\frac{6x}{5} = 2x \frac{22}{7} \times \frac{21}{2} \Rightarrow x = 55 \text{ cm}$$
Required area = $\left(\frac{1}{2} \times 55 \times \frac{21}{2}\right) \text{cm}^2$

$$\left[\text{Area} = \frac{1}{2} \text{rl}\right]$$
= 288.75 cm²

Question 76:

Radius of the front wheel = 40 cm = $\frac{2}{5}$ m

Circumference of the front wheel = $\left(2x \times \frac{2}{5}\right) m = \frac{4x}{5} m$ Distance moved by it in 800 revolution

$$-\left(\frac{4\pi}{5}\times800\right)$$
m - (640π) m

Circumference of rear wheel = $(2\pi \times 1)$ m = (2π) m

Required number of revolutions =
$$\left(\frac{640x}{2x}\right)$$
 - 320

