

Volume & Surface Areas Of Solids

Exercise 19A

Name of the solid	Figure	Volume	Laterial/Curved Surface Area	Total Surface Area
Cuboid	h	lbh	2lh + 2bh or 2h(l+b)	2lh+2bh+2lb or 2(lh+bh+lb)
Cube	aaa	a³	4a²	$4a^2 + 2a^2$ or $6a^2$
Right circular cylinder	h	πr²h	2πrh	$2\pi r h + 2\pi r^2$ or $2\pi r (h+r)$
Right circular cone	h	$\frac{1}{3}\pi r^2 h$	πrl	$\pi r l + \pi r^2$ or $\pi r (l+r)$
Sphere	r/	$\frac{4}{3}\pi r^3$	$4\pi r^2$	$4\pi r^2$
Hemisphere	r	$\frac{2}{3}\pi r^3$	2πr²	2πr ² πr ² αr 3πr ²

Radius of the cylinder = 14 mAnd its height = 3 mRadius of cone = 14 mAnd its height = 10.5 mLet I be the slant height

$$||^2 = (14)^2 + (10.5)^2$$

$$|^2 = (196 + 110.25) \text{ m}^2$$

$$|^2 = 306.25 \text{ m}^2$$

$$|| = \sqrt{306.25} \text{ m}|$$

$$= 17.5 \text{ m}$$

Curved surface area of tent

= (curved area of cylinder + curved surface area of cone)

$$= \left[\left(2 \times \frac{22}{7} \times 14 \times 3 \right) + \left(\frac{22}{7} \times 14 \times 17.5 \right) \right] m^2$$

Million Stars Practice
Anima Arina Practice Hence, the curved surface area of the tent = 1034Cost of canvas = Rs. (1034×80) = Rs. 82720

MILLIONST estion 2:

For the cylindrical portion, we have radius = 52.5 m and height = 3 m For the conical portion, we have radius = 52.5 mAnd slant height = 53 mArea of canvas = 2rh + rl = r(2h + l)

$$= \left[\frac{22}{7} \times 52.5 \times (2 \times 3 + 53)\right] \text{m}^2$$
$$= \left(22 \times \frac{15}{2} \times 59\right) \text{m}^2 = 9735 \text{m}^2$$

Question 3:

Total surface area of article = (lateral surface of cylinder with $r=3.5\ cm$ and $h=20\ cm$)

ondershare Offerenent

Million Stars Practice
Anima Practice

=
$$\left[2\pi \text{th} + 2\times \left(2\pi r^2\right)\right]$$
 sq.units
= $\left[\left(2\times\frac{22}{7}\times\frac{7}{2}\times20\right) + \left(4\times\frac{22}{7}\times\frac{7}{2}\times\frac{7}{2}\right)\right]$ cm²
= $\left(440 + 154\right)$ cm² = 594 cm²

Question 4:

Radius of wooden cylinder = 4.2 cm Height of wooden cylinder = 12 cm Lateral surface area

- = 2xrh sq.cm
- = 2x xx 4.2x12cm²
- $= 100.8\pi \text{ cm}^2$

Radius of hemisphere = 4.2 cm Surface area of two hemispheres

- = 2x2xr2 sq.unit
- $= 4\pi \times 4.2 \times 4.2 \text{ cm}^2$
- $= 70.70 \pi \text{ cm}^2$

Total surface area = $(100.8 + 70.56) \, \text{n cm}^2$

- $= 538.56 \text{ cm}^2$
- = 171.36 п
- $= 171.36 \times \frac{22}{7} \text{ cm}^2$
- $= 538.56 \text{ cm}^2$

Million Stars & Practice
Williams Stars & Practice

MILLIONSTYR ther, volume of cylinder = $\pi r^2 h = 4.2 \times 4.2 \times 12 \pi \text{ cm}^2$

= ∠11.68 п cm²

Volume of two hemispheres = $2 \times \frac{2}{3} \pi r^3$ cu.units

$$=\frac{4}{3} \pi \times 4.2 \times 4.2 \times 4.2$$

 $= 98.784 \text{ cm}^3$

Volume of wood left = (211.68 - 98.784) n

$$= 112.896 \text{ n cm}^3$$

$$= 112.896 \times \frac{22}{7} \text{ cm}^3$$

 $= 354.816 \text{ cm}^3$

Question 5:

Radius o f cylinder = 2.5 m

Height of cylinder = 21 m

Slant height of cone = 8 m

Radius of cone = 2.5 m

Total surface area of the rocket = (curved surface area of cone + curved surface area of cylinder + area of base)

where I = 8m, h = 21m, r = 2.5m

$$= \left(\frac{22}{7} \times 2.5 \times 8 + 2 \times \frac{22}{7} \times 2.5 \times 21 + \frac{22}{7} \times 2.5 \times 2.5\right) \text{m}^2$$

$$= (62.85 + 330 + 19.64) \text{ m}^2 = 412.5 \text{ m}^2$$

Question 6:

Height of cone = h = 24 cm Its radius = 7 cm

Total surface area of toy

=
$$(\pi rl + 2\pi r^2)$$

= $\pi r(l + 2r)$
= $\frac{22}{7} \times 7 \times (25 + 14)$
= $22 \times 39 = 858 \text{ cm}^2$

Question 7:

Height of cylindrical container $h_1 = 15$ cm Diameter of cylindrical container = 12 cm

Volume of container = $\pi r_1^2 h_1 = \pi \times 6 \times 6 \times 15 = 540\pi$ cm² Height of cone $r_2 = 12$ cm Diameter = 6 cmRadius of $r_2 = 3$ cm

Volume of cone =
$$\frac{1}{3}\pi \frac{2}{2} h_2 = \frac{1}{3}\pi \times 3 \times 3 \times 12$$

= 36 π m³

Radius of hemisphere = 3 cm

Volume of cone =
$$\frac{1}{3}\pi^2 h_2 = \frac{1}{3}\pi \times 3 \times 3 \times 12$$

= $36\pi m^3$
Radius of hemisphere = 3 cm
Volume of hemisphere = $\frac{2}{3}\pi r_2^3 = \frac{2}{3}\pi \times 3 \times 3 \times 3 = 18\pi$
Volume of cone + volume of hemisphere = $36\pi + 18\pi = 54\pi$
Number of cones

Volume of cone + volume of hemisphere = 36n + 18n = 54nNumber of cones

Volume of container

Volume of cone + Volume of hemisphere

$$=\frac{540\pi}{54\pi}=10$$

Number of cones that can be filled = 10

Question 8:

Diameter of cylindrical gulabjamun = 2.8 cm

Its radius = 1.4 cm

Total height of gulabjamun = AC + CD + DB = 5 cm

$$1.4 + CD + 1.4 = 5$$

$$2.8 + CD = 5$$

$$CD = 2.2 cm$$

Height of cylindrical part h = 2.2 cmVolume of 1 gulabjamun = Volume of cylindrical part + Volume of two hemispherical parts

$$=\pi r^2 h + \frac{2}{3}\pi r^2 + \frac{2}{3}\pi r^3$$

$$= \pi r^2 h + \frac{4}{3} \pi r^3 = \pi r^2 \left(h + \frac{4}{3} r \right)$$

$$= \frac{22}{7} \times 1.4 \times 1.4 \times \left(2.2 + \frac{4}{3} \times 1.4\right)$$

$$= 22 \times 0.2 \times 1.4 \times (2.2 + 1.87)$$

$$= 4.4 \times 1.4 \times 4.07 = 25.07 \text{ cm}^3$$

Willion Stars & Practice
Williams Stars & Practice Volume of 45 gulabjamuns = 45×25.07 cm³ Quantity of syrup = 30% of volume of gulabjamuns $= 0.3 \times 45 \times 25.07 = 338.46 \text{ cm}^3$

Question 9:

Diameter = 7cm, radius =
$$= 3.5 \text{ cm}$$

Height of cone = $14.5 \text{ cm} - 3.5 \text{ cm} = 11 \text{ cm}$

$$\sqrt{\left(\frac{7}{2}\right)^2 + (11)^2}$$
 cm = $\sqrt{\frac{49}{4} + 121}$ cm = $\sqrt{\frac{533}{4}}$ cm
 $I = \frac{23.08}{2}$ cm = 11.54cm

Volume of toy =
$$\frac{2}{3}\pi^3 + \frac{1}{3}\pi^2h$$

= $\left[\frac{1}{3}\pi^2(2r+h)\right]$
where $r = \frac{7}{2}$ and $h = 11$
= $\left[\frac{1}{3}\times\frac{22}{7}\times\frac{7}{2}\times\frac{7}{2}\times\left(2\times\frac{7}{2}+11\right)\right]$ cm³
= (12.83×18) cm³ = 230.94cm³

Total surface area of toy = $(2\pi^2 + \pi I)$ cm² = $\pi (2 + I)$ cm²

$$= \frac{22}{7} \times \frac{7}{2} \times \left(2 \times \frac{7}{2} + 11.54\right) \text{cm}^2$$

$$= (11 \times 18.54) \text{ cm}^2 = 203.94 \text{ cm}^2$$

Question 10:

Diameter of cylinder = 24 m Radius of cylinder = $\frac{24}{2}$ = 12 cm Height of the cylinder = 11 m Height of cone = (16 - 11) cm = 5 cm

Slant height of the cone I =
$$\sqrt{r^2 + h^2} = \sqrt{144 + 25} m = 13 m$$

Million Stars & Practice
Williams Stars & Practice Area of canvas required = (curved surface area of the cylindrical part) + (curved surface area of the conical part)

=
$$(2\pi h + \pi r l)m^2 = \pi r (2h + l)m^2$$

= $\left[\frac{22}{7} \times 12 \times (2 \times 11 + 13)\right]m^2$
= $\left(\frac{22}{7} \times 12 \times 35\right)m^2 = 1320 m^2$

Question 11:

Radius of hemisphere = 10.5 cm Height of cylinder = (14.5 - 10.5) cm = 4 cm Radius of cylinder = 10.5 cm

MILLIONSTOR Pacitive Volume of cylinder + Volume of hemisphere

$$=\left(\pi r^{2}h+\frac{2}{3}\pi r^{3}\right)cm^{3}=\pi r^{2}\left(h+\frac{2}{3}r\right)cm^{3}$$

$$= \left[\frac{22}{7} \times 10.5 \times 10.5 \times \left(4 + \frac{2}{3} \times 10.5 \right) \right] \text{cm}^3$$

$$= (346.5 \times 11) \text{ cm}^2 = 3811.5 \text{ cm}^2$$

Question 12:

Height of cylinder = 6.5 cm

Height of cone = h_2 = (12.8-6.5) cm = 6.3 cm

Radius of cylinder = radius of cone

= radius of hemisphere

 $=\frac{7}{2}$ cm

Volume of solid = Volume of cylinder + Volume of cone + Volume of hemisphere

$$= \pi^2 h_1 + \frac{1}{3} \pi^2 h_2 + \frac{2}{3} \pi^3 = \pi^2 \left(h_1 + \frac{1}{3} h_2 + \frac{2}{3} r \right)$$

$$= \left[\frac{22}{7} \times 3.5 \times 3.5 \times \left(6.5 + 6.3 \times \frac{1}{3} + \frac{2}{3} \times 3.5 \right) \right]$$

$$= [(38.5) \times (6.5 + 2.1 + 2.33)] \text{cm}^3$$

$$= (38.5 \times 10.93) \text{ cm}^3 = 420.80 \text{ cm}^3$$

Willion Stars & Practice
Williams Stars & Practice

Radius of each hemispherical end = $\frac{28}{2}$ = 14 cm Height of each hemispherical part = Its Radius Height of cylindrical part = $(98 - 2 \times 14) = 70$ cm Area of surface to be polished = 2(curved surface area of hemisphere) + (curved surface area of cylinder)

$$= \left[2\left(2\pi r^2\right) + 2\pi h \right]$$
squnit

$$= 2 \times \frac{22}{7} \times 14 \times [2 \times 14 + 70] \text{cm}^2$$

$$= (88 \times 98) = 8624 \text{ cm}^2$$

Cost of polishing the surface of the solid

$$= Rs. (0.15 \times 8624)$$

Question 14:

Radius of cylinder $r_1 = 5$ cm

MILLIONSTYR | height of cylinder $h_1 = 9.8$ cm lius of cone r = 2.1 cm

And height of cone $h_2 = 4$ cm

Volume of water left in tub = (volume of cylindrical tub - volume of solid)

$$= \left(\pi_1^2 h_1 - \frac{2}{3} \pi^3 - \frac{1}{3} \pi^2 h_2 \right)$$

$$= \left(\frac{22}{7} \times 5 \times 5 \times 9.8 - \frac{2}{3} \times \frac{22}{7} \times 2.1 \times 2.1 \times 2.1 - \frac{1}{3} \times \frac{22}{7} \times 2.1 \times 2.1 \times 4\right)$$

$$=$$
 [(770 – 19.404) – 18.48] cm³

Question 15:

(i) Radius of cylinder = 6 cm Height of cylinder = 8 cm

Volume of cylinder

$$\Rightarrow \pi r^2 \times 10800 = 972\pi$$

$$r^2 = \frac{972\pi}{10800\pi} = 0.09 \text{ cm}^2$$

$$r = \sqrt{0.09}$$
 cm = 0.3

Volume of cone removed

$$=\frac{1}{3}\pi^2$$

$$= \frac{1}{3} \times \times 6 \times 6 \times 8 \text{ cm}^3$$

=
$$\frac{1}{3} \times 1 \times 6 \times 6 \times 8 \text{ cm}^3$$

= $96 \times 1 \text{ cm}^3$
(ii) Surface area of cylinder = $2\pi = 2\pi \times 6 \times 8 \text{ cm}^2 = 96 \pi \text{ cm}^2$

int height of cone =
$$\sqrt{6^2 + 8^2} = \sqrt{36 + 64}$$
 cm
= $\sqrt{100}$ cm = 10 cm

Curved surface area of cone = $\pi rl = \pi \times 6 \times 10 = 60 \pi$

Area of base of cylinder = $\pi r^2 = \pi \times 6 \times 6 = 36 \pi$

Total surface area of remaining solid

$$= (96\pi + 60\pi + 36\pi) \text{ cm}^2$$

$$= 192 \times \text{cm}^2 = 602.88 \text{cm}^2$$

Question 16:

Diameter of spherical part of vessel = 21 cm

Its radius =
$$\frac{21}{2}$$
 cm

Its volume =
$$\frac{4}{3}\pi^3$$

$$=\frac{4}{3}\times\frac{22}{7}\times\frac{21}{2}\times\frac{21}{2}\times\frac{21}{2}$$

$$= 11 \times 21 \times 21 \text{ cm}^3 = 4851 \text{ cm}^3$$

Volume of cylindrical part of vessel

$$= \pi^2 h = \frac{22}{7} \times 2 \times 2 \times 7 \text{ cm}^3$$

$$= \frac{4}{3} \times \frac{22}{7} \times \frac{21}{2} \times \frac{21}{2}$$

$$= 11 \times 21 \times 21 \text{ cm}^3 = 4851 \text{ cm}^3$$
Volume of cylindrical part of vessel
$$= \frac{1}{3} \times \frac{22}{7} \times 2 \times 2 \times 7 \text{ cm}^3$$

$$= 88 \text{ cm}^3$$

$$= 88 \text{ cm}^3$$

$$\therefore \text{ Volume of whole vessel} = (4851 + 88) \text{ cm}^3 = 4939 \text{ cm}^3$$

MILLIONSTIR estion 17:

Height of cylindrical tank = 2.5 mIts diameter = 12 m, Radius = 6 m

Volume of tank =
$$\pi^2 h = \frac{22}{7} \times 6 \times 6 \times 2.5 \text{ m}^3 = \frac{1980}{7} \text{ m}^3$$

Water is flowing at the rate of 3.6 km/ hr = 3600 m/hrDiameter of pipe = 25 cm, radius = 0.125 mVolume of water flowing per hour

$$= \frac{22}{7} \times 0.125 \times 0.125 \times 3600 \text{ m}^3$$

$$= \frac{22 \times 3600}{7 \times 8 \times 8} \text{ m}^3 = \frac{2475}{14} \text{ m}^3$$
Time taken to fill the tank= $\frac{1980}{7} + \frac{2475}{14} \text{ hr}$

$$= \frac{1980}{7} \times \frac{14}{2475} \text{ hr} = \frac{792}{495} \text{ hr}$$
$$= 1.36 \text{ hr} = 1 \text{ hr} 36 \text{ min}.$$

Water charges = Rs.
$$\frac{1980}{7} \times 0.07 = Rs. 19.80$$

Question 18:

Height of cylinder = 10 cm Volume of cylinder = $\pi r^2 h$ cu.units = $3.14 \times 2.5 \times 2.5 \times 10$ cm³ = 196.25 cm³ Apparent capacity of glass = 196.25Radius of hemisphere = 2.5 cm Volume of hemisphere

- $=\frac{2}{3}$ x 3.14 x 2.5 x 2.5 x 2.5 cm³
- = 32.708 cm³

Actual capacity of glass = (196.25 - 32.608) cm³ = 163.54 cm³

Exercise 19B

https://www.youtube.com/watch?v=6KpStN 0mjE

Question 1:

Radius of the cone = 12 cm and its height = 24 cmVolume of cone = $\frac{1}{3} \pi r^3 h = (\frac{1}{3} \text{ 1}) \times 12\times 12\times 12 \times 12$ $= (48 \times 24) \text{n cm}^3$

$$= (48 \times 24)\pi \text{ cm}^3$$

Volume of each ball =
$$\frac{4}{3}\pi R^3 = \frac{4}{3}\pi \times 3 \times 3 \times 3 = (36\pi) \text{ cm}^3$$

Number of balls formed =
$$\frac{\text{Volume of solid cone}}{\text{Volume of each ball}}$$

= $\frac{(48 \times 24\pi)}{36\pi}$ = 32

Question 2:

Internal radius = 3 cm and external radius = 5 cm

Volume of material in the shell =
$$\frac{2}{3}\pi \times \left[(5)^3 - (3)^3 \right] \text{cm}^2$$

= $\frac{2}{3} \times \frac{22}{7} \times 98 = \frac{616}{3} \text{cm}^3$

Radius of the cone = 7 cm

Let height of cone be h cm

Let height of cone be h cm

Volume of cone =
$$\left(\frac{1}{3} \times \frac{22}{7} \times 7 \times 7 \times h\right)$$
 cm³ = $\frac{154h}{3}$ cm³

$$\therefore \frac{154h}{3} = \frac{616}{3}$$

$$\Rightarrow h = \frac{616}{154} = 4 \text{ cm}$$

Hence, height of the cone = 4 cm

Question 3:

Inner radius of the bowl = 15 cm

Volume of liquid in it =

$$\therefore \frac{154h}{3} = \frac{616}{3}$$

$$\Rightarrow h = \frac{616}{154} = 4 \text{ cm}$$

Hence, height of the cone = 4 cm

Question 3:

Inner radius of the bowl = 15 cmVolume of liquid in it =

MILLIONSTYR
Think Learn and Practice
$$r^3 = \left(\frac{2}{3}\pi \times (15)^3\right) \text{cm}^3$$

Radius of each cylindrical bottle = 2.5 cm and its height = 6 cm Volume of each cylindrical bottle

$$= \pi r^2 h = \left(\pi \times \left(\frac{5}{2}\right)^2 \times 6\right) cm^2$$
$$= \left(\frac{25}{4} \times 6\pi\right) = \left(\frac{75\pi}{2}\right) cm^3$$

Volume of liquid

Required number of bottles = Volume of each cylindrical bottle

$$=\frac{\frac{2}{3}\times\pi\times15\times15\times15}{\frac{75}{2}\times\pi}=60$$

Hence, bottles required = 60

Question 4:
Radius of the sphere =
$$\frac{21}{2}$$
 cm
Volume of the sphere = $\left(\frac{4}{3}\pi r^3\right) = \left[\frac{4}{3}\pi \times \left(\frac{21}{2}\right)^3\right]$ cm³
Radius of cone = $\frac{7}{4}$ cm and height 3 cm

Volume of cone =
$$\frac{1}{3} \pi r^2 h = \left(\frac{1}{3} \times \pi \times \left(\frac{7}{4}\right)^2 \times 3\right) \text{cm}^3$$

Let the number of cones formed be n, then

$$n \times \frac{1}{3}\pi \times \left(\frac{7}{4}\right)^{2} \times 3 = \frac{4}{3}\pi \times \left(\frac{21}{2}\right)^{3}$$

$$n = \frac{4}{3}\pi \times \frac{21}{2} \times \frac{21}{2} \times \frac{21}{2} \times \frac{3}{\pi} \times \frac{4}{7} \times \frac{4}{7} \times \frac{1}{3}$$

$$n = 504$$

Hence, number of cones formed = 504

Question 5:

Radius of the cannon ball = 14 cm

Volume of cannon ball =
$$\frac{4}{3}\pi r^3 = \left[\frac{4}{3}\pi \times (14)^3\right] \text{cm}^3$$

Radius of the cone = $\frac{35}{2}$ cm

Let the height of cone be h cm

Volume of cone =
$$\left[\frac{1}{3} \pi \times \left(\frac{35}{2} \right)^2 \times h \right] cm^3$$

Willion Stars & Practice
Williams Stars & Practice

MILLIONSTYR
Think Learn and Practice
$$\pi \times (14)^3 = \frac{1}{3}\pi \times \left(\frac{35}{2}\right)^2 \times h$$

$$h = \frac{4}{3}\pi \times 14 \times 14 \times 14 \times \frac{3}{\pi} \times \frac{2}{35} \times \frac{2}{35}$$

$$= 35.84 \text{ cm}$$

Hence, height of the cone = 35.84 cm

Question 6:

Let the radius of the third ball be r cm, then, Volume of third ball = Volume of spherical ball - volume of 2 small balls

Volume of third ball =
$$\left[\frac{4}{3}\pi(3)^3 - \left\{\frac{4}{3}\pi\left(\frac{3}{2}\right)^3 + \frac{4}{3}\pi(2)^3\right\}\right]$$

= $\left[36\pi - \left(\frac{9\pi}{2} + \frac{32\pi}{3}\right)\right]$ cm³ = $\frac{125\pi}{6}$ cm³
 $\therefore \frac{4}{3}\pi r^3 = \frac{125\pi}{6}$

$$\therefore \frac{4}{3}\pi r^3 = \frac{125\pi}{6}$$

$$r^3 = \frac{125\pi \times 3}{6 \times 4 \times \pi} = \frac{125}{8}$$

$$r = \left(\frac{5}{2}\right) \text{cm} = 2.5 \text{ cm}$$

Question 7:

External radius of shell = 12 cm and internal radius = 9 cm

Volume of lead in the shell =
$$\frac{4}{3}\pi \left[(12)^3 - (9)^3 \right] \text{cm}^3$$

Let the radius of the cylinder be r cm

Its height = 37 cm

Volume of cylinder =
$$\pi r^2 h = (\pi r^2 \times 37)$$

$$\frac{4}{3}\pi \left[(12)^3 - (9)^3 \right] = \pi r^2 \times 37$$

$$\frac{4}{3} \times \pi \times 999 = \pi r^2 \times 37$$

$$r^2 = \frac{4}{3} \times \pi \times 999 \times \frac{1}{37\pi} = 36 \text{ cm}^2$$

$$r = \sqrt{36} \text{ cm}^2 = 6 \text{ cm}$$

Williams by actice Hence diameter of the base of the cylinder = 12 cm

Question 8:

Volume of hemisphere of radius 9 cm

$$= \left(\frac{2}{3} \times \pi \times 9 \times 9 \times 9\right) \text{cm}^3$$

Volume of circular cone (height = 72 cm)

$$= \frac{1}{3} \left(\pi \times r^2 \times 72 \right) \text{cm}$$

Willion Stars & Practice
Williams Anna China Chi

MILLIONSTAR Jume of cone = Volume of hemisphere

$$\frac{1}{3} \times \pi r^2 \times 72 = \frac{2}{3} \pi \times 9 \times 9 \times 9$$

$$r^2 = \frac{2\pi}{3} \times 9 \times 9 \times 9 \times \frac{1}{24\pi} = 20.25$$

$$r = \sqrt{20.25} = 4.5 \text{ cm}$$

Hence radius of the base of the cone = 4.5 cm

Question 9:

Diameter of sphere = 21 cm

Hence, radius of sphere = $\frac{19}{2}$ cm

Volume of sphere = $\frac{4}{3} \, \text{nr}^3 = \left(\frac{4}{3} \times \frac{22}{7} \times \frac{21}{2} \times \frac{21}{2} \times \frac{21}{2}\right)$

Volume of cube = $a3 = (1 \times 1 \times 1)$

Let number of cubes formed be n

 \therefore Volume of sphere = n \times Volume of cube

$$\therefore \frac{4}{3} \times \frac{22}{7} \times \frac{21}{2} \times \frac{21}{2} \times \frac{21}{2} = n \times 1$$

$$= (441 \times 11) = n$$

$$4851 = n$$

 $= (441 \times 11) = n$ 4851 = nHence, number of cubes is 4851. **Question 10:**Volume of sphere (when r = 1 cm) = $\frac{4}{3} \pi r^3 = (\frac{4}{3}) \times 1 \times 1$ 1\times 1) п cm³

Volume of sphere (when r = 8 cm) = $\frac{4}{3} \pi r^3 = (\frac{4}{3} \text{ 3} \times 8 \times 8)$ 8\times 8) п cm³

Let the number of balls = n

$$n \times \left(\frac{4}{3} \times 1 \times 1 \times 1\right) \pi = \left(\frac{4}{3} \times 8 \times 8 \times 8\right) \pi$$
$$n = \frac{4 \times 8 \times 8 \times 8 \times 3}{3 \times 4} = 512$$

Question 11:

Radius of marbles =
$$\frac{Diameter}{2} = \frac{1.4}{2}cm$$

ume of marbles =
$$\frac{4}{3}\pi r^3$$

$$= \left[\frac{4}{3} \times \pi \times \left(\frac{1.4}{2}\right) \times \left(\frac{1.4}{2}\right) \times \left(\frac{1.4}{2}\right)\right] cm^3$$

Radius of beaker = $\left(\frac{7}{5}\right)$ cm

Volume of rising water in beaker

$$= \pi r^2 h = \left(\pi \times \left(\frac{7}{2}\right)^2 \times \left(\frac{56}{10}\right)\right) \text{cm}^3$$

Let the number of marbles be n

∴ n × volume of marble = volume of rising water in beaker

$$n \times \left(\frac{4}{3}\pi \times \frac{1.4}{2} \times \frac{1.4}{2} \times \frac{1.4}{2}\right) = \pi \times \frac{7}{2} \times \frac{7}{2} \times \frac{56}{10}$$
$$n = 150$$

Hence the number of marbles is 150

Question 12:

Radius of sphere = 3 cm

Volume of sphere = $\frac{4}{3} \pi r^3$ = (\frac { 4 }{ 3 } \times 3\times 3\times 3) π cm³ = $36п \, cm^3$

Radius of small sphere = $\frac{0.6}{2}$ cm = 0.3 cm

Volume of small sphere = ($\frac{4}{3}$ \times 0.3\times 0.3\times 0.3)

$$= \left(\frac{4}{3} \times \pi \times \frac{3}{10} \times \frac{3}{10} \times \frac{3}{10}\right) \text{cm}^3$$

$$= \left(\frac{4\pi}{3} \times \frac{3}{10} \times \frac{3}{10} \times \frac{3}{10}\right) \text{cm}^2$$

Let number of small balls be n

$$n \times \left(\frac{4\pi}{3} \times \frac{3}{10} \times \frac{3}{10} \times \frac{3}{10}\right) = \frac{4}{3}\pi \times 3 \times 3 \times 3$$
$$n = 1000$$

Radius of sphere = $\frac{42}{2}$ cm = 21 cm Volume of sphere = $\frac{4}{3}$ πr^3 = (\frac { 4 }{ 3 }\times 21\times 21\times 21) π cm³ Diameter of cylindrical wire = 2.8 cm Radius of cylindrical wire = $\frac{2.8}{2}$ cm = 1.4 cm

MILLIONSTYR Think Learn and Practice Large of cylindrical wire = $\pi r^2 h = (\pi \times 1.4 \times 1.4 \times h) \text{ cm}^3 = (1.96\pi h) \text{ cm}^3$ ume of cylindrical wire = volume of sphere

$$\therefore 1.96\pi h = \frac{4}{3} \times \pi \times 21 \times 21 \times 21$$

$$h = \left(\frac{4}{3} \times \pi \times 21 \times 21 \times 21 \times \frac{1}{1.96} \times \frac{1}{\pi}\right) cm$$

$$h = 6300$$

$$h\left(\frac{6300}{100}\right) m = 63 m$$

Hence length of the wire 63 m.

Question 14:

Diameter of sphere = 6 cm

Radius of sphere = $\frac{6}{2}$ cm = 3 cm

Volume of sphere = $\frac{4}{3} \pi r^3$ = (\frac { 4 }{ 3 } \times 3\times 3\times 3) π cm³ = 36п cm³

Radius of wire = $\frac{2}{2}$ mm = 1 mm = 0.1 cm

Volume of wire = $\pi r^2 I = (\pi \times 0.1 \times 0.1 \times I) \text{ cm}^2 = (0.01 \, \pi I) \text{ cm}^2$

$$36\pi = 0.01 \, \pi \, I$$

$$36\pi = 0.01 \text{ n I}$$

 $l = \frac{36}{0.01} = 3600 \text{ cm}$

Length of wire = $\frac{3600}{100}$ m = 36 m

Question 15:

Diameter of sphere = 18 cm

Radius of copper sphere = $\frac{3600}{100}$ m = 36 m

Volume of sphere =
$$\left(\frac{4}{3} \times \pi \times r^3\right)$$
 cm³
= $\left(\frac{4}{3} \pi \times 9 \times 9 \times 9\right)$ cm³ = 972π cm³

Length of wire = 108 m = 10800 cm

Let the radius of wire be r cm

$$= \pi r^2 I \text{ cm}^3 = (\pi r^2 \times 10800) \text{ cm}^3$$

$$\Rightarrow \pi r^2 \times 10800 = 972\pi$$

$$r^2 = \frac{972\pi}{10800\pi} = 0.09 \text{ cm}^2$$

$$r = \sqrt{0.09} \text{ cm} = 0.3$$

Question 16: The radii of three metallic spheres are 3 cm, 4 cm and 5 cm respectively.

Williams by actice

Sum of their volumes
$$= \frac{4}{3}\pi (3^3 + 4^3 + 5^3) \text{ cm}^3$$

$$= \frac{4}{3}\pi(27 + 64 + 125) = \frac{4}{3}\pi \times 216$$

Let r be the radius of sphere whose volume is equal to the total volume of three spheres.

$$\frac{4}{3}\pi r^3 = \frac{4}{3}\pi \times 216$$

$$\Rightarrow$$
 r³ = 216

: Diameter = 6 x 2 = 12 cm

Exercise 19C

Question 1:

Here h = 42 cm, R = 16 cm, and r = 11 cm

Capacity =
$$\frac{1}{3}\pi h (R^2 + r^2 + Rr) cm^3$$

= $\frac{1}{3} \times \frac{22}{7} \times 42 [(16)^2 + (11)^2 + 16 \times 11] cm^3$
= $(44 \times 553) cm^3 = 24332 cm^3$

Question 2:

Here R = 33 cm, r = 27 cm and I = 10 cm

: h =
$$\sqrt{^2 - (R^2 - r^2)}$$
 cm = $\sqrt{(10)^2 - (33 - 27)^2}$ cm
= $\sqrt{(10)^2 - (6)^2}$ = $\sqrt{64}$ cm = 8 cm

Capacity of the frustum

=
$$\frac{1}{3}$$
 th $(R^2 + r^2 + Rr)$ cm³
= $\frac{1}{3} \times \frac{22}{7} \times 8[(33)^2 + (27)^2 + 33 \times 27]$ cm³
= (8.38×2709) cm³ = 22701.4 cm³

Total surface area

$$= \pi [R^2 + r^2 + I(R + r)]$$
cm²

$$=\frac{22}{7}[(33)^2+(27)^2+10\times(33+27)]$$
cm²

$$=\left(\frac{22}{7}\times2418\right)$$
cm² = 7599.43cm²

Question 3:

Height = 15 cm, R = $\frac{56}{2}$ cm = 28 cm and r = $\frac{42}{2}$ cm = 21 cm Capacity of the bucket =

$$\frac{1}{3}\pi h (R^2 + r^2 + Rr) cm^3$$

$$= \frac{1}{3} \times \frac{22}{7} \times 15 \left[(28)^2 + (21)^2 + 28 \times 21 \right] \text{cm}^3$$

$$= (15.71 \times 1831) \text{ cm}^3$$

$$= (28482.23) \text{ cm}^3$$

Quantity of water in bucket = 28.49 litres

Question 4:

R = 20 cm, r = 8 cm and h = 16 cm

$$I = \sqrt{h^2 + (R - r)^2} = \sqrt{(16)^2 + (20 - 8)^2}$$

$$= \sqrt{256 + 144} \text{cm} = 20 \text{ cm}$$

Total surface area of container = $\pi I(R + r) + \pi r^2$

$$= [3.14 \times 20 \times (20 + 8) + 3.14 \times 8 \times 8] \text{ cm}^2$$

$$= [3.14 \times 20 \times (20 + 8) + 3.14 \times 8 \times 8] \text{cm}^2$$

$$= (3.14 \times 20 \times 28 + 3.14 \times 8 \times 8) \text{ cm}^2$$

$$= (1758.4 + 200.96) cm^2$$

$$= 1959.36 \text{ cm}^2$$

Williams States by actice Cost of metal sheet used = Rs. $(1959.36 \times \frac{15}{100})$ = Rs. 293.90

Question 5:

R = 15 cm, r = 5 cm and h = 24 cm

$$I = \sqrt{h^2 + (R - r)^2} = \sqrt{(24)^2 + (10)^2} \text{ cm}$$
$$= \sqrt{576 + 100} \text{ cm} = \sqrt{676} \text{ cm} = 26 \text{ cm}$$

(i) Volume of bucket =

$$= \frac{1}{3} \times 3.14 \times 24 \times \left[(15)^2 + (5)^2 + 15 \times 5 \right]$$

$$= (25.12 \times 325) \text{ cm}^3$$

$$= 8164 \text{ cm}^3 = 8.164 \text{ litres}$$

Cost of milk = Rs. (8.164×20) = Rs. 163.28 (ii) Total surface area of the bucket

$$= \pi I (R + r) + \pi r^2$$

=
$$(3.14 \times 26 \times 20 \times 3.14 \times 5 \times 5)$$
 cm²

$$= 1711.3 \text{ cm}^2$$

Cost of sheet =
$$(1711.3 \times \frac{10}{100})$$
 = Rs. 171.13

Question 6:

R = 10cm, r = 3 m and h = 24 mLet I be the slant height of the frustum, then Million State & Practice
William Rearing Practice

MILLIONSTOR Relation
$$h^2 + (R - r)^2$$

$$= \sqrt{(24)^2 + (10 - 3)^2}$$

$$= \sqrt{(24)^2 + (7)^2}$$

$$= \sqrt{576 + 49}$$

$$= \sqrt{625} \text{ m} = 25 \text{ m}$$

Let I1 be the slant height of conical part

$$r = 3 \text{ m}$$
and
$$h = 4 \text{ m}$$

$$\therefore l_1 = \sqrt{3^2 + 4^2} \text{ m}$$

$$= \sqrt{25} \text{ m} = 5 \text{ m}$$

Quantity of canvas = (Lateral surface area of the frustum) + (lateral surface area of the cone)

$$= [\pi l (R + r) + \pi r l_1] m^2$$

$$= \pi [25 \times (10 + 3) + (3 \times 5)] m^2$$

$$= \frac{22}{7} \times [(25 \times 13) + (3 \times 5)] m^2$$

$$= 1068.57 m^2$$

Question 7:

$$=\sqrt{8^2+(13-7)^2}$$

$$=\sqrt{64+36}$$

$$=\sqrt{100}=10\,\text{m}$$

Radius of the cone = EB = 7 mSlant height l_2 of cone = 12 m Surface area of canvas required

=
$$\pi (R + r)I_1 + \pi rI_2$$

= $\pi [(13 + 7) \times 10 + 7 \times 12]$
= $\frac{22}{7} \times [200 + 84] = \frac{22}{7} \times 284 \text{ m}^2$
= 892.6 m²

Question 8:

In the given figure, we have \angle COD = 30°, OC = 10 cm, OE = 20 cm Let CD = r cm and EB = R cm

$$\Rightarrow \frac{\text{CD}}{10} = \frac{1}{\sqrt{3}}$$

$$\Rightarrow CD = \left(10 \times \frac{1}{\sqrt{3}}\right) cm$$
$$= \frac{10}{\sqrt{3}} cm$$

$$\frac{EB}{OE} = \tan 30^{\circ} = \frac{EB}{20} = \frac{1}{\sqrt{3}}$$

$$\Rightarrow$$
 EB = $\left(20 \times \frac{1}{\sqrt{3}}\right)$ cm \Rightarrow R = $\frac{20}{\sqrt{3}}$ cm

Also, CE = 10 cm

Thus, ABDF is the frustum of a cone in which

$$R = \frac{20}{\sqrt{3}}$$
 cm, $r = \frac{10}{\sqrt{3}}$ cm and $h = 10$ cm

Volume of frustum=
$$\frac{1}{3}\pi h \left(R^2 + r^2 + Rr\right)$$

$$= \frac{1}{3} \times \pi \times 10 \times \left(\frac{400}{3} + \frac{100}{3} + \frac{200}{3}\right)$$

$$= \left(\frac{\pi \times 10}{3} \times \frac{700}{3}\right) \text{cm}^3 = \left(\frac{7000\pi}{9}\right) \text{cm}^3$$
Volume of wire of radius r and length I

$$= \pi r^2 |= \pi \left[\frac{1}{32}\right]^2 |$$
Volume of wire = Volume of frustum

Volume of wire of radius r and length I

$$= \pi r^2 I = \pi \left[\frac{1}{32} \right]^2 I$$

Volume of wire = Volume of frustum

$$\pi \left(\frac{1}{32}\right)^{2} I = \frac{7000\pi}{9}$$

$$I = \frac{7000 \times 32 \times 32}{9} \text{ cm}$$

$$= \frac{70 \times 32 \times 32}{9} \text{ m}$$

$$= 7964.44 \text{ m}$$

Length of the wire is 7964.44 m

Question 9:

Radii of upper and lower end of frustum are $r=8\ cm,\ R=32\ cm$ Height of frustum $h=18\ cm$

Volume of frustum=
$$\frac{1}{3}\pi h \left[R^2 + r^2 + R \times r\right]$$

= $\frac{1}{3} \times \frac{22}{7} \times 18 \times \left[32^2 + 8^2 + 32 \times 8\right] \text{cm}^3$
= $\frac{22 \times 6}{7} \left[1024 + 64 + 256\right] \text{cm}^3$
= $\frac{132}{7} \times 1344 \text{ cm}^3 = 25344 \text{ cm}^3 = 25.344 \text{ litres}$

Cost of milk at Rs 20 per litre = Rs. $25.344 \times 20 = Rs. 506.88$

Million Stars & Practice
Williams Realth & Practice