Let p denote the probability of having defective item, so $$p = 6\% = \frac{6}{100} = \frac{3}{50}$$ So, $$q = 1 - p$$ $$= 1 - \frac{3}{50}$$ $$= \frac{47}{50}$$ [Since $$p + q = 1$$] Let X denote the number of defective items in a sample of 8 items. Then, the proof getting r defective bulks is $$P(X = r) = {^{n}C_{r}p^{r}q^{n-r}}$$ $$P(X = r) = {}^{8}C_{r} \left(\frac{3}{50}\right)^{r} \left(\frac{47}{50}\right)^{8-r}$$ [Using equation (1)] Therefore, probability of getting not more then one defective item $$= P\left(X=0\right) + P\left(X=1\right)$$ $$= {}^{8}C_{0} \left(\frac{3}{50}\right)^{0} \left(\frac{47}{50}\right)^{8-0} + {}^{8}C_{1} \left(\frac{3}{50}\right)^{1} \left(\frac{47}{50}\right)^{8-1}$$ $$= 1.1 \cdot \left(\frac{47}{50}\right)^8 + 8 \cdot \frac{3}{50} \cdot \left(\frac{47}{50}\right)^7$$ $$= \left(\frac{47}{50}\right)^7 \left(\frac{47}{50} + \frac{24}{50}\right)$$ $$= \left(\frac{71}{50}\right) \left(\frac{47}{50}\right)^7$$ $$= (1.42) \times (0.94)^7$$ The required probability is, $$(1.42) \times (0.94)^7$$ [Using **(1)**] Remove Watermark Probability of getting head on one throw of coin = $\frac{1}{2}$ So, $$p = \frac{1}{2}$$ $$q = 1 - \frac{1}{2}$$ $$q = \frac{1}{2}$$ [Since $p + q = 1$] The coin is tossed 5 times. Let X denote the number of getting head as 5 tosses of coins. So probability of getting r heads in n tosses of coin is given by $$P(X = r) = {^nC_r}p^rq^{n-r}$$ $$P(X = r) = {^5C_r}\left(\frac{1}{2}\right)^r\left(\frac{1}{2}\right)^{5-r} \qquad ---(1)$$ Probability of getting at least 3 heads $$= P(X = 3) + P(X = 4) + P(X = 5)$$ $$= {}^{5}C_{3} \left(\frac{1}{2}\right)^{3} \cdot \left(\frac{1}{2}\right)^{5-3} + {}^{5}C_{4} \left(\frac{1}{2}\right)^{4} \left(\frac{1}{2}\right)^{5-4} + {}^{5}C_{5} \left(\frac{1}{2}\right)^{5} \left(\frac{1}{2}\right)^{0}$$ $$= {}^{5}C_{3} \left(\frac{1}{2}\right)^{3} \left(\frac{1}{2}\right)^{2} + {}^{5}C_{4} \left(\frac{1}{2}\right)^{4} \left(\frac{1}{2}\right) + {}^{5}C_{5} \left(\frac{1}{2}\right)^{5} \cdot 1$$ $$= {}^{5 \cdot 4} \cdot \left(\frac{1}{2}\right)^{5} + 5 \left(\frac{1}{2}\right)^{5} + 1 \cdot \left(\frac{1}{2}\right)^{5}$$ $$= \left(\frac{1}{2}\right)^{5} \left[10 + 5 + 1\right]$$ $$= 16 \cdot \frac{1}{32}$$ $$= \frac{1}{2}$$ The required probability is = $\frac{1}{2}$ $$p = \frac{1}{2}$$ $$q = 1 - \frac{1}{2}$$ $$q = \frac{1}{2}$$ [Since $p + q = 1$] Let X denote the number tail obtained on the toss of coin 5 times. So probability of getting r tails in n tosses of coin is given by $$P(X = r) = {}^{n}C_{r}p^{r}q^{n-r}$$ $$= {}^{5}C_{r}\left(\frac{1}{2}\right)^{r}\left(\frac{1}{2}\right)^{5-r}$$ ---(1) Probability of getting tail an odd number of times $$= P(X = 1) + P(X = 3) + P(X = 5)$$ $$= {}^{5}C_{3} \left(\frac{1}{2}\right)^{3} \left(\frac{1}{2}\right)^{5-1} + {}^{5}C_{3} \left(\frac{1}{2}\right)^{3} \left(\frac{1}{2}\right)^{5-3} + {}^{5}C_{5} \left(\frac{1}{2}\right)^{5} \left(\frac{1}{2}\right)^{0}$$ $$= 5 \cdot \left(\frac{1}{2}\right)^{5} + \frac{5 \cdot 4}{2} \cdot \left(\frac{1}{2}\right)^{5} + 1 \cdot \left(\frac{1}{2}\right)^{5}$$ $$= \left(\frac{1}{2}\right)^{5} \left[5 + 10 + 1\right]$$ $$= 16 \cdot \left(\frac{1}{2}\right)^{5}$$ $$= 16 \cdot \frac{1}{32}$$ $$= \frac{1}{2}$$ The required probability is $=\frac{1}{2}$ Let *p* be the probability of getting a sum of 9 and it considered as success. Sum of a 9 on a pair of dice $$= \{(3,6), (4,5), (5,4), (6,3)\}$$ So, $$p = \frac{4}{36}$$ $$p = \frac{1}{9}$$ $$q = 1 - \frac{1}{9}$$ $$q = \frac{8}{9}$$ Since $$p + q = 1$$ Let X denote the number of success in throw of a pair of dice 6 times. So probability of qetting r success out of n is given by $$P\left(X=r\right)={}^{n}C_{r}p^{r}q^{n-r}$$ Probability of getting at least 5 success $$= P(X = 5) + P(X = 6)$$ $$= {}^{6}C_{5} \left(\frac{1}{9}\right)^{5} \left(\frac{8}{9}\right)^{6-5} + {}^{6}C_{6} \left(\frac{1}{9}\right)^{6} \left(\frac{8}{9}\right)^{6-6}$$ $$= 6\left(\frac{1}{9}\right)^{5} \left(\frac{8}{9}\right)^{1} + 1 \cdot \left(\frac{1}{9}\right)^{6} \left(\frac{8}{9}\right)^{0}$$ $$= \left(\frac{1}{9}\right)^{5} \left[\frac{48}{9} + \frac{1}{9}\right]$$ $$= \frac{49}{9} \times \left(\frac{1}{9}\right)^{5}$$ $$= \frac{49}{9} 6$$ Using (1) Required probability = $$\frac{49}{96}$$ $p = \frac{1}{2}$ $q = 1 - \frac{1}{2}$ $q = \frac{1}{2}$ [Since p + q = 1] Let X denote the number of heads on tossing the ∞ in 6 times. Probability of getting r in tossing the ∞ in n times is given by $$P\left(X=r\right) = {^{n}C_{r}}p^{r}q^{n-r} \qquad \qquad ---\left(1\right)$$ Probability of getting at least three heads $$= P(X = 3) + P(X = 4) + P(X = 5) + P(X = 6)$$ $$= 1 - [P(X = 0) + P(X = 1) + P(X = 2)]$$ $$= 1 - \left[{}^{6}C_{0} \left(\frac{1}{2}\right)^{0} \left(\frac{1}{2}\right)^{6-0} + {}^{6}C_{1} \left(\frac{1}{2}\right)^{1} \left(\frac{1}{2}\right)^{6-1} + {}^{6}C_{2} \left(\frac{1}{2}\right)^{2} \left(\frac{1}{2}\right)^{6-2} \right]$$ $$= 1 - \left[1 \cdot \left(\frac{1}{2}\right)^{6} + 6 \left(\frac{1}{2}\right)^{6} + \frac{6 \cdot 5}{2} \cdot \left(\frac{1}{2}\right)^{6} \right]$$ $$= 1 - \left[\left(\frac{1}{2}\right)^{6} \left(1 + 6 + 15\right) \right]$$ $$= 1 - \left[\frac{22}{64} \right]$$ $$= \frac{64 - 22}{64}$$ $$= \frac{42}{64}$$ $$= 21$$ Required probability = $\frac{21}{32}$ $p = \frac{1}{6}$ $q = 1 - \frac{1}{6}$ $q = \frac{5}{6}$ [Since p + q = 1] Let X denote the variable showing the number of turning 4 up in 2 tosses of die. Probability of getting 4, r times in n tosses of a die is given by $$P(X = r) = {}^{n}C_{r}p^{r}q^{n-r}$$ $$= {}^{2}C_{r}\left(\frac{1}{6}\right)^{2}\left(\frac{5}{6}\right)^{2-r}$$ ---(1) Probability of getting 4 at least once in tow tosses of a fair die $$= P(X = 1) + P(X = 2)$$ $$= 1 - P(X = 0)$$ $$= 1 - \left[{}^{2}C_{0}\left(\frac{1}{6}\right)^{0}\left(\frac{5}{6}\right)^{2-0}\right]$$ $$= 1 - \left[1 \cdot 1 \cdot \left(\frac{5}{6}\right)^{2}\right]$$ $$= 1 - \left[\frac{25}{36}\right]$$ $$= \frac{36 - 25}{36}$$ $$= \frac{11}{36}$$ [Using **(1)**] Required probability = $\frac{11}{36}$ $$p = \frac{1}{2}$$ $$q = 1 - \frac{1}{2}$$ $$q = \frac{1}{2}$$ [Since $p + q = 1$] Let X denote the variable representing number of heads on 5 tosses of a fair coin. Probability of getting r an n tosses of a fair coin, so $$P(X = r) = {^nC_r}p^rq^{n-r}$$ $$P(X = r) = {^5C_r}\left(\frac{1}{2}\right)^r\left(\frac{1}{2}\right)^{5-r}$$ $$---(1)$$ Probability of getting head on an even number of tosses of coin $$= P(X = 0) + P(X = 2) + P(X = 4)$$ $$= {}^{5}C_{0} \left(\frac{1}{2}\right)^{0} \left(\frac{1}{2}\right)^{5-0} + {}^{5}C_{2} \left(\frac{1}{2}\right)^{2} \left(\frac{1}{2}\right)^{5-2} + {}^{5}C_{4} \left(\frac{1}{2}\right)^{4} \left(\frac{1}{2}\right)^{5-4}$$ $$= 1 \cdot 1 \cdot \left(\frac{1}{2}\right)^{5} + \frac{5 \cdot 4}{2} \cdot \left(\frac{1}{2}\right)^{5} + 5 \cdot \left(\frac{1}{2}\right)^{5}$$ $$= \left(\frac{1}{2}\right)^{5} \left[1 + 10 + 5\right]$$ $$= 16 \times \frac{1}{32}$$ $$= \frac{1}{2}$$ Required probability = $\frac{1}{2}$ $$p = \frac{1}{4}$$ $$q = 1 - p$$ $$= 1 - \frac{1}{4}$$ $$q = \frac{3}{4}$$ [Since $p + q = 1$] Let X denote the variable representing the number of times hittintg the target out of 7 fires. Probability of hitting the target r times out of n fires is given by, $$P\left(X=r\right) = {^{n}C_{r}p^{r}q^{n-r}}$$ $$= {^{7}C_{r}} \left(\frac{1}{4}\right)^{r} \left(\frac{3}{4}\right)^{7-r}$$ $$= ---\left(1\right)^{r}$$ Probability of hitting the target at least twice $$= P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) + P(X = 6) + P(X = 7)$$ $$= 1 - \left[P(X = 0) + P(X = 1)\right]$$ $$= 1 - \left[{}^{7}C_{0}\left(\frac{1}{4}\right)^{0}\left(\frac{3}{4}\right)^{7-0} + {}^{7}C_{1}\left(\frac{1}{4}\right)^{1}\left(\frac{3}{4}\right)^{7-1}\right]$$ $$= 1 - \left[1 \cdot 1 \cdot \left(\frac{3}{4}\right)^{7} + 7 \cdot \frac{1}{4} \cdot \left(\frac{3}{4}\right)^{6}\right]$$ $$= 1 - \left(\frac{3}{4}\right)^{6}\left(\frac{3}{4} + \frac{7}{4}\right)$$ $$= 1 - \left(\frac{3}{4}\right)^{6}\left(\frac{10}{4}\right)$$ $$= 1 - \frac{7290}{16384}$$ $$= \frac{9194}{16384}$$ $$= \frac{4547}{8192}$$ ### **Binomial Distribution Ex 33.1 Q9** Let the probability of one telephone number out of 15 is busy between 2 PM and 3 PM be 'p'. then P = 1/15; probability that number is not busy, q = 1-p Q = 14/16. Binomial distribution is $$\left(\frac{14}{15} + \frac{1}{15}\right)^6$$ Since 6 numbers are called we find the probability for none of the numbers are busy is P(0) One number is busy P(1); Two numbers are busy is P(2) Three numbers are busy is P(3); Four numbers are busy is P(4); Five numbers are busy is P(5); Six numbers are busy is P(6). $$P(0) = {}^{6}C_{0} \left(\frac{14}{15}\right)^{6}$$ $$P(1) = {}^{6}C_{1} \left(\frac{14}{15}\right)^{5} \left(\frac{1}{15}\right)^{1}$$ $$P(2) = {}^{6}C_{2} \left(\frac{14}{15}\right)^{4} \left(\frac{1}{15}\right)^{2}$$ $$P(3) = {}^{6}C_{3} \left(\frac{14}{15}\right)^{3} \left(\frac{1}{15}\right)^{3}$$ $$P(4) = {}^{6}C_{4} \left(\frac{14}{15}\right)^{2} \left(\frac{1}{15}\right)^{4}$$ $$P(5) = {}^{6}C_{5} \left(\frac{14}{15}\right)^{1} \left(\frac{1}{15}\right)^{5}$$ $$P(6) = {}^{6}C_{6} \left(\frac{14}{15}\right)^{0} \left(\frac{1}{15}\right)^{6}$$ Probability that at least 3 of the numbers will be busy $$P(3) + P(4) + P(5) + P(6) = 0.05$$ **Binomial Distribution Ex 33.1 Q10** ### Million Stars & Practice Million Stars & Practice Williams and Stars & Practice p denote the probability of success p = Probability of getting 5 or 6 in a throw of die. $$=\frac{2}{6}$$ $$p = \frac{1}{3}$$ $$q=1-\frac{1}{3}$$ [Since $$p + q = 1$$] $$q=\frac{2}{3}$$ Let X denote the number of success in six throws of a dic. Probability of getting r success in six throws of an unbiased dic is given by $$P\left(X=r\right) = {^{n}C_{r}p^{r}q^{n-r}}$$ $$= {^{6}C_{r}\left(\frac{1}{3}\right)^{r}\left(\frac{2}{3}\right)^{6-r}}$$ $$P(X \ge 4)$$ = $P(X = 4) + P(X = 5) + P(X = 6)$ $$\begin{split} &= {}^{6}C_{4} \left(\frac{1}{3}\right)^{4}
\left(\frac{2}{3}\right)^{6-4} + {}^{6}C_{5} \left(\frac{1}{3}\right)^{5} \left(\frac{2}{3}\right)^{6-5} + {}^{6}C_{6} \left(\frac{1}{3}\right)^{6} \left(\frac{2}{3}\right)^{6-6} \\ &= \frac{6.5}{2} \left(\frac{1}{3}\right)^{4} \left(\frac{2}{3}\right)^{2} + 6 \left(\frac{1}{3}\right)^{5} \left(\frac{2}{3}\right) + 1 \cdot \left(\frac{1}{3}\right)^{6} \cdot 1 \\ &= 15 \cdot \frac{1}{81} \cdot \frac{4}{9} + 6 \cdot \frac{1}{243} \cdot \frac{2}{3} + \frac{1}{729} \\ &= \frac{60}{729} + \frac{12}{729} + \frac{1}{729} \end{split}$$ $$= \frac{729}{729} + \frac{729}{729}$$ $$= \frac{73}{729}$$ Required probability = $$\frac{73}{729}$$ $$p = \frac{1}{2}$$ $$q = 1 - \frac{1}{2}$$ [Since $p + q = 1$] $$q = \frac{1}{2}$$ Let X denote the variable representing the number of getting heads on throw of 8 coins. Probability of getting r heads in a throw of n coins is given by $$P(X = r) = {}^{n}C_{r}p^{r}q^{n-r}$$ $$= {}^{8}C_{r}\left(\frac{1}{2}\right)^{r}\left(\frac{1}{2}\right)^{8-r}$$ ---(1) Probability of getting at least six heads $$= P(X = 6) + P(X = 7) + P(X = 8)$$ $$= {}^{8}C_{6} \left(\frac{1}{2}\right)^{8} \left(\frac{1}{2}\right)^{8-6} + {}^{8}C_{7} \left(\frac{1}{2}\right)^{7} \left(\frac{1}{2}\right)^{8-7} + {}^{8}C_{8} \left(\frac{1}{2}\right)^{8} \left(\frac{1}{2}\right)^{8-8}$$ $$= \frac{8 \cdot 7}{2} \left(\frac{1}{2}\right)^{8} + 8 \left(\frac{1}{2}\right)^{8} + 1 \cdot \left(\frac{1}{2}\right)^{8} \cdot 1$$ $$= \left(\frac{1}{2}\right)^{8} \left[28 + 8 + 1\right]$$ $$= \frac{1}{256} (37)$$ $$= \frac{37}{256}$$ ### **Binomial Distribution Ex 33.1 Q12** Let p denote the probability of getting one spade out of a deck of 52 cards, so $$p = \frac{13}{52}$$ $$p = \frac{1}{4}$$ $$q=1-\frac{1}{4}$$ [Since p + q = 1] $$q = \frac{1}{4}$$ Let ${\it X}$ denote the radom variable of number of spades out of 5 cards. Probability of getting r spades out of n cards is given by $$P\left(X=r\right) = {^{n}C_{r}}p^{r}q^{n-r}$$ $$= {^{5}C_{r}}\left(\frac{1}{4}\right)^{r}\left(\frac{3}{4}\right)^{5-r}$$ $$= --- (1)$$ (i) Probability of getting all five spades $$= P(X = 5)$$ $$= {}^{5}C_{5}\left(\frac{1}{4}\right)^{5}\left(\frac{3}{4}\right)^{5-5}$$ $$= \frac{1}{1024}$$ Probability of getting 5 spades = $\frac{1}{1024}$ (ii) Probability of getting only 3 spades $$= P(X = 3)$$ $$= {}^{5}C_{3}\left(\frac{1}{4}\right)^{3}\left(\frac{3}{4}\right)^{5-3}$$ $$= \frac{5.4}{2}\left(\frac{1}{64}\right)\left(\frac{9}{16}\right)$$ $$= \frac{45}{512}$$ Probability of getting 3 spades = $\frac{45}{512}$ Probability that none is spade $$= P (X = 0)$$ $$= {}^{5}C_{0} \left(\frac{1}{4}\right)^{0} \left(\frac{3}{4}\right)^{5-0}$$ $$= \frac{243}{1024}$$ Probability of getting non spade = $\frac{243}{1024}$ ### **Binomial Distribution Ex 33.1 Q13** Let p be the probability of getting 1 white ball out of 7 red, 5 white and 8 black balls. So $$p = \frac{5}{20}$$ $$p = \frac{1}{4}$$ $$q = 1 - \frac{1}{4}$$ $$q = \frac{3}{4}$$ [Since $p + q = 1$] Let X denote the random variable of number of selecting white ball with replacement out of 4 balls. Probability of getting r white balls out of n balls is given by $$P(X = r) = {}^{n}C_{r}p^{r}q^{n-r}$$ $$= {}^{4}C_{r}\left(\frac{1}{4}\right)^{r}\left(\frac{3}{4}\right)^{4-r}$$ ---(1) (i) Probability of getting none white ball Simily of getting from writte ball $$= P\left(X = 0\right)$$ $$= {}^{4}C_{0}\left(\frac{1}{4}\right)^{0}\left(\frac{3}{4}\right)^{4-0}$$ $$= \left(\frac{3}{4}\right)^{4}$$ $$= \frac{81}{256}$$ [Using (1)] Probability of getting none white ball = $\frac{81}{256}$ (ii) Probability of getting all white balls $$= P(X = 4)$$ $$= {}^{4}C_{4}\left(\frac{1}{4}\right)^{4}\left(\frac{3}{4}\right)^{4-0}$$ $$= \left(\frac{1}{4}\right)^{4}$$ $$= \frac{1}{256}$$ Probability of getting all white balls = $\frac{1}{256}$ (iii) Probability of getting any two are white $$= P (X = 2)$$ $$= {}^{4}C_{2} \left(\frac{1}{4}\right)^{2} \left(\frac{3}{4}\right)^{4-2}$$ $$= \frac{4.3}{2} \cdot \frac{1}{16} \cdot \frac{9}{16}$$ $$= \frac{27}{128}$$ Probability of getting any two are white balls = $\frac{27}{128}$ https://millionstar.godaddysites.com/ Let p denote the probability of getting a ticket bearing number divisible by 10, So $$p = \frac{10}{100}$$ Since there are 10,20,30,40,50,60,70,80, 90,100 which are divisible by 10 $$p = \frac{1}{10}$$ $$q = 1 - \frac{1}{10}$$ $$q = \frac{9}{10}$$ [Since $$p+q=1$$] Let X denote the variable representing the number of tickets bearing a number divisible by 10 out of 5 tickets. Probability of getting r tickets bearing a number divisible by 10 out of n tickets is given by $$P\left(X=r\right) = {^{n}C_{r}p^{r}q^{n-r}}$$ $$= {^{5}C_{r}}\left(\frac{1}{10}\right)^{r}\left(\frac{9}{10}\right)^{5-r}$$ Probability of getting all the tickets bearing a number divisible by 10 $$= {}^{5}C_{5} \left(\frac{1}{10}\right)^{5} \left(\frac{9}{10}\right)^{5-5}$$ $$=1.\left(\frac{1}{10}\right)^5\left(\frac{9}{10}\right)^0$$ $$=\left(\frac{1}{10}\right)^5$$ Required probability = $\left(\frac{1}{10}\right)^5$ $$q = 1 - \frac{1}{10}$$ [Since $$p + q = 1$$] $$q = \frac{9}{10}$$ Let X denote the variable presenting the number of balls marked with 0 out of four balls drawn. Probability of drawing r balls out of n balls that are marked 0 is given by $$P(X = r) = {}^{n}C_{r}p^{r}q^{n-r}$$ $$= {}^{4}C_{r}\left(\frac{1}{10}\right)^{r}\left(\frac{9}{10}\right)^{4-r}$$ ---(1) Probability of getting none balls marked with 0 $$= P\left(X = 0\right)$$ $$= {}^{4}C_{0} \left(\frac{1}{10}\right)^{0} \left(\frac{9}{10}\right)^{4-0}$$ $$= 1.1. \left(\frac{9}{10}\right)^4$$ $$= \left(\frac{9}{10}\right)^4$$ $$p = 5\%$$ [Since 5% are defective items] $$= \frac{5}{100}$$ $$p = \frac{1}{20}$$ $$q = 1 - \frac{1}{20}$$ [Since $p + q = 1$] $$q = \frac{19}{20}$$ Let X denote the random variable representing the number of defective items out of 10 items. Probability of getting r defective items out of n items selected is given by, $$P(X = r) = {}^{n}C_{r}p^{r}q^{n-r}$$ $$= {}^{10}C_{r}\left(\frac{1}{20}\right)^{r}\left(\frac{19}{20}\right)^{10-r}$$ ---(1) Probability of getting not more than one defective items $$\begin{split} &= P\left(X=0\right) + P\left(X=1\right) \\ &= {}^{10}C_0 \left(\frac{1}{20}\right)^0 \left(\frac{19}{20}\right)^{10-0} + {}^{10}C_1 \left(\frac{1}{20}\right)^1 \left(\frac{19}{20}\right)^{10-1} \\ &= 1.1. \left(\frac{19}{20}\right)^{10} + 10. \frac{1}{20} \left(\frac{19}{20}\right)^9 \\ &= \left(\frac{19}{20}\right)^9 \left[\frac{19}{20} + \frac{10}{20}\right] \\ &= \frac{29}{20} \left(\frac{19}{20}\right)^9 \end{split}$$ ### **Binomial Distribution Ex 33.1 Q17** Let p denote the probability that one bulb produced will fuse after 150 days, so $$p = 0.05$$ $$= \frac{5}{100}$$ [It is given] $$q = 1 - \frac{1}{20}$$ $$q = \frac{19}{20}$$ [Since $$p + q = 1$$] Let X denote the number of fuse bulb out of 5 bulbs. Probability that r bulbs out of n will fuse in 150 days is given by $$P(X = r) = {^{n}C_{r}p^{r}q^{n-r}}$$ $$= {^{5}C_{r}} \left(\frac{1}{20}\right)^{r} \left(\frac{19}{20}\right)^{5-r}$$ (i) Probability that none is fuse = P(X = 0) $$= {}^{5}C_{0} \left(\frac{1}{20}\right)^{0} \left(\frac{19}{20}\right)^{5-0}$$ $$= \left(\frac{19}{20}\right)^{5}$$ Probability that none will fuse = $\left(\frac{19}{20}\right)^5$ Probability that not more than 1 will fuse $$= P(X = 0) + P(X = 1)$$ $$= \left(\frac{19}{20}\right)^5 + {}^5C_1\left(\frac{1}{20}\right)^1 \left(\frac{19}{20}\right)^{5-1}$$ $$= \left(\frac{19}{20}\right)^4 \left[\frac{19}{20} + \frac{5}{20}\right]$$ $$= \left(\frac{24}{20}\right) \left(\frac{19}{20}\right)^4$$ Probability not more than one will fuse $=\left(\frac{6}{5}\right)\left(\frac{19}{20}\right)^4$ (iii) Probability that more than one will fuse $$= P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5)$$ $$= 1 - [P(X = 0) + P(X = 1)]$$ $$= 1 - \left[\frac{6}{5}\left(\frac{19}{20}\right)^4\right]$$ Probability that more than one will fuse = $1 - \left[\frac{6}{5} \left(\frac{19}{20} \right)^4 \right]$ (iv) Probability that that at least one will fuse $$= P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5)$$ $$= 1 - P(X = 0)$$ $$= 1 - \left[{}^{5}C_{0} \left(\frac{1}{20} \right)^{0} \left(\frac{19}{20} \right)^{5-0} \right]$$ $$= 1 - \left[\left(\frac{19}{20} \right)^{5} \right]$$ Probability that that at least one will fuse = $1 - \left(\frac{19}{20}\right)^5$ It is given that 90% of the people are right-handed. $$\therefore p = P(\text{right-handed}) = \frac{9}{10}$$ $$q = P(\text{left-handed}) = 1 - \frac{9}{10} = \frac{1}{10}$$ Using binomial distribution, the probability that more than 6 people are right-handed is given by, $$\sum_{r=7}^{10} {}^{10}C_r p^r q^{n-r} = \sum_{r=7}^{10} {}^{10}C_r \left(\frac{9}{10}\right)^r \left(\frac{1}{10}\right)^{10-r}$$ Therefore, the probability that at most 6 people are right-handed = 1 - P (more than 6 are right-handed) $$=1-\sum_{r=2}^{10} {}^{10}C_r (0.9)^r (0.1)^{10-r}$$ $p = \frac{5}{16}$ $$q = 1 - \frac{5}{16}$$ Since $$p + q = 1$$ $$q = \frac{11}{16}$$ Let X denote the number of red balls drawn out of four balls. Probability of getting r red balls out of n drawn balls is given by $$\begin{split} P\left(X=r\right) &= \ ^{n}C_{r}p^{r}q^{n-r} \\ &= \ ^{4}C_{r}\left(\frac{5}{16}\right)^{r}\left(\frac{11}{16}\right)^{4-r} \end{split}$$ Probability of getting one red ball $$= P(X = 1)$$ $$= {}^{4}C_{1} \left(\frac{5}{16}\right)^{1} \left(\frac{11}{16}\right)^{4-1}$$ $$= 4 \cdot \left(\frac{5}{16}\right) \left(\frac{11}{16}\right)^{3}$$ $$= \left(\frac{5}{4}\right) \left(\frac{11}{16}\right)^{3}$$ Required probability = $\left(\frac{5}{4}\right)\left(\frac{11}{16}\right)^3$ | | Titipo://Titimorrotar: | |---|---| | X | P(X) | | 0 | $\frac{7}{9} \times \frac{6}{8} = \frac{21}{36}$ | | 1 | $\frac{7}{9} \times \frac{2}{8} \times 2 = \frac{14}{36}$ | | 2 | $\frac{2}{9} \times \frac{1}{8} = \frac{1}{36}$ | ### **Binomial Distribution Ex 33.1 Q21** | X | P (X) | |---
--| | 0 | ${}^{3}C_{0}\left(\frac{3}{7}\right)^{0}\left(\frac{4}{7}\right)^{3-0} = \left(\frac{4}{7}\right)^{3} = \frac{64}{343}$ | | 1 | ${}^{3}C_{1}\left(\frac{3}{7}\right)^{1}\left(\frac{4}{7}\right)^{3-1} = 3\cdot\left(\frac{3}{7}\right)\left(\frac{4}{7}\right)^{2} = \frac{144}{343}$ | | 2 | ${}^{3}C_{2}\left(\frac{3}{7}\right)^{2}\left(\frac{4}{7}\right)^{3-2} = 3\cdot\left(\frac{3}{7}\right)^{2}\left(\frac{4}{7}\right) = \frac{108}{343}$ | | 3 | ${}^{3}C_{3}\left(\frac{3}{7}\right)^{3}\left(\frac{4}{7}\right)^{3-0} = \left(\frac{3}{7}\right)^{3} = \frac{27}{343}$ | ### **Binomial Distribution Ex 33.1 Q22** Let p be the probability of getting doublet is a throw of a pair of dice, so $$p = \frac{6}{36}$$ [Since $$(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)$$ are doublets] $$p = \frac{1}{6}$$ $$q=1-\frac{1}{6}$$ Since $$p + q = 1$$ $$=\frac{5}{6}$$ Let X denote the number of getting doublets out of 4 times. So probability distribution is given by ### **Binomial Distribution Ex 33.1 Q23** | X | P (X) | |---|---| | 0 | ${}^{3}C_{0}\left(\frac{1}{6}\right)^{0}\left(\frac{5}{6}\right)^{3-0} = \left(\frac{5}{6}\right)^{3} = \frac{125}{216}$ | | 1 | ${}^{3}C_{1}\left(\frac{1}{6}\right)^{1}\left(\frac{5}{6}\right)^{3-1} = 3\left(\frac{1}{6}\right)\left(\frac{1}{6}\right)^{2} = \frac{25}{72}$ | | 2 | ${}^{3}C_{2}\left(\frac{1}{6}\right)^{2}\left(\frac{5}{6}\right)^{3-2} = 3\left(\frac{1}{6}\right)^{2}\left(\frac{5}{6}\right) = \frac{5}{72}$ | | 3 | ${}^{3}C_{3}\left(\frac{1}{6}\right)^{3}\left(\frac{5}{6}\right)^{3-3} = \left(\frac{1}{6}\right)^{3} = \frac{1}{216}$ | ### **Binomial Distribution Ex 33.1 Q24** We know that, probability of getting head in a toss of coin $p = \frac{1}{2}$ Probability of not getting head $q = 1 - \frac{1}{2}$ $$q = \frac{1}{2}$$ The coin is tossed 5 times. Let X denote the number of times head occur is 5 tosses. $$P\left(X=r\right) = {^nC_r}p^rq^{n-r}$$ $$= {^5C_r}\left(\frac{1}{2}\right)^r\left(\frac{1}{2}\right)^{5-r}$$ Probability distribution is given by [Since, numbers greater than 4 ∞ in a die = 5,6] $$p = \frac{1}{3}$$ $$q=1-\frac{1}{3}$$ Since $$p + q = 1$$ $$q = \frac{2}{3}$$ Let X denote the number of success in 2 throws of a die. Probability of getting r success in n thrown of a die is given by $$P\left(X=r\right) = {^nC_r}p^rq^{n-r}$$ $$= {^2C_r}\left(\frac{1}{3}\right)^r\left(\frac{2}{3}\right)^{2-r}$$ $$= ---\left(1\right)$$ Probability distribution of number of success is given by | X | P (X) | |---|--| | 0 | ${}^{2}C_{0}\left(\frac{1}{3}\right)^{0}\left(\frac{2}{3}\right)^{2-0} = \left(\frac{2}{3}\right)^{2} = \frac{4}{9}$ | | 1 | ${}^{2}C_{1}\left(\frac{1}{3}\right)^{1}\left(\frac{2}{3}\right)^{2-1} = 2\cdot\left(\frac{1}{3}\right)\left(\frac{2}{3}\right) = \frac{4}{9}$ | | 2 | ${}^{2}C_{2}\left(\frac{1}{3}\right)^{2}\left(\frac{2}{3}\right)^{2-2} = \left(\frac{1}{3}\right)^{2} = \frac{1}{9}$ | $\frac{\text{https://millionstar.godaddysites.com/}}{\text{Let } n \text{ denote the number of throws required to get a head and } X \text{ denote the amount}}$ He may get head on first toss or lose first and 2nd toss or lose first and won second toss probability distribution for X Number of throws (n): 0 Amount won/lost (X): 1 2 -2 Probability P(X): won/lost. So probability distribution is given by | X | P(X) | |----|---------------| | 0 | 1/4 | | 1 | $\frac{1}{2}$ | | -2 | $\frac{1}{4}$ | **Binomial Distribution Ex 33.1 Q27** # Million Stars practice. Million Stars practice. p = probability of success $$=\frac{3}{6}$$ $$p = \frac{1}{2}$$ $$q = 1 - \frac{1}{2}$$ [Since $$p + q = 1$$] $$q = \frac{1}{2}$$ Let X denote the number of success in throw of 5 dice simultaneously. Probability of getting r success out of n throws of die is given by $$P(X = r) = {}^{n}C_{r}p^{r}q^{n-r}$$ $$= {}^{5}C_{r}\left(\frac{1}{2}\right)^{r}\left(\frac{1}{2}\right)^{5-r}$$ ---(1) Probability getting at least 3 success $$= P(X = 3) + P(X = 4) + P(X = 5)$$ $$= {}^{5}C_{3} \left(\frac{1}{2}\right)^{3} \left(\frac{1}{2}\right)^{5-3} + {}^{5}C_{4} \left(\frac{1}{2}\right)^{4} \left(\frac{1}{2}\right)^{5-4} + {}^{5}C_{5} \left(\frac{1}{2}\right)^{5} \left(\frac{1}{2}\right)^{5-5}$$ $$= \frac{5 \cdot 4}{2} \left(\frac{1}{2}\right)^{5} + 5 \cdot \left(\frac{1}{2}\right)^{5} + \left(\frac{1}{2}\right)^{5}$$ $$= \left(\frac{1}{2}\right)^{5} \left[10 + 5 + 1\right]$$ $$= \frac{16}{32}$$ $$= \frac{1}{2}$$ Required probability = $\frac{1}{2}$ p = 10% $= \frac{10}{100}$ $$p = \frac{1}{10}$$ $$q = 1 - \frac{1}{10}$$ $$q = \frac{9}{10}$$ [Since p + q = 1] Let X denote the number of defective items drawn out of 8 items. Probability of qetting r defective items out of a sample of 8 items is given by $$P\left(X=r\right) = {^nC_r}p^rq^{n-r}$$ $$= {^8C_r}\left(\frac{1}{10}\right)^r\left(\frac{9}{10}\right)^{8-r}$$ ---(Probability of getting 2 defective items $$= P\left(X = 2\right)$$ $$= {}^{8}C_{2} \left(\frac{1}{10}\right)^{2} \left(\frac{9}{10}\right)^{8-2}$$ $$=\frac{8\times7}{2}\left(\frac{1}{10}\right)^2\left(\frac{9}{10}\right)^6$$ $$=\frac{28\times9^6}{10^8}$$ Required probability = $\frac{28 \times 9^6}{10^8}$ Million Stars Practice Williams And Pr Million Stars Practice Williams And Pr Here $$x = 8, p = \frac{1}{2}, q = \frac{1}{2}$$ Let there be k desks and X be the number of students studying in office. Then we want that $$P(X \le k) > .90$$ $$\Rightarrow$$ $P(X > k) < .10$ $$\Rightarrow$$ $P(X = k + 1, k + 2, ...8) < .10$ Clearly $$P(X > 6) = P(X = 7 \text{ or } X = 8)$$ $$= {}^{8}C_{7} \left(\frac{1}{2}\right)^{8} + {}^{8}C_{8} \left(\frac{1}{2}\right)^{8}$$ $$= .04$$ $$P(X > 5) = P(...)$$ and $$P(X > 5) = P(X = 6, X = 7 \text{ or } X = 8)$$ = .15 $$P(X > 6) < 0.10$$ If there are 6 desks then there is at least 90% chance for \Rightarrow every graduate assistant to get a desk. Wondershare Binomial Distribution formula is given by $$P(x) = {}^{n}C_{x} p^{x} q^{n-x}$$, where $x = 0, 1, 2, ...n$ Let x = No. of heads in a toss We need probability of 6 or more heads $$X = 6, 7, 8$$ Here $p = \frac{1}{2}$ and $q = \frac{1}{2}$ P(6) = Prob of getting 6 heads, 2 tails = $${}^8C_6 \left(\frac{1}{2}\right)^6 \times \left(\frac{1}{2}\right)^2$$ P(7) = Prob of getting 7 heads, 1tails = $${}^{8}C_{7} \left(\frac{1}{2}\right)^{7} \times \left(\frac{1}{2}\right)^{1}$$ P(8) = Prob of getting 8 heads, 0 tails = $${}^8C_8 \left(\frac{1}{2}\right)^8 \times \left(\frac{1}{2}\right)^0$$ The probability of getting at least 6 heads (not more than 2 tails) is then $${}^{8}C_{6}\left(\frac{1}{2}\right)^{6}\times\left(\frac{1}{2}\right)^{2}+{}^{8}C_{1}\left(\frac{1}{2}\right)^{7}\times\left(\frac{1}{2}\right)^{1}+{}^{8}C_{2}\left(\frac{1}{2}\right)^{8}\times\left(\frac{1}{2}\right)^{0}$$ $$=\frac{1}{256}+8\frac{1}{256}+28\frac{1}{256}=\frac{37}{256}$$ Let p represents the probability of getting head in a toss of fair coin, so $$p = \frac{1}{2}$$ $$Q = 1 - \frac{1}{2}$$ $$Q = \frac{1}{2}$$ [Since $$p + q = 1$$] Let X denote the random variable representing the number heads in 6 tosses of coin. Probability of getting r sixes in n tosses of a fair coin is given by, $$P\left(X = r\right) = {^{n}C_{r}p^{r}q^{n-r}}$$ $$= {^{6}C_{r}} \left(\frac{1}{2}\right)^{r} \left(\frac{1}{2}\right)^{6-r}$$ (i) Probability of getting 3 heads $$= P(X = 3)$$ $$= {}^{6}C_{3}\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{6-3}$$ $$= \frac{6 \times 5 \times 4}{3 \times 2}\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{3}$$ $$= \frac{20}{64}$$ Probability of getting 3 heads = $$\frac{20}{64} = \frac{5}{16}$$ (ii) Probability of getting no heads $$= P(X = 0)$$ $$= {}^{6}C_{0}\left(\frac{1}{2}\right)^{0}\left(\frac{1}{2}\right)^{6-0}$$ $$= \left(\frac{1}{2}\right)^{6}$$ $$= \frac{1}{64}$$ Probability of getting no heads = $\frac{1}{64}$ (iii) Probability of getting at least one head bility of getting at least one head $$= P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) + P(X = 6)$$ $$= 1 - P(X = 0)$$ $$= 1 - \frac{1}{64}$$ $$= \frac{63}{64}$$ Probability of getting at least one head = $\frac{63}{64}$ $\frac{\text{https://millionstar.godaddysites.com/}}{\text{Let }p\text{ be the probability that a tube function for more than 500 hours. So}}$ $$p = 0.2$$ $$p = \frac{1}{5}$$ $$q=1-\frac{1}{5}$$ [Since $$p+q=1$$] Let X denote the random variable representing the number of tube that functions for more than 500 hours out of 4 tubes. Probability of functioning r tubes out n tubes selected for more than 500 hours is given by, $$P(X = r) = {}^{n}C_{r}p^{r}q^{n-r}$$ $$= {}^{4}C_{r}\left(\frac{1}{5}\right)^{r}\left(\frac{4}{5}\right)^{4-r}$$ $$= ---($$ Probability that exactly 3 tube will function for more than 500 hours $$= {}^{4}C_{3} \left(\frac{1}{5}\right)^{3} \left(\frac{4}{5}\right)^{4-3}$$ $$= 4 \cdot \left(\frac{1}{5}\right)^{3} \left(\frac{4}{5}\right)$$ Required probability = $\frac{16}{625}$ **Binomial Distribution Ex 33.1 Q34** ## Willion Stars & Practice. Williams and the start of s Wondershare Let p be the probability that component survive the shock test. So $$p = \frac{3}{4}$$ $$q = 1 - \frac{3}{4}$$ Since $$p + q = 1$$ $$q = \frac{1}{4}$$ Let X denote the random variable representing the number of components that survive shock test out of 5 components. Probability of that r components that survive shock test out of n components is given by $$P\left(X=r\right) = {^nC_r}p^rq^{n-r}$$ $$= {^5C_r}\left(\frac{3}{4}\right)^r\left(\frac{1}{4}\right)^{5-r}$$ $$= ---\left(1\right)$$ (i) Probability that exactly 2 will survive the shock test $$= P(X = 2)$$ $$= {}^{5}C_{2} \left(\frac{3}{4}\right)^{2}
\left(\frac{1}{4}\right)^{5-2}$$ $$= \frac{5.4}{2} \left(\frac{9}{16}\right) \left(\frac{1}{64}\right)$$ $$= \frac{45}{512} = 0.0879$$ Probability that at most 3 will survive $$= P(X = 0) + P(X = 1) + P(X = 3) + P(X = 4)$$ $$= 1 - [P(X = 4) + P(X = 5)]$$ $$= 1 - \left[{}^{5}C_{4} \left(\frac{3}{4} \right)^{4} \left(\frac{1}{4} \right)^{5-4} + {}^{5}C_{5} \left(\frac{3}{4} \right)^{5} \left(\frac{1}{4} \right)^{5-5} \right]$$ $$= 1 - \left[5 \cdot \frac{81}{1024} + \frac{243}{1024} \right]$$ $$= 1 - \left[\frac{405 + 243}{1024} \right]$$ $$= \frac{1024 - 648}{1024}$$ $$= \frac{376}{1024} = 0.3672$$ ### **Binomial Distribution Ex 33.1 Q35** Probability that bomb strikes a target p = 0.2Probability that a bomb misses the target = 0.8 n = 6 let x = number of bombs that strike the target P(x=2) = exactly 2 bombs strike the target $$= {}^{6}C_{2} \left(\frac{2}{10}\right)^{2} \times \left(\frac{8}{10}\right)^{4} = 15 \times \frac{16384}{10^{6}} = 0.24576$$ P(x≥2) = at least 2 bombs strike the target $$= 1 - P(x < 2)$$ $$= 1 - [P(x=0) + P(x=1)]$$ = 1 - [$${}^{6}C_{0} \left(\frac{2}{10}\right)^{0} \times \left(\frac{8}{10}\right)^{6} + {}^{6}C_{1} \left(\frac{2}{10}\right)^{1} \times \left(\frac{8}{10}\right)^{5}$$] $$= 1 - [0.0.262144 + 0.393216] = 1 - 0.65536$$ $= 0.34464$ # Binomial Distribution Ex 33.1 Q36 Let p be the probability that a mouse get contract the desease. So $$p = 40\%$$ $$= \frac{40}{100}$$ $$= \frac{2}{5}$$ $$q = 1 - \frac{2}{5}$$ [Since $p + q = 1$] $$q = \frac{3}{5}$$ Let X denote the variable representing number of mice contract the disease out of 5 mice. Probability the r mice get contract the disease out of n mice inoculated is given by $$P(X = r) = {}^{n}C_{r}p^{r}q^{n-r}$$ $$= {}^{5}C_{r}\left(\frac{2}{5}\right)^{r}\left(\frac{3}{5}\right)^{5-r}$$ ---(1) (i) Probability that none contract the disease = P(X = 0) $$= {}^{5}C_{0} \left(\frac{2}{5}\right)^{0} \left(\frac{3}{5}\right)^{5-0}$$ $$= \left(\frac{3}{5}\right)^{5}$$ Probability that none contract the disease $= \left(\frac{3}{5}\right)^5$ (ii) Probability that more than 3 contract disease $$= P(X = 4) + P(X = 5)$$ $$= {}^{5}C_{4} \left(\frac{2}{5}\right)^{4} \left(\frac{3}{5}\right)^{5-4} + {}^{5}C_{5} \left(\frac{2}{5}\right)^{5} \left(\frac{3}{5}\right)^{5-5}$$ $$= 5 \cdot \left(\frac{2}{5}\right)^{4} \left(\frac{3}{5}\right) + \left(\frac{2}{5}\right)^{5}$$ $$= \left(\frac{1}{5}\right) \left[\frac{3+5}{5}\right]$$ $$= \frac{17}{5} \left(\frac{2}{5}\right)^4$$ **Binomial Distribution Ex 33.1 Q37** Willion Stars Practice Given, P = 2qp + a = 1 2g + g = 13q = 1 $p = \frac{2}{3}$ Let X denote the random variable representing the number of success out of 6 experiments. Probability of getting r success out of n experiments is given by $$P\left(X=r\right) = {^{n}C_{r}}p^{r}q^{n-r}$$ $$= {^{6}C_{r}}\left(\frac{2}{3}\right)^{r}\left(\frac{1}{3}\right)^{6-r}$$ $$= --- (1)$$ Probability of getting at least 4 success $$P\left(X = r\right) = {}^{n}C_{r}p^{r}q^{n-r}$$ $$= {}^{6}C_{r}\left(\frac{2}{3}\right)^{r}\left(\frac{1}{3}\right)^{6-r}$$ ---(1) ability of getting at least 4 success $$= P\left(X = 4\right) + P\left(X = 5\right) + P\left(X = 6\right)$$ $$= {}^{6}C_{4}\left(\frac{2}{3}\right)^{4}\left(\frac{1}{3}\right)^{6-4} + {}^{6}C_{5}\left(\frac{2}{3}\right)^{5}\left(\frac{1}{3}\right)^{6-5} + {}^{6}C_{6}\left(\frac{2}{3}\right)^{6}\left(\frac{1}{3}\right)^{6-6}$$ $$= {}^{6}C_{4}\left(\frac{2}{3}\right)^{4}\left(\frac{1}{3}\right)^{2} + {}^{6}\left(\frac{2}{3}\right)^{5}\left(\frac{1}{3}\right)^{1} + \left(\frac{2}{3}\right)^{6}$$ $$= {}^{6}C_{5}\left(\frac{2}{3}\right)^{4}\left(\frac{1}{3}\right)^{2} + {}^{6}\left(\frac{2}{3}\right)^{5}\left(\frac{1}{3}\right)^{1} + \left(\frac{2}{3}\right)^{6}$$ $$= {}^{6}C_{5}\left(\frac{2}{3}\right)^{4}\left[\frac{15}{9} + \frac{4}{3} + \frac{4}{9}\right]$$ $$= {}^{6}C_{5}\left(\frac{2}{3}\right)^{4}\left[\frac{15+12+4}{9}\right]$$ $$= {}^{6}C_{5}\left(\frac{2}{3}\right)^{4}\left[\frac{15+12+4}{9}\right]$$ $$= {}^{6}C_{5}\left(\frac{2}{3}\right)^{4}\left[\frac{15+12+4}{9}\right]$$ $$= {}^{6}C_{5}\left(\frac{2}{3}\right)^{4}\left[\frac{15+12+4}{9}\right]$$ $$= {}^{6}C_{5}\left(\frac{2}{3}\right)^{4}\left[\frac{15+12+4}{9}\right]$$ $$= {}^{6}C_{5}\left(\frac{2}{3}\right)^{4}\left[\frac{15+12+4}{9}\right]$$ Required probability = $\frac{496}{729}$ Let x = number of out of service machines https://millionstar.godaddysites.com/ p = probability that machine will be out of service on the same day = 2/100 q = probability that machine will be in service on the same day = 8/100 P(x=3) = probability exactly 3 machines will be out of service on the same day $$P(x=3) = {}^{20}C_3 \times \left(\frac{2}{100}\right)^3 \left(\frac{8}{100}\right)^0 = 1140 \times 0.000008$$ = 0.00912 For low probability events Poisson' distribution is used instead of Binomial distribution. Then, $\lambda = np = 20x0.02 = 0.4$ $$P(x=r) = \frac{e^{-\lambda} \times \lambda^{s}}{r!}$$ $$P(x=3) = \frac{e^{-0.4} \times 0.4^{8}}{3!} = 0.6703 \times 0.064/6 = 0.0071$$ ## **Binomial Distribution Ex 33.1 Q39** Let p be the probability that a student entering a university will graduate, so $$p = 0.4$$ $q = 1 - 0.4$ [Since $p + q = 1$] $= 0.6$ Let X denote the random variable representing the number of students entering a university will graduate out of 3 students of university. Probability that r students will graduate out of n entering the university is given by $$P(X = r) = {^{n}C_{r}p^{r}(q)^{n-r}}$$ $$= {^{3}C_{r}(0.4)^{r}(0.6)^{3-r}}$$ ---(1) (i) Probability that none will graduate $$= P(X = 0)$$ $$= {}^{3}C_{0}(0.4)^{0}(0.6)^{3-0}$$ # Willion Stars & Practice, Williams of the Practice, with the property of the Practice, and Probability that none will graduate = 0.216 (ii) Probability that one will graduate $$= P\left(X = 1\right)$$ $$= {}^{3}C_{1}(0.4)^{1}(0.6)^{3-1}$$ $$= 3 \times (0.4) (0.36)$$ $$= 0.432$$ Probability that only one will graduate = 0.432 (iii) Probability that all will graduate $$= P \left(X = 3 \right)$$ $$= {}^{3}C_{3}(0.4)^{3}(0.6)^{3-3}$$ $$= (0.4)^3$$ Probability that all will graduate = 0.064 ## **Binomial Distribution Ex 33.1 Q40** Let $\, \times \,$ denote the number of defective eggs in the 10 eggs drawn. Since the drawing is done with replacement, the trials are Bernoulli trials. Clearly, X has the binomial distribution with n=10 and p= $\frac{10}{100} = \frac{1}{10}$ Therefore, $$q = 1 - \frac{1}{10} = \frac{9}{10}$$ Now, P(at least one defective egg) = $P(X \ge 1) = 1 - P(X = 0)$ $$=1-^{10} C_0 \left(\frac{9}{10}\right)^{10} = 1-\frac{9^{10}}{10^{10}}$$ $p = \frac{1}{2}$ $q = 1 - \frac{1}{2}$ [Since p + q = 1] $= \frac{1}{2}$ Thus the probability that he answers at least 12 questions correctly among 20 questions is $P(X \ge 12) = P(X = 12) + P(X = 13) + P(X = 14) + P(X = 15) + P(X = 16) + P(X = 17) + P(X = 18) + P(X = 19) + P(X = 20)$ $= \left(\frac{1}{2}\right)^{20} \left\{ {}^{20}C_{12} + {}^{20}C_{13} + {}^{20}C_{14} + {}^{20}C_{15} + {}^{20}C_{16} + {}^{20}C_{17} + {}^{20}C_{18} + {}^{20}C_{19} + {}^{20}C_{20} \right\}$ $= \frac{{}^{20}C_{12} + {}^{20}C_{13} + {}^{20}C_{14} + {}^{20}C_{15} + {}^{20}C_{17} + {}^{20}C_{18} + {}^{20}C_{19} + {}^{20}C_{20}}{2^{20}}$ Therefore, the required answer is $$\frac{{}^{20}C_{12} + {}^{20}C_{13} + {}^{20}C_{14} + {}^{20}C_{15} + {}^{20}C_{16} + {}^{20}C_{17} + {}^{20}C_{18} + {}^{20}C_{19} + {}^{20}C_{20}}{2^{20}}$$ \times is the random variable whose binomial distribution is $B\left(6,\frac{1}{2}\right)$. Therefore, n = 6 and $p = \frac{1}{2}$ $$\therefore q = 1 - p = 1 - \frac{1}{2} = \frac{1}{2}$$ Then, $$P(X = x) = {}^{n}C_{x}q^{n-x}p^{x}$$ $$= {}^{6}C_{x}\left(\frac{1}{2}\right)^{6-x} \cdot \left(\frac{1}{2}\right)^{x}$$ $$= {}^{6}C_{x}\left(\frac{1}{2}\right)^{6}$$ It can be seen that P(X = x) will be maximum, if ${}^6\mathrm{C}_{\scriptscriptstyle X}$ will be maximum. Then, $${}^{6}C_{0} = {}^{6}C_{6} = \frac{6!}{0! \cdot 6!} = 1$$ $${}^{6}C_{1} = {}^{6}C_{5} = \frac{6!}{1! \cdot 5!} = 6$$ $${}^{6}C_{2} = {}^{6}C_{4} = \frac{6!}{2! \cdot 4!} = 15$$ $$^{6}C_{3} = \frac{6!}{3! \cdot 3!} = 20$$ The value of ${}^6\mathrm{C}_3$ is maximum. Therefore, for x=3, $\mathrm{P}(\mathrm{X}=\mathrm{x})$ is maximum. Thus, X = 3 is the most likely outcome. The repeated guessing of correct answers from multiple choice questions are Bernoulli trials. Let X represent the number of correct answers by guessing in the set of 5 multiple choice questions. Probability of getting a correct answer is, $p = \frac{1}{3}$ $$\therefore q = 1 - p = 1 - \frac{1}{3} = \frac{2}{3}$$ Clearly, \times has a binomial distribution with n=5 and $p=\frac{1}{3}$ $$\therefore P(X = x) = {}^{n}C_{x}q^{n-x}p^{x}$$ $$= {}^{5}C_{x}\left(\frac{2}{3}\right)^{5-x} \cdot \left(\frac{1}{3}\right)^{x}$$ P (guessing more than 4 correct answers) = $P(X \ge 4)$ $$= P(X = 4) + P(X = 5)$$ $$= {}^{5}C_{4} \left(\frac{2}{3}\right) \cdot \left(\frac{1}{3}\right)^{4} + {}^{5}C_{5} \left(\frac{1}{3}\right)^{5}$$ $$= 5 \cdot \frac{2}{3} \cdot \frac{1}{81} + 1 \cdot \frac{1}{243}$$ $$= \frac{10}{243} + \frac{1}{243}$$ $$= \frac{11}{243}$$ **Binomial Distribution Ex 33.1 Q44** # Million Stars & Practice, Pr (b) P (winning exactly once) = P(X = 1) $$= {}^{50}C_1 \left(\frac{99}{100}\right)^{49} \cdot \left(\frac{1}{100}\right)^{1}$$ $$= 50 \left(\frac{1}{100}\right) \left(\frac{99}{100}\right)^{49}$$ $$= \frac{1}{2} \left(\frac{99}{100}\right)^{49}$$ (c) P (at least twice) = P(X ≥ 2) $$= 1 - P(X < 2)$$ $$= 1 - P(X \le 1)$$ $$= 1 - [P(X = 0) + P(X = 1)]$$ $$= [1 - P(X = 0)] - P(X = 1)$$ $$= 1 - (\frac{99}{100})^{50} - \frac{1}{2} \cdot (\frac{99}{100})^{49}$$ $$= 1 - (\frac{99}{100})^{49} \cdot [\frac{99}{100} + \frac{1}{2}]$$ $$= 1 - (\frac{99}{100})^{49} \cdot (\frac{149}{100})$$ $$= 1 - (\frac{149}{100})(\frac{99}{100})^{49}$$ Let the shooter fire n times. n fires are Bernoulli trials. In each trial, p= probability of hitting the target= $\frac{3}{4}$ And q = probability of not hitting the target= $1 -
\frac{3}{4} = \frac{1}{4}$ Then, $$P(X = X) = {}^{n}C_{X} q^{n-X} p^{X} = {}^{n}C_{X} \left(\frac{1}{4}\right)^{n-X} \left(\frac{3}{4}\right)^{X} = {}^{n}C_{X} \frac{3^{X}}{4^{n}}$$ Now, given that P (hitting the target atleast once) > 0.99 i.e. $$P(x \ge 1) > 0.99$$ $$\Rightarrow \qquad 1 - P(x = 0) > 0.99$$ $$\Rightarrow 1 - {}^{\mathsf{n}} \mathsf{C}_0 \frac{1}{4^{\mathsf{n}}} > 0.99$$ $$\Rightarrow$$ ${}^{\mathsf{n}}\mathsf{C}_0 \frac{1}{4^{\mathsf{n}}} < 0.01$ $$\Rightarrow \frac{1}{4^{\mathsf{n}}} < 0.01$$ $$\Rightarrow$$ $4^{\text{n}} > \frac{1}{0.01} = 100$ The minimum value of n to satisfy this inequality is 4 Thus, the shooter must fire 4 times. $$\Rightarrow p = \frac{1}{2} \Rightarrow q = \frac{1}{2}$$ $$\therefore P(X = x) = {^{n}C_{x}}p^{n-x}q^{x} = {^{n}C_{x}}\left(\frac{1}{2}\right)^{n-x}\left(\frac{1}{2}\right)^{x} = {^{n}C_{x}}\left(\frac{1}{2}\right)^{n}$$ It is given that, P (getting at least one head) > $\frac{90}{100}$ $$P(x \ge 1) > 0.9$$ $$1 - P(x = 0) > 0.9$$ $$1 - {^{n}C_{0}} \cdot \frac{1}{2^{n}} > 0.9$$ $$^{n}C_{0}.\frac{1}{2^{n}} < 0.1$$ $$\frac{1}{2^n} < 0.1$$ $$2'' > \frac{1}{0.1}$$ $$2^n > 10$$ The minimum value of n that satisfies the given inequality is 4. ...(1) Thus, the man should toss the coin 4 or more than 4 times. # **Binomial Distribution Ex 33.1 Q47** # Williams Bracilics Williams States Bracilics Williams States Bracilics Williams States Bracilics Bracilics States Bracilics B Probability (p) of getting a head at the toss of a coin is $\frac{1}{2}$. So, $$p = \frac{1}{2}$$ $$q = 1 - \frac{1}{2} \qquad [\text{Since } p + q = 1]$$ $$= \frac{1}{2}$$ $$\therefore P(X = x) = {}^{n}C_{x}p^{n-x}q^{x}$$ $$= {}^{n}C_{x}\left(\frac{1}{2}\right)^{n-x}\left(\frac{1}{2}\right)^{x}$$ $= {}^{\kappa}C_{x} \left(\frac{1}{2}\right)^{\kappa}$ It is given that verified $$p$$ (getting at least one head) $> \frac{80}{100}$ $$P(x \ge 1) > 0.8$$ $$1 - P(x = 0) > 0.8$$ $$1 - {}^{\kappa}C_0 \cdot \frac{1}{2^{\kappa}} > 0.8$$ $${}^{\kappa}C_0 \cdot \frac{1}{2^{\kappa}} < 0.2$$ $$\frac{1}{2^{\kappa}} < 0.2$$ $$2^{\kappa} > \frac{1}{0.2}$$ $$2^{\kappa} > 5$$ The minimum value of n that satisfies the given inequality is 3. Thus, the man should toss the coin 3 or more than 3 times. | e the probab | ility of getting a doublet in a throw of a pair of d | |-----------------------|--| | $p = \frac{6}{36}$ | [Since $(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)$] | | $=\frac{1}{6}$ | | | $q = 1 - \frac{1}{6}$ | [Since $p+q=1$] | | $=\frac{5}{6}$ | | Let X denote the number of getting doublets i.e. success out of 4 times. So, probability distribution is given by | X | P(X) | Ī | |---|---|---| | 0 | ${}^{4}C_{0}\left(\frac{1}{6}\right)^{0}\left(\frac{5}{6}\right)^{4-0} = \left(\frac{5}{6}\right)^{4}$ | | | 1 | ${}^{4}C_{1}\left(\frac{1}{6}\right)^{1}\left(\frac{5}{6}\right)^{4-1} = 4\left(\frac{1}{6}\right)\left(\frac{5}{6}\right)^{3} = \frac{2}{3}\left(\frac{5}{6}\right)^{3}$ | | | 2 | ${}^{4}C_{2}\left(\frac{1}{6}\right)^{2}\left(\frac{5}{6}\right)^{4-2} = \frac{4\cdot3}{2}\left(\frac{1}{6}\right)^{2}\left(\frac{5}{6}\right)^{2} = \frac{25}{216}$ | | | 3 | ${}^{4}C_{3}\left(\frac{1}{6}\right)^{3}\left(\frac{5}{6}\right)^{4-3} = \frac{4\cdot3}{2}\left(\frac{1}{6}\right)^{3}\left(\frac{5}{6}\right) = \frac{5}{324}$ | | | 4 | ${}^{4}C_{4}\left(\frac{1}{6}\right)^{4}\left(\frac{5}{6}\right)^{4-4} = \left(\frac{1}{6}\right)^{4} = \frac{1}{1296}$ | | $$=\frac{1}{5}$$ $$q = 1 - \frac{1}{5}$$ [Since $p + q = 1$] $=\frac{4}{5}$ Here, 4 bulbs is drawn at random with replacement. So, probability distribution is given by | X | P(X) | | |---|---|--| | 0 | ${}^{4}C_{0}\left(\frac{1}{5}\right)^{0}\left(\frac{4}{5}\right)^{4-0}=\frac{256}{625}$ | | | 1 | ${}^{4}C_{1}\left(\frac{1}{5}\right)^{1}\left(\frac{4}{5}\right)^{4-1} = \frac{4}{5} \times \frac{4^{3}}{5^{3}} = \frac{256}{625}$ | | | 2 | ${}^{4}C_{2}\left(\frac{1}{5}\right)^{2}\left(\frac{4}{5}\right)^{4-2} = \frac{6}{5^{2}} \times \frac{4^{2}}{5^{2}} = \frac{96}{625}$ | | | 3 | ${}^{4}C_{3}\left(\frac{1}{5}\right)^{3}\left(\frac{4}{5}\right)^{4-3} = \frac{4}{5^{3}} \times \frac{4}{5} = \frac{16}{625}$ | | | 4 | ${}^{4}C_{4}\left(\frac{1}{5}\right)^{4}\left(\frac{6}{5}\right)^{4-4} = 1 \cdot \frac{1}{625} = \frac{1}{625}$ | | Here success is a score which is multiple of 3 i.e. 3 or 6. $$p(3 \text{ or } 6) = \frac{2}{6} = \frac{1}{3}$$ The probability of r successes in 10 throws is given by $$P(r) = {}^{10}C_r \left(\frac{1}{3}\right)^r \left(\frac{2}{3}\right)^{10-r}$$ Now P(at least 8 successes) = P(8) + P(9) + P(10) $$= {}^{10}C_{8} \left(\frac{1}{3}\right)^{8} \left(\frac{2}{3}\right)^{2} + {}^{10}C_{9} \left(\frac{1}{3}\right)^{9} \left(\frac{2}{3}\right)^{1} + {}^{10}C_{10} \left(\frac{1}{3}\right)^{10} \left(\frac{2}{3}\right)^{0}$$ $$= \frac{1}{3^{10}} \left[45 \times 4 + 10 \times 2 + 1\right]$$ $$= \frac{201}{3^{10}} \left[45 \times 4 + 10 \times 2 + 1\right]$$ $$= \frac{1}{3^{10}} [45 \times 4 + 10 \times 2 + 1]$$ $$=\frac{201}{3^{10}}$$ Here success is an odd number i.e. 1,3 or 5. $$p(1,3 \text{ or } 5) = \frac{3}{6} = \frac{1}{2}$$ The probability of r successes in 5 throws is given by $$P(r) = {}^{5}C_{r} \left(\frac{1}{2}\right)^{r} \left(\frac{1}{2}\right)^{5-r}$$ Now P(exactly 3 times) = P(3) $$= {}^{5}C_{3}\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{2}$$ $$=\frac{10}{2^{5}}$$ Probablity of a man hitting a target is 0.25. $$\therefore p = 0.25 = \frac{1}{4}, q = 1 - p = \frac{3}{4}$$ The probability of r successes in 7 shoots is given by $$P(r) = {}^{7}C_{r}(0.25)^{r}(0.75)^{7-r}$$ Now P(at least twice) = 1 - P(less than 2) $$= 1 - {}^{7}C_{0}(0.25)^{0}(0.75)^{7} + {}^{7}C_{1}(0.25)^{1}(0.75)^{6}$$ $$= 1 - \frac{3^7}{4^7} + 7 \times \frac{3^6}{4^7}$$ Probablity of a bulb to be defective is $\frac{1}{50}$. $$p = \frac{1}{50}, q = 1 - p = \frac{49}{50}$$ The probability of r defective bulbs in 10 bulbs is given by $$P(r) = {}^{10}C_r \left(\frac{1}{50}\right)^r \left(\frac{49}{50}\right)^{10-r}$$ (i) P(none of the bulb is defective) = P(0) $$= {}^{10}C_0 \left(\frac{1}{50}\right)^0 \left(\frac{49}{50}\right)^{10}$$ $$= \left(\frac{49}{50}\right)^{10}$$ (ii) P(exactly two bulbs are defective) = P(2) $$= {}^{10}C_2 \left(\frac{1}{50}\right)^2 \left(\frac{49}{50}\right)^8$$ $$= 45 \times \frac{\left(49\right)^8}{\left(50\right)^{10}}$$ (iii) P(more than 8 bulbs work properly) = P(at most two bulbs are defective) $$= {}^{10}C_0 \left(\frac{1}{50}\right)^0 \left(\frac{49}{50}\right)^{10} + {}^{10}C_1 \left(\frac{1}{50}\right)^1 \left(\frac{49}{50}\right)^9 + {}^{10}C_2 \left(\frac{1}{50}\right)^2 \left(\frac{49}{50}\right)^8$$ $$= \left(\frac{49}{50}\right)^{10} + 10 \times \frac{\left(49\right)^9}{\left(50\right)^{10}} + 45 \times \frac{\left(49\right)^8}{\left(50\right)^{10}}$$ $$= \frac{\left(49\right)^8}{\left(50\right)^{10}} \left[\left(49\right)^2 + 490 + 45 \right]$$ $$= \frac{\left(49\right)^8 \times 2936}{\left(50\right)^{10}}$$ ### Binomial Distribution Ex 33.2 Q1 Let X be a binomial variate with parameters n and p. Mean = $$np$$ Varience = npq Mean - Variance = $$np - npq$$ = $np (1 - q)$ = $np.p$ = np^2 Mean - Variance > 0 Mean > Variance So, mean can never be less than varience. ### Binomial Distribution Ex 33.2 Q2 Let X denote the variance with parameters n and p $$p+q=1$$ $$q=1-p$$ Goven, Mean $$= np = 9$$ Variance = $$npq = \frac{9}{4}$$ $$\frac{npq}{np} = \frac{\frac{9}{4}}{9}$$ $$Q = \frac{1}{4}$$ So, $$p = 1 - q$$ $$= 1 - \frac{1}{4}$$ $$p = \frac{3}{4}$$ Put p in equation (i), $$n\left(\frac{3}{4}\right) = 9$$ $$\Rightarrow n = \frac{36}{3}$$ So, $$n = 12$$ The distribution is given by $$= {^nC_r}p^r \left(q\right)^{n-r}$$ $$P(X = r) = {}^{12}C_r \left(\frac{3}{4}\right)^r \left(\frac{1}{4}\right)^{12-r}$$ for $r = 0, 1, 2, ... 12$ # Binomial Distribution Ex 33.2 Q3 MILLIONSTYR et n and p be parameters of binomial distribution. Here $$Mean = np = 9$$ Variance = $$npq = 6$$ $$\frac{npq}{np} = -$$ $$q = \frac{2}{3}$$ So, $$p = 1 - \frac{2}{3}$$ $p = \frac{1}{3}$ Since $$p + q = 1$$ Using equation (i), np = 9 $$n\left(\frac{1}{3}\right) = 9$$ $$n = 27$$ Hence, binomial distribution is given by $$P(X = r) = {}^{27}C_r \left(\frac{1}{3}\right)^r \left(\frac{2}{3}\right)^{27-r}$$ $$r = 0, 1, 2, \dots 27$$ ### Binomial Distribution Ex 33.2 Q4 Given that, $$n = 5$$ $$np + npq = 4.8$$ $$np\left(1+q\right) = 4.8$$ $$5p(1+q) = 4.8$$ $$5(1-q)(1+q) = 4.8$$ $$5\left(1-q^2\right) = 4.8$$ $$1 - q^2 = \frac{4.8}{5}$$ $$q^2 = 1 - \frac{4.8}{5}$$ $$=\frac{0.2}{5}$$ $$q^2 = \frac{1}{25}$$ $$q = \frac{1}{r}$$ $$= 1 - \frac{1}{5}$$ $$p = \frac{4}{5}$$ So, $$n = 5$$, $p = \frac{4}{5}$, $q = \frac{1}{5}$ Here binomial distribution is $$P(X=r) = {^nC_r}p^rq^{n-r}$$ $$P(X = r) = 5C_r \left(\frac{4}{5}\right)^r \left(\frac{1}{5}\right)^{5-r}$$ $r = 0, 1, 2, 3, ... 5$ [Since $$p+q=1$$] Million Stars Practice Annihit Learn ### Binomial Distribution Ex 33.2 Q5 Given that, Let n and p be the parameters of distribution dividing equation (ii) by (i) $$\frac{npq}{np} = \frac{16}{20}$$ $$q = \frac{4}{5}$$ So, $$p = 1 - q$$ $$= 1 - \frac{4}{5}$$ $$p = \frac{1}{5}$$ [Since $$p + q = 1$$] Mondelehane Put p in equation (i), $$np = 20$$ $$n\left(\frac{1}{5}\right) = 20$$ $$n = 20 \times 5$$ $$n = 100$$ So, binomial distribution is given by $$P(X = r) = {^{n}C_{r}p^{r}q^{n-r}}$$ $$P(X = r) = {^{100}C_{r}\left(\frac{1}{5}\right)^{r}\left(\frac{4}{5}\right)^{100-r}}$$ $$r = 0, 1, 2, 3, \dots 100$$ Let n and ho be the parameters of distribution binomial distribution. So $$q = 1 - p$$ as $p + q = 1$ Mean + Variance = $$\frac{25}{3}$$ $$np + npq = \frac{25}{3}$$ $$np(1+q) = \frac{25}{3}$$ $$np = \frac{25}{3(1+q)}$$
$$Mean \times Variance = \frac{50}{3}$$ $$np \times npq = \frac{50}{3}$$ $$n^2p^2q = \frac{50}{3}$$ $$\left[\frac{25}{3\left(1+q\right)}\right]^2.q = \frac{50}{3}$$ $$625q = \frac{50}{3} \left[9 \left(1 + q \right)^2 \right]$$ $$625q = 150 (1+q)^{2}$$ $$25q = 6 (1+q)^{2}$$ $$6 + 6q^2 + 12q - 25q = 0$$ $$6q^2 - 13q + 6 = 0$$ $$6q^2 - 9q - 4q + 6 = 0$$ $$3q(2q-3)-2(2q-3)=0$$ $$(2q-3)(3q-2)=0$$ $$\Rightarrow$$ 2q - 3 = 0 or $$\Rightarrow$$ $q = \frac{3}{2}$ $$q = \frac{2}{3}$$ Since $$q \le 1$$, so $$Q = \frac{2}{3}$$ $$q = \frac{2}{3}$$ $$p = 1 - q$$ $$= 1 - \frac{2}{3}$$ $$= 1 - \frac{2}{3}$$ $$p = \frac{1}{3}$$ [Using (1)] Mondershare Let n and p be the parameters of binomial distribution. Given that, Standard deviation = \sqrt{npq} = 4 Squaring both the sides, $$npq = 16 ---(ii)$$ Dividing equation (ii) by (i), $$\frac{npq}{np} = \frac{16}{20}$$ $$q = \frac{4}{5}$$ So, $$p = 1 - q$$ = $1 - \frac{4}{5}$ $$\begin{bmatrix} -q & [Since p + q = 1] \end{bmatrix}$$ $$p = \frac{1}{5}$$ Put value of p in equation (i), $$np = 20$$ $$\frac{n}{5} = 20$$ $$n = 100$$ $$p = \frac{1}{5}$$ ### Binomial Distribution Ex 33.2 Q8 Let p denotes the probability of selecting a defective bolt, so $$p = 0.1$$ $$p = \frac{1}{10}$$ $$q = 1 - \frac{1}{10}$$ [Since $$p + q = 1$$] $$q = \frac{9}{10}$$ Given, n = 400 (i) $$=400 \times \frac{1}{10}$$ Mean = 40 (ii) Standard deviation = $$\sqrt{npq}$$ = $\sqrt{400 \times \frac{1}{10} \times \frac{9}{10}}$ = $\sqrt{36}$ Standard deviation = 6 ### Binomial Distribution Ex 33.2 Q9 Million Stars & Practice William Rain William Real Research Let n and p be the parameters of binomial distribution. Variance = $$npq = \frac{10}{3}$$ Dividing (ii) by (i) $$\frac{npq}{np} = \frac{\frac{10}{3}}{5}$$ $$q = \frac{2}{3}$$ So, $$p = 1 - q$$ = $1 - \frac{2}{3}$ Since $$p+q=1$$ $$p = \frac{1}{3}$$ Put the value of p in equation (i), $$np = 5$$ $$n = 5 \times 3$$ $$n = 15$$ Hence, the binomial distribution is given by $$P\left(X=r\right) = {^{n}C_{r}p^{r}q^{n-r}}$$ $$P(X = r) = {}^{15}C_r \left(\frac{1}{3}\right)^r \left(\frac{2}{3}\right)^{15-r}$$ $$r = 0, 1, 2, \dots 15$$ ### Binomial Distribution Ex 33.2 Q10 Let p be the probability of a ship returning safely to parts, so $$p = \frac{9}{10}$$ $$q = 1 - \frac{9}{10}$$ Since $$p + q = 1$$ $$q = \frac{1}{10}$$ Given, n = 500 $$= 500 \times \frac{9}{10}$$ Standard deviation = $$\sqrt{npq}$$ = $\sqrt{500 \times \frac{9}{10} \times \frac{1}{10}}$ = $\sqrt{45}$ = 6.71 Mean = 450 Standard deviation = 6.71 ### Binomial Distribution Ex 33.2 Q11 Million Stars Practice Annihit Learn Given that, parameters for binomial distribution are n and p. Also, Mean = $$np = 16$$ $$Variance = npq = 8$$ Dividing (ii) by (i) $$\frac{npq}{np} = \frac{8}{16}$$ $$q = \frac{1}{2}$$ So, $$p = 1 - \frac{1}{2}$$ $$p = \frac{1}{2}$$ $$\left[\operatorname{as} p + q = 1\right]$$ Put the value of p in equation (i), $$n\left(\frac{1}{2}\right) = 16$$ $$n = 32$$ Hence, binomial distribution is given by, $$P\left(X=r\right) = {^nC_r}p^rq^{n-r}$$ $$P\left(X=r\right)={}^{32}C_r\left(\frac{1}{2}\right)^r\left(\frac{1}{2}\right)^{32-r}$$ $$P\left(X=0\right)$$ $$= {}^{32}C_0 \left(\frac{1}{2}\right)^0 \left(\frac{1}{2}\right)^{32-0}$$ $$= \left(\frac{1}{2}\right)^{32}$$ $$P(X = 1)$$ $$= {}^{32}C_1 \left(\frac{1}{2}\right)^1 \left(\frac{1}{2}\right)^{32-1}$$ $$= 32.\frac{1}{2} \left(\frac{1}{2}\right)^{31}$$ $$=\left(\frac{1}{2}\right)^{27}$$ $$P(X \ge 2)$$ $$=1-[P(X=0)+P(X=1)]$$ $$= 1 - \left[\left(\frac{1}{2} \right)^{32} + \left(\frac{1}{2} \right)^{27} \right]$$ $$= 1 - \left(\frac{1}{2}\right)^{27} \left(\frac{1}{32} + 1\right)$$ $$=1-\left(\frac{1}{2}\right)^{27}\left(\frac{33}{32}\right)$$ $$=1-\frac{33}{2^{32}}$$ Hence $$P(X = 0) = \left(\frac{1}{2}\right)^{32}, P(X = 1) = \left(\frac{1}{2}\right)^{27}, P(X \ge 2) = 1 - \frac{33}{2^{32}}$$ Binomial Distribution Ex 33.2 Q12 Million Stars Practice Williams Practice ### https://millionstar.godaddysites.com/ Wondershare **PDFelement** Let p be the probability of success in a single throw of die $$D = \frac{2}{6}$$ [Since success is occurance of 5 or 6] $$p = \frac{1}{3}$$ $$q = 1 - \frac{1}{3}$$ Since $$p + q = 1$$ $$Q = \frac{2}{3}$$ Given, n = 8 $$Mean = np$$ $$= \frac{8}{3}$$ $$= 2.66$$ Standard deviation = $$\sqrt{npq}$$ = $\sqrt{8 \times \frac{1}{3} \times \frac{2}{3}}$ = $\frac{4}{3}$ = 1.33 Mean = 2.66, Standard deviation = 1.33 ### Binomial Distribution Ex 33.2 Q13 Nondershare Nondershare Let n and p be the parameters of binomial distribution. Let p = probability of having a boy in the family Given, $$p = q$$ Since, $$p+q=1$$ $$p + p = 1$$ $$p = \frac{1}{2}$$ $$Q = \frac{1}{2}$$ The expected number of boys = np $$= 8 \times \frac{1}{2}$$ $$= 4$$ The expected number of boys = 4 ### Binomial Distribution Ex 33.2 Q14 Million Stars Practice Let ho denot the probability of a defective item produced in the factory, $rac{1}{2}$ $$p = 0.02$$ $$= \frac{2}{100}$$ $$p = \frac{1}{50}$$ $$q = 1 - \frac{1}{50}$$ $$= \frac{49}{50}$$ [Since $p + q = 1$] Given n = 10,000 Expected number of defective item = np $$= 10000 \times \frac{1}{50}$$ $$= 200$$ Standard deviation = $$\sqrt{npq}$$ = $\sqrt{10000 \times \frac{1}{50} \times \frac{49}{50}}$ = 14 Expected No. of defective items = 200 Standard deviation = 14 ### Binomial Distribution Ex 33.2 Q15 Let p be the probability of success, so $$p = \frac{2}{6}$$ $$p = \frac{1}{3}$$ [Since success in occurance of 1 or 6 on the die] Given, $$n = 3$$ $q = 1 - p$ $= 1 - \frac{1}{3}$ $q = \frac{2}{3}$ [Since p+q=1] Mean = $$np$$ = $3\left(\frac{1}{3}\right)$ = 1 Variance = $$npq$$ = $3 \times \left(\frac{1}{3}\right) \left(\frac{2}{3}\right)$ = $\frac{2}{3}$ Mean = 1 $Variance = \frac{2}{3}$ Let n and p be the parameters of binomial distribution Given, Mean $$= np = 3$$ Variance = $$npq = \frac{3}{2}$$ Dividing equation (ii) by (i), $$\frac{npq}{np} = \frac{\frac{3}{2}}{3}$$ $$q = \frac{1}{2}$$ $$q = \frac{1}{2}$$ $$p = 1 - \frac{1}{2}$$ $$\left[\operatorname{as} p + q = 1\right]$$ $$p = \frac{1}{2}$$ Put the value of p in equation (i) $$n\left(\frac{1}{2}\right) = 3$$ $$n = 6$$ Hence, binomial distribution is given by $$P\left(X=r\right) = {^{n}C_{r}p^{r}q^{n-r}}$$ $$P\left(X=r\right)=\ ^{6}C_{r}\left(\frac{1}{2}\right)^{r}\left(\frac{1}{2}\right)^{6-r}$$ $$P(X \leq 5)$$ $$= P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5)$$ $$= 1 - P(X = 6)$$ $$= 1 - P(X = 6)$$ $$= 1 - {}^6\mathrm{C}_6 \left(\frac{1}{2}\right)^6 \left(\frac{1}{2}\right)^{6-6} \, ,$$ $$=1-\left(\frac{1}{2}\right)^6$$ $$=1-\frac{1}{64}$$ $$=\frac{63}{64}$$ $$P(X \le 5) = \frac{63}{64}$$ Binomial Distribution Ex 33.2 Q17 Million Stars Practice Annihit Learn Let n and p be the parameters of binomial distribution. Given, Dividing equation (ii) by (i), $$\frac{npq}{np} = \frac{2}{4}$$ $$q = \frac{1}{2}$$ $$p = 1 - \frac{1}{2}$$ $$p = \frac{1}{2}$$ [Since $p + q = 1$] Put the value of p in equation (i), $$np = 4$$ $$n\left(\frac{1}{2}\right) = 4$$ $$n = 8$$ Hence, binomial distribution is given by $$P(X = r) = {}^{n}C_{r}p^{r}q^{n-r}$$ $$P(X = r) = {}^{8}C_{r}\left(\frac{1}{2}\right)^{r}\left(\frac{1}{2}\right)^{8-r}$$ $$---(iii)$$ $$P(X \ge 5)$$ $$= P(X = 5) + P(X = 6) + P(X = 7) + P(X = 8)$$ $$= {}^{8}C_{5}\left(\frac{1}{2}\right)^{5}\left(\frac{1}{2}\right)^{3} + {}^{8}C_{6}\left(\frac{1}{2}\right)^{6}\left(\frac{1}{2}\right)^{2} + {}^{8}C_{7}\left(\frac{1}{2}\right)^{7}\left(\frac{1}{2}\right) + {}^{8}C_{8}\left(\frac{1}{2}\right)^{8}$$ [Using equation (iii)] $$= \frac{8 \times 7 \times 6}{3 \times 2}\left(\frac{1}{2}\right)^{8} + \frac{8 \times 7}{2}\left(\frac{1}{2}\right)^{8} + 8\left(\frac{1}{2}\right)^{8} + \left(\frac{1}{2}\right)^{8}$$ $$= \left(\frac{1}{2}\right)^{8}\left[56 + 28 + 8 + 1\right]$$ $$= \frac{93}{256}$$ $$P(X \ge 5) = \frac{93}{256}$$ Binomial Distribution Ex 33.2 Q18 $$= 1 - \left(\frac{2}{3}\right)^4$$ $$= 1 - \frac{16}{81}$$ $$= \frac{65}{81}$$ $$P(X \ge 1) = \frac{65}{81}$$ Let n and p be the parameters of binomial distribution, Given, n = 6 Given, $$n = 6$$ Mean + Variance $= \frac{10}{3}$ $np + npq = \frac{10}{3}$ $6p + 6pq = \frac{10}{3}$ $6p (1+q) = \frac{10}{3}$ $6(1-q)(1+q) = \frac{10}{3}$ $6(1-q^2) = \frac{10}{3}$ $1-q^2 = \frac{10}{18}$ $-q^2 = \frac{5}{9} - 1$ $-q^2 = -\frac{4}{9}$ $q^2 = \frac{4}{9}$ $q = \frac{2}{3}$ p = 1 - q $= 1 - \frac{2}{3}$ $p = \frac{1}{2}$ [Since $$p + q = 1$$] Hence, the binomial distribution is given by, $$P\left(X=r\right) = {^{n}C_{r}p^{r}q^{n-r}}$$ $$P(X = r) = {}^{6}C_{r} \left(\frac{1}{3}\right)^{r} \left(\frac{2}{3}\right)^{6-r}$$ ### Binomial Distribution Ex 33.2 Q20 Throwing a doublet i.e. $\{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)\}$ Total number of outcomes = 36 Let p be the probability of success therefore $$p = 6/36 = 1/6$$ Let q be the probability of failure therefore q = 1 - p = 1 - 1/6 = 5/6 Since the dice is thrown 4 times, n = 4 Let X be the random variable for getting doublet, therefore X can take at max 4 $$\begin{split} P(X=0) &= {}^{4}C_{0}p^{0}q^{4} = \left(\frac{5}{6}\right)^{4} = \frac{625}{1296} \\ P(X=1) &= {}^{4}C_{1}p^{1}q^{3} = 4 \cdot \frac{1}{6} \cdot \left(\frac{5}{6}\right)^{3} = \frac{500}{1296} \\ P(X=2) &= {}^{4}C_{2}p^{2}q^{2} = \frac{4 \cdot 3}{2} \cdot \left(\frac{1}{6}\right)^{2} \cdot \left(\frac{5}{6}\right)^{2} = \frac{150}{1296} \\ P(X=3) &= {}^{4}C_{3}p^{3}q^{1} = 4 \cdot \left(\frac{1}{6}\right)^{3} \cdot \frac{5}{6} = \frac{20}{1296} \\ P(X=4) &= {}^{4}C_{4}p^{4}q^{0} = 1 \cdot \left(\frac{1}{6}\right)^{4} \left(\frac{5}{6}\right)^{0} = \frac{1}{1296} \end{split}$$ Mean $$\begin{split} \mu &= \sum_{i=1}^{4} X_i P \left(X_i \right) = 0 \cdot \frac{625}{1296} + 1 \cdot \frac{500}{1296} + 2 \cdot \frac{150}{1296} + 3 \cdot \frac{20}{1296} + 4 \cdot \frac{1}{1296} \\ &= \frac{500 + 300 + 60 + 4}{1296} = \frac{54}{81} = \frac{2}{3} \end{split}$$ Hence the mean is $=\frac{2}{3}$ Throwing a doublet i.e. $\{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)\}$ Total number of outcomes = 36 Let p be the probability of success therefore $$p =
6/36 = 1/6$$ Let q be the probability of failure therefore q = 1 - p = 1 - 1/6 = 5/6 Since there is three rows of dice so n=3 Let X be the random variable for getting doublet, therefore X can take at max 3 values. $$P(X=0) = {}^{3}C_{0}p^{0}q^{3} = \left(\frac{5}{6}\right)^{3} = \frac{125}{216}$$ $$P(X=1) = {}^{3}C_{1}p^{1}q^{2} = 3 \cdot \frac{1}{6} \cdot \left(\frac{5}{6}\right)^{2} = \frac{75}{216}$$ $$P(X=2) = {}^{3}C_{2}p^{2}q^{1} = 3 \cdot \left(\frac{1}{6}\right)^{2} \cdot \left(\frac{5}{6}\right) = \frac{15}{216}$$ $$P(X=3) = {}^{3}C_{3}p^{3}q^{0} = \left(\frac{1}{6}\right)^{3} = \frac{1}{216}$$ Mean $$\mu = \sum_{i=1}^{3} X_i P(X_i) = 0 \cdot \frac{125}{216} + 1 \cdot \frac{75}{216} + 2 \cdot \frac{15}{216} + 3 \cdot \frac{1}{216}$$ $$= \frac{75 + 30 + 3}{216} = \frac{108}{216} = \frac{1}{2}$$ Hence the mean is $=\frac{1}{2}$ ### Binomial Distribution Ex 33.2 Q22 Out of 15 bulbs 5 are defective. Hence, the probability that the drawn bulb is defective is $$P(Defective) = \frac{5}{15} = \frac{1}{3}$$ P(Not defective) = $$\frac{10}{15} = \frac{2}{3}$$ Let X denote the number of defective bulbs out of 4. Then, X follows binomial distribution with $$n = 4$$, $p = \frac{1}{2}$ and $q = \frac{2}{3}$ such that $$P(X = r) = {}^{4}C_{r} \left(\frac{1}{3}\right)^{r} \left(\frac{2}{3}\right)^{4-r}; r = 0, 1, 2, 3, 4$$ $$\begin{aligned} \text{Mean} &= \sum_{r=0}^{4} r P(r) = 1 \times {}^{4} C_{1} \left(\frac{1}{3} \right) \left(\frac{2}{3} \right)^{3} + 2 \times {}^{4} C_{2} \left(\frac{1}{3} \right)^{2} \left(\frac{2}{3} \right)^{2} \\ &+ 3 \times {}^{4} C_{3} \left(\frac{1}{3} \right)^{3} \left(\frac{2}{3} \right) + 4 \times {}^{4} C_{4} \left(\frac{1}{3} \right)^{4} \left(\frac{2}{3} \right)^{0} \end{aligned}$$ $$= \frac{32}{81} + \frac{48}{81} + \frac{24}{81} + \frac{4}{81} = \frac{108}{81} = \frac{4}{3}$$ ### Binomial Distribution Ex 33.2 Q23 Let p be the probablity of getting 2 when a dice is thrown. Then $$p = \frac{1}{6}$$ Clearly, X follows binomial distribution with n = 3, p = $\frac{1}{6}$. : Expectation = $$E(X) = np = 3x \frac{1}{6} = \frac{1}{2}$$ ### Binomial Distribution Ex 33.2 Q24 Let p be the probablity of getting an even number on the toss when a dice is thrown. Let q be the probablity of not getting an even number on the toss when a dice is thrown. Then p = $$\frac{3}{6} = \frac{1}{2}$$ and q = $\frac{1}{2}$ Clearly, X follows binomial distribution with n = 2, $p = \frac{1}{2}$. :. Variance = npq = $$2 \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{2}$$ ### Binomial Distribution Ex 33.2 Q25 Let p be the probablity of getting a spade card. Let q be the probablity of getting a spade card. Then p = $$\frac{13}{52} = \frac{1}{4}$$ and q = $\frac{3}{4}$ Clearly, X follows binomial distribution with n = 3, p = $\frac{1}{4}$ and q = $\frac{3}{4}$. Probablity distribution is given by, $$P(X = r) = {}^{3}C_{r} \left(\frac{1}{4}\right)^{r} \left(\frac{3}{4}\right)^{3-r}; r = 0, 1, 2$$: Mean = np = $$3 \times \frac{1}{4} = \frac{3}{4}$$ Million Stars Practice Anni Arink Learn