
CHAPTER TEN

MECHANICAL PROPERTIES OF FLUIDS

10.1 INTRODUCTION

In this chapter, we shall study  some common physical
properties of liquids and gases. Liquids and gases can  flow
and are therefore, called  fluids.  It is this property that
distinguishes liquids and gases from solids in a basic way.

Fluids are everywhere around us. Earth has an envelop of
air and two-thirds of its surface is covered with water.  Water
is not only necessary for our existence; every mammalian
body constitute mostly of water. All the  processes occurring
in living beings including plants are mediated by fluids. Thus
understanding the behaviour and properties of fluids is
important.

How are fluids different from solids? What is common in
liquids and gases? Unlike  a solid, a fluid has no definite
shape of its own. Solids and liquids have a fixed volume,
whereas a gas fills the entire volume of its container. We
have learnt in the previous chapter that the volume of solids
can be changed by stress. The volume of solid, liquid or gas
depends on the stress or pressure acting on it. When we
talk about fixed volume of solid or liquid, we mean its volume
under atmospheric pressure. The difference between gases
and solids or liquids is that for solids or liquids the change
in volume due to  change of external pressure is rather small.
In other words solids and liquids have much lower
compressibility as compared to gases.

Shear stress can change the shape of a solid keeping its
volume fixed. The key property of fluids is that they offer
very little resistance to shear stress; their shape changes by
application of very small shear stress. The shearing stress
of fluids is about million times smaller than that of solids.

10.2  PRESSURE

A sharp needle when pressed against our skin pierces it. Our
skin, however, remains intact when a blunt object with a
wider contact area (say the back of a spoon) is pressed against
it with the same force. If an elephant were to step on a man’s
chest, his ribs would crack. A circus performer across whose
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chest a large, light but strong wooden plank is
placed first, is saved from this accident. Such
everyday experiences convince us that both the
force and its coverage area are important. Smaller
the area on which the force acts, greater is the
impact. This impact is known as pressure.

When an object is submerged in a fluid at
rest, the fluid exerts a force on its surface. This
force is always normal to the object’s surface.
This is so because if there were a component of
force parallel to the surface, the object will also
exert a force on the fluid parallel to it; as a
consequence of Newton’s third law. This force
will cause the fluid to flow parallel to the surface.
Since the fluid is at rest, this cannot happen.
Hence, the force exerted by the fluid at rest has
to be perpendicular to the surface in contact
with it. This is shown in Fig.10.1(a).

The normal force exerted by the fluid at a point
may be measured. An idealised form of one such
pressure-measuring device is shown in Fig.
10.1(b). It consists of an evacuated chamber with
a spring that is calibrated to measure the force
acting on the piston. This device is placed at a
point inside the fluid. The inward force exerted
by the fluid on the piston is balanced by the
outward spring force and is thereby measured.

If F is the magnitude of this normal force on the
piston of area A then the average pressure Pav

is defined as the normal force acting per unit
area.

P
F

Aav =              (10.1)

In principle, the piston area can be made
arbitrarily small. The pressure is then defined
in a limiting sense as

P = 
lim

∆A 0→
∆
∆

F

A
(10.2)

Pressure is a scalar quantity. We remind the
reader that it is the component of the force
normal to the area under consideration and not
the (vector) force that appears in the numerator
in Eqs. (10.1) and (10.2). Its dimensions are
[ML–1T–2]. The SI unit of pressure is N m–2. It has
been named as pascal (Pa) in honour of the
French scientist Blaise Pascal (1623-1662) who
carried out pioneering studies on fluid pressure.
A common unit of pressure is the atmosphere
(atm), i.e. the pressure exerted by the
atmosphere at sea level (1 atm = 1.013 ×  105 Pa).

Another quantity, that is indispensable in
describing fluids, is the density ρ. For a fluid of
mass m occupying volume V,

ρ =
m

V
(10.3)

The dimensions of density are [ML–3]. Its SI
unit is kg m–3. It is a positive scalar quantity. A
liquid is largely incompressible and its density
is therefore, nearly constant at all pressures.
Gases, on the other hand exhibit a large
variation in densities with pressure.

The density of water at 4oC (277 K) is
1.0 ×  103 kg m–3. The relative density of a
substance is the ratio of its density to the
density of water at 4oC. It is a dimensionless
positive scalar quantity. For example the relative
density of aluminium is 2.7. Its density is
2.7 ×  103 kg m–3

.  The densities of some common
fluids are displayed in Table 10.1.

Table 10.1 Densities of some common fluids

at STP*(a) (b)
Fig. 10.1 (a) The force exerted by the liquid in the

beaker on the submerged object or on the

walls is normal (perpendicular) to the

surface at all points.

(b) An idealised device for measuring

pressure.

* STP means standard temperature (00C) and 1 atm pressure.
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Example 10.1   The two thigh bones
(femurs), each of cross-sectional area10 cm2

support the upper part of a human body of
mass 40 kg. Estimate the average pressure
sustained by the femurs.

Answer   Total cross-sectional area of the
femurs is A = 2 ×  10 cm2 = 20 ×  10–4 m2. The
force acting on them is F = 40 kg wt = 400 N
(taking g = 10 m s–2). This force is acting
vertically down and hence, normally on the
femurs. Thus, the average pressure is

25 m N 10  2    −×==
A

F
Pav                             t

10.2.1 Pascal’s Law

The French scientist Blaise Pascal observed that
the pressure in a fluid at rest is the same at all
points if they are at the same height. This fact
may be demonstrated in a simple way.

Fig. 10.2 shows an element in the interior of
a fluid at rest. This element ABC-DEF is in the
form of a right-angled prism. In principle, this
prismatic element is very small so that every
part of it can be considered at the same depth
from the liquid surface and therefore, the effect
of the gravity is the same at all these points.
But for clarity we have enlarged this element.
The forces on this element are those exerted by
the rest of the fluid and they must be normal to
the surfaces of the element as discussed above.
Thus, the fluid exerts pressures P

a
, P

b 
and P

c
 on

this element of area corresponding to the normal
forces F

a
, F

b
 and F

c
 as shown in Fig. 10.2 on the

faces BEFC, ADFC and ADEB denoted by A
a
, A

b

and A
c
 respectively. Then

F
b 
sinθ = F

c
, F

b 
cosθ = F

a
(by equilibrium)

A
b 
sinθ = A

c
, A

b 
cosθ = A

a
(by geometry)

Thus,

;b c a
b c a

b c a

F F F
P P P

A A A
= = = = (10.4)

Hence, pressure exerted is same in all
directions in a fluid at rest. It again reminds us
that like other types of stress, pressure is not a
vector quantity. No direction can be assigned
to it.  The force against any area within (or
bounding) a fluid at rest and under pressure is
normal to the area, regardless of the orientation
of the area.

Now consider a fluid element in the form of a
horizontal bar of uniform cross-section. The bar
is in equilibrium. The horizontal forces exerted
at its two ends  must be balanced or the
pressure at the two ends should be equal. This
proves that for a liquid in equilibrium the
pressure is same at all points in a horizontal
plane. Suppose the pressure were not equal in
different parts of the fluid, then there would be
a flow as the  fluid will have some net force
acting on it. Hence in the absence of flow the
pressure in the fluid must be same everywhere
in a horizontal plane.

10.2.2 Variation of Pressure with Depth

Consider a fluid at rest in a container. In
Fig. 10.3 point 1 is at height h above a point 2.
The pressures at points 1 and 2 are P

1
 and P

2

respectively. Consider a cylindrical element of
fluid having area of base A and height h. As the
fluid is at rest the resultant horizontal forces
should be zero and the resultant vertical forces
should balance the weight of the element. The
forces acting in the vertical direction are due to
the fluid pressure at the top (P

1
A) acting

downward, at the bottom (P
2
A) acting upward.

If mg is weight of the fluid in the cylinder we
have

(P
2 

− P
1
) A = mg (10.5)

Now, if ρ is the mass density of the fluid, we
have the mass of fluid to be m = ρV= ρhA so
that

P
2 

−
 
P

1
=  ρgh (10.6)

Fig. 10.2 Proof of Pascal’s law. ABC-DEF is an

element of the interior of a fluid at rest.

This element is in the form of a right-

angled prism. The element is small so that

the effect of gravity can be ignored, but it

has been enlarged for the sake of clarity.
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Fig.10.3 Fluid under gravity. The effect of gravity is

illustrated through pressure on a vertical

cylindrical column.

Pressure difference depends on the vertical

distance h between the points (1 and 2), mass

density of the fluid ρ and acceleration due to

gravity g. If the point 1 under discussion is

shifted to the top of the  fluid (say, water), which

is open to the atmosphere, P
1
 may be replaced

by atmospheric pressure (P
a
) and we replace P

2

by P. Then Eq. (10.6) gives

P =
 
P

a 
+ ρgh (10.7)

Thus, the pressure P, at depth below the

surface of a liquid open to the atmosphere is

greater than atmospheric pressure by an

amount ρgh. The excess of pressure, P −
 
P

a
, at

depth h is called a gauge pressure at that point.

The area of the cylinder is not appearing in

the expression of absolute pressure in Eq. (10.7).

Thus, the height of the fluid column is important

and not cross-sectional or base area or the shape

of the container. The liquid pressure is the same

at all points at the same horizontal level (same

depth).  The result is appreciated through the

example of hydrostatic paradox. Consider three

vessels A, B and C  [Fig.10.4] of different shapes.

They are connected at the bottom by a horizontal

pipe. On filling with water, the level in the three

vessels is the same, though they hold different

amounts of water. This is so because water at

the bottom has the same pressure below each

section of the vessel.

Fig 10.4 Illustration of hydrostatic paradox. The

three vessels A, B and C contain different

amounts of liquids, all upto the same

height.

Example 10.2 What is the pressure on a
swimmer 10 m below the surface of a lake?

Answer Here
h = 10 m and ρ = 1000 kg m-3. Take g = 10 m s–2

From Eq. (10.7)
P =

 
P

a 
+ ρgh

   = 1.01 × 105 Pa + 1000 kg m–3 × 10 m s–2 × 10 m
   = 2.01 × 105 Pa
    ≈ 2 atm

This is a 100% increase in pressure from
surface level. At a depth of 1 km, the increase
in pressure is 100 atm! Submarines are designed
to withstand such enormous pressures.   t

10.2.3 Atmospheric Pressure and
Gauge Pressure

The pressure of the atmosphere at any point is
equal to the weight of a column of air of unit
cross-sectional area extending from that point
to the top of the atmosphere. At sea level, it is
1.013 × 105 Pa (1 atm). Italian scientist
Evangelista Torricelli (1608–1647) devised for
the first time a method for measuring
atmospheric pressure. A long glass tube closed
at one end and filled with mercury is inverted
into a trough of mercury as shown in Fig.10.5 (a).
This device is known as ‘mercury barometer’.
The space above the mercury column in the tube
contains only mercury vapour whose pressure
P is so small  that it may be neglected. Thus,
the pressure at Point A=0. The pressure inside
the coloumn at Point B must be the same as the
pressure at Point C, which is atmospheric
pressure, Pa.

P
a 
= ρgh (10.8)

where ρ is the density of mercury and h is the
height of the mercury column in the tube.
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In the experiment it is found that the mercury
column in the barometer has a height of about
76 cm at sea level equivalent to one atmosphere
(1 atm). This can also be obtained using the
value of ρ in Eq. (10.8). A common way of stating
pressure is in terms of cm or mm of mercury
(Hg). A pressure equivalent of 1 mm is called a
torr (after Torricelli).

1 torr = 133 Pa.
The mm of Hg and torr are used in medicine

and physiology. In meteorology, a common unit
is the bar and millibar.

1 bar = 105 Pa
An open tube manometer is a useful

instrument for measuring pressure differences.
It consists of a U-tube containing a suitable
liquid i.e., a low density liquid (such as oil) for
measuring small pressure differences and a
high density liquid (such as mercury) for large
pressure differences. One end of the tube is open
to the atmosphere and the other end is
connected to the system whose pressure we want
to measure [see Fig. 10.5 (b)]. The pressure P at
A is equal to pressure at point B. What we
normally measure is the gauge pressure, which
is P − P

a
, given by Eq. (10.8) and is proportional

to manometer height h.

Pressure is same at the same level on both
sides of the U-tube containing a fluid. For
liquids, the density varies very little over wide
ranges in pressure and temperature and we can
treat it safely as a constant for our present
purposes. Gases on the other hand, exhibits
large variations of densities with changes in
pressure and temperature. Unlike gases, liquids
are, therefore, largely treated as incompressible.

Example 10.3 The density of the
atmosphere at sea level is 1.29 kg/m3.
Assume that it does not change with
altitude. Then how high would the
atmosphere extend?

Answer We use Eq. (10.7)

ρgh  =  1.29 kg m–3 × 9.8 m s2 × h  m = 1.01 × 105 Pa

∴ h = 7989 m ≈ 8 km

In reality the density of air decreases with

height. So does the value of g. The atmospheric

cover extends with decreasing pressure over

100 km. We should also note that the sea level

atmospheric pressure is not always 760 mm of

Hg. A drop in the Hg level by 10 mm or more is a

sign of an approaching storm. t

Example 10.4 At a depth of 1000 m in an
ocean (a) what is the absolute pressure?
(b) What is the gauge pressure? (c) Find
the force acting on the window of area
20 cm × 20 cm of a submarine at this depth,
the interior of which is maintained at sea-
level atmospheric pressure. (The density of
sea water is 1.03 × 103 kg m -3,
g = 10 m s–2.)

(b) The open tube manometer

Fig 10.5  Two pressure measuring devices.

Fig 10.5 (a) The mercury barometer.
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Answer Here h = 1000 m and ρ = 1.03 ×  103 kg m-3.
(a) From Eq. (10.6), absolute pressure

P =
 
P

a 
+ ρgh

= 1.01 ×  105 Pa
   + 1.03 ×  103 kg m–3  × 10 m s–2 ×  1000 m
=  104.01 ×  105 Pa
≈  104 atm

(b) Gauge pressure is P −
 
P

a 
= ρgh = P

g

P
g
 = 1.03 ×  103 kg m–3 ×  10 ms2 ×  1000 m

    = 103 ×  105 Pa
     ≈ 103 atm

(c) The pressure outside the submarine is
P =

 
P

a 
+ ρgh and the pressure inside it is P

a
.

Hence, the net pressure acting on the
window is gauge pressure, P

g
 = ρgh. Since

the area of the window is A = 0.04 m2, the
force acting on it is
F = P

g
 A = 103 ×  105 Pa ×  0.04 m2 = 4.12 ×  105 N

  t

10.2.4  Hydraulic Machines

Let us now consider what happens when we
change the pressure on a fluid contained in a
vessel. Consider a horizontal cylinder with a

piston and three vertical tubes at different

points [Fig. 10.6 (a)]. The pressure in the

horizontal cylinder is indicated by the height of

liquid column in the vertical tubes. It is necessarily

the same in all. If we push the piston, the fluid level

rises in all the tubes, again reaching the same level
in each one of them.

     This indicates that when the pressure  on the
cylinder was increased, it was distributed
uniformly throughout. We can say  whenever
external pressure is applied on any part of a
fluid contained in a vessel, it is transmitted
undiminished and equally in all directions.
This is another form of the Pascal’s law and it
has many applications in daily life.

A number of devices, such as hydraulic lift
and hydraulic brakes, are based on the Pascal’s
law. In these devices, fluids are used for
transmitting pressure. In a hydraulic lift, as
shown in Fig. 10.6 (b), two pistons are separated
by the space filled with a liquid. A piston of small
cross-section A

1
 is used to exert a force F

1
 directly

on the liquid. The pressure P = 
1

1

F

A  is

transmitted throughout the liquid to the larger
cylinder attached with a larger piston of area A

2
,

which results in an upward force of P × A
2
.

Therefore, the piston is capable of supporting a
large force (large weight of, say a car, or a truck,

Archemedes’ Principle
Fluid appears to provide partial support to the objects placed in it.  When a body is wholly or partially
immersed in a fluid at rest, the fluid exerts pressure on the surface of the body in contact with the
fluid. The pressure is greater on lower surfaces of the body than on the upper surfaces as pressure in
a fluid increases with depth. The resultant of all the forces is an upward force called buoyant force.
Suppose that a cylindrical body is immersed in the fluid. The upward force on the bottom of the body
is more than the downward force on its top. The fluid exerts a resultant upward force or buoyant force

on the body equal to (P
2 
– P

1
) ×××××      A (Fig. 10.3). We have seen in equation 10.4 that (P

2
-P

1
)A = ρghA. Now,

hA is the volume of the solid and  ρhA is the weight of an equivaliant volume of the fluid. (P
2
-P

1
)A = mg.

Thus, the upward force exerted is equal to the weight of the displaced fluid.
The result holds true irrespective of the shape of the object and here cylindrical object is considered

only for convenience. This is Archimedes’ principle. For totally immersed objects the volume of the
fluid displaced by the object is equal to its own volume. If the density of the immersed object is more
than that of the fluid, the object will sink as the weight of the body is more than the upward thrust. If
the density of the object is less than that of the fluid, it floats in the fluid partially submerged. To
calculate the volume submerged, suppose the total volume of the object is V

s
 and  a part V

p 
of it is

submerged  in the fluid.  Then, the upward force which is the weight of the displaced fluid is ρ
f
gV

p
,

which must equal the weight of the body; ρ
s
gV

s
 = ρ

f
gV

p
or  ρ

s
/ρ

f
 = V

p
/V

s 
 The apparent weight of the

floating body is zero.
This principle can be summarised as; ‘the loss of weight of a body submerged (partially or fully) in

a fluid is equal to the weight of the fluid displaced’.

Fig 10.6  (a) Whenever external pressure is applied

   on any part of a fluid in a vessel, it is

equally transmitted in all directions.
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placed on the platform) F
2 

= PA
2 

= 
1 2

1

F A

A . By

changing the force at A
1
, the platform can be

moved up or down. Thus, the applied force has

been increased by a factor of 
2

1

A

A  and this factor

is the mechanical advantage of the device. The
example below clarifies it.

Fig 10.6 (b) Schematic diagram illustrating the principle

  behind the hydraulic lift, a device used to

  lift heavy loads.

Example 10.5 Two syringes of different
cross-sections (without needles) filled with
water are connected with a tightly fitted
rubber tube filled with water. Diameters of
the smaller piston and larger piston are 1.0
cm and 3.0 cm respectively. (a)  Find the
force exerted on  the larger piston when a
force of 10 N is applied to the smaller piston.
(b) If the smaller piston is pushed in through
6.0 cm, how much does the larger piston
move out?

Answer (a) Since pressure is transmitted
undiminished throughout the fluid,

( )
( )

2–2

2
2 1 2–2

1

3/2 10 m
10 N

1/2 10 m

A
F F

A

π

π

×
= = ×

×
             = 90 N

(b) Water is considered to be perfectly
incompressible. Volume covered by the
movement of smaller piston inwards is equal to
volume moved outwards due to the larger piston.

2211
ALAL =

       j 0.67 ×  10-2 m = 0.67 cm
Note, atmospheric pressure is common to both
pistons and has been ignored. t

Example 10.6 In a car lift compressed air
exerts a force F

1
 on a small piston having

a radius of 5.0 cm. This pressure is
transmitted to a second piston of radius
15 cm (Fig 10.7). If the mass of the car to
be lifted is 1350 kg, calculate F

1
. What is

the pressure necessary to accomplish this
task? (g = 9.8 ms-2).

Answer Since pressure is transmitted
undiminished throughout the fluid,

= 1470 N

≈  1.5 ×  103 N
The air pressure that will produce this

force is

This is almost double the atmospheric
pressure.                       t

Hydraulic brakes in automobiles also work on
the same principle. When we apply a little force
on the pedal with our foot the master piston

Archimedes was a Greek philosopher, mathematician, scientist and engineer. He
invented the catapult and devised a system of pulleys and levers to handle heavy
loads. The king of his native city Syracuse, Hiero II, asked him to determine if his gold
crown was alloyed with some cheaper metal, such as silver without damaging the crown.
The partial loss of weight he experienced while lying in his bathtub suggested a solution

to him. According to legend, he ran naked through the streets of Syracuse, exclaiming “Eureka,
eureka!”, which means “I have found it, I have found it!”

Archimedes (287–212 B.C.)
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moves inside the master cylinder, and the
pressure caused is transmitted through the
brake oil to act on a piston of larger area. A large
force acts on the piston and is pushed down
expanding the brake shoes against brake lining.
In this way, a small force on the pedal produces
a large retarding force on the wheel. An
important advantage of the system is that the
pressure set up by pressing pedal is transmitted
equally to all cylinders attached to the four
wheels so that the braking effort is equal on
all wheels.

10.3  STREAMLINE FLOW

So far we have studied fluids at rest. The study

of the fluids in motion is known as fluid
dynamics. When a water tap is turned on slowly,

the water flow is smooth initially, but loses its

smoothness when the speed of the outflow is

increased. In studying the motion of fluids, we

focus our attention on what is happening to

various fluid particles at a particular point in
space at a particular time. The flow of the fluid

is said to be steady if at any given point, the

velocity of each passing fluid particle remains

constant in time. This does not mean that the

velocity at different points in space is same. The

velocity of a particular particle may change as it
moves from one point to another. That is, at some

other point the particle may have a different

velocity, but every other particle which passes

the second point behaves exactly as the previous

particle that has just passed that point. Each

particle follows a smooth path, and the paths of
the particles do not cross each other.

Fig. 10.7 The meaning of streamlines. (a) A typical

trajectory of a fluid particle.

(b) A region of streamline flow.

The path taken by a fluid particle under a
steady flow is a streamline. It is defined as a
curve whose tangent at any point is in the
direction of the fluid velocity at that point.
Consider the path of a particle as shown in
Fig.10.7 (a), the curve describes how a fluid
particle moves with time. The curve PQ is like a
permanent map of fluid flow, indicating how the
fluid streams. No two streamlines can cross, for
if they do, an oncoming fluid particle can go
either one way or the other and the flow would
not be steady. Hence, in steady flow, the map of
flow is stationary in time. How do we draw closely
spaced streamlines ? If we intend to show
streamline of every flowing particle, we would
end up with a continuum of lines. Consider planes
perpendicular to the direction of fluid flow e.g.,
at three points P, R and Q in Fig.10.7 (b). The
plane pieces are so chosen that their boundaries
be determined by the same set of streamlines.
This means that number of fluid particles
crossing the surfaces as indicated at P, R and Q
is the same. If area of cross-sections at these
points are A

P
,A

R
 and A

Q
 and speeds of fluid

particles are v
P
, v

R
 and v

Q
, then mass of fluid

∆m
P
 crossing at A

P
 in a small interval of time ∆t

is ρ
P
A

P
v

P 
∆t. Similarly mass of fluid ∆m

R
 flowing

or crossing at A
R
 in a small interval of time ∆t is

ρ
R
A

R
v

R 
∆t and mass of fluid  ∆m

Q
 is ρ

Q
A

Q
v

Q 
∆t

crossing at A
Q
. The mass of liquid flowing out

equals the mass flowing in, holds in all cases.
Therefore,

ρ
P
A

P
v

P
∆t = ρ

R
A

R
v

R
∆t = ρ

Q
A

Q
v

Q
∆t (10.9)

For flow of incompressible fluids
ρ

P
 = ρ

R
 = ρ

Q

Equation (10.9) reduces to
A

P
v

P
 = A

R
v

R
 = A

Q
v

Q
(10.10)

which is called the equation of continuity and
it is a statement of conservation of mass in flow
of incompressible fluids. In general

Av = constant (10.11)
Av gives the volume flux or flow rate and

remains constant throughout the pipe of flow.
Thus, at narrower portions where the
streamlines are closely spaced, velocity
increases and its vice versa. From (Fig 10.7b) it
is clear that A

R  
> A

Q 
or   v

R
 <  v

Q
, the fluid is

accelerated while passing from R to Q. This is
associated with a change in pressure in fluid
flow in horizontal pipes.

Steady flow is achieved at low flow speeds.
Beyond a limiting value, called critical speed,
this flow loses steadiness and becomes
turbulent. One sees this when a fast flowing
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stream encounters rocks, small foamy
whirlpool-like regions called ‘white water
rapids are formed.

Figure 10.8 displays streamlines for some
typical flows. For example, Fig. 10.8(a) describes
a laminar flow where the velocities at different
points in the fluid may have dif ferent
magnitudes but their directions are parallel.
Figure 10.8 (b) gives a sketch of turbulent flow.

Fig. 10.8 (a) Some streamlines for fluid flow.

(b) A jet of air striking a flat plate placed

perpendicular to it. This is an example

of turbulent flow.

10.4  BERNOULLI’S PRINCIPLE

Fluid flow is a complex phenomenon. But we
can obtain some useful properties for steady
or streamline flows using the conservation
of energy.

Consider a fluid moving in a pipe of varying
cross-sectional area. Let the pipe be at varying
heights as shown in Fig. 10.9. We now suppose
that an incompressible fluid is flowing through
the pipe in a steady flow. Its velocity must
change as a consequence of equation of
continuity. A force is required to produce this
acceleration, which is   caused by the fluid
surrounding it, the pressure must be different
in different regions. Bernoulli’s equation is a
general expression that relates the pressure
difference between two points in a pipe to both
velocity changes (kinetic energy change) and
elevation (height) changes (potential energy

change). The Swiss Physicist Daniel Bernoulli
developed this relationship in 1738.

Consider the flow at two regions 1 (i.e., BC)
and 2 (i.e., DE). Consider the fluid initially lying
between B and D. In an infinitesimal time
interval ∆t, this fluid would have moved. Suppose
v

1
 is the speed at B and v

2
 at D, then fluid initially

at B has moved a distance v
1
∆t to C (v

1
∆t is small

enough to assume constant cross-section along
BC). In the same interval ∆t the fluid initially at
D moves to E, a distance equal to v

2
∆t. Pressures

P
1
 and P

2
 act as shown on the plane faces of

areas A
1
 and A

2
 binding the two regions. The

work done on the fluid at left end (BC) is W
1
 =

P
1
A

1
(v

1
∆t) = P

1
∆V. Since the same volume ∆V

passes through both the regions (from the
equation of continuity) the work done by the fluid
at the other end (DE) is W

2
 = P

2
A

2
(v

2
∆t) = P

2
∆V or,

the work done on the fluid is  –P
2
∆V. So the total

work done on the fluid is
W

1
 – W

2 
=  (P

1
− P

2
) ∆V

Part of this work goes into changing the kinetic
energy of the fluid, and part goes into changing
the gravitational potential energy. If the density
of the fluid is ρ and ∆m = ρA

1
v

1
∆t = ρ∆V is the

mass passing through the pipe in time ∆t, then
change in gravitational potential energy is

∆U = ρg∆V (h
2 

− h
1
)

The change in its kinetic energy is

∆K = 

1

2

 
 
 

 ρ ∆V (v
2

2 − v
1
2)

We can employ the work – energy theorem
(Chapter 6) to this volume of the fluid and
this yields

(P
1
− P

2
) ∆V = 

1

2

 
 
 

 ρ ∆V (v
2
2 − v

1
2) + ρg∆V (h

2 
− h

1
)

We now divide each term by ∆V to obtain

(P
1
− P

2
) = 

1

2

 
 
 

 ρ (v
2
2 − v

1
2) + ρg (h

2 
− h

1
)

Daniel Bernoulli was a Swiss scientist and mathematician, who along with Leonard
Euler had the distinction of winning the French Academy prize for mathematics
10 times. He also studied medicine and served as a professor of anatomy and
botany for a while at Basle, Switzerland. His most well-known work was in
hydrodynamics, a subject he developed from a single principle: the conservation of
energy. His work included calculus, probability, the theory of vibrating strings,

and applied mathematics. He has been called the founder of mathematical physics.

Daniel Bernoulli (1700–1782)
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We can rearrange the above terms to obtain

P
1 
+ 

1

2

 
 
 

 ρv
1
2 + ρgh

1
 = P

2
+ 

1

2

 
 
 

 ρv
2
2 + ρgh

2

 (10.12)
This is Bernoulli’s equation. Since 1 and 2

refer to any two locations along the pipeline,
we may write the expression in general as

 P + 
1

2

 
 
 

ρv2 + ρgh = constant (10.13)

Fig. 10.9 The flow of an ideal fluid in a pipe of

varying cross section. The fluid in a

section of length v
1
∆t moves to the section

of length v
2
∆t in time ∆t.

In words, the Bernoulli’s relation may be
stated as follows: As we move along a streamline
the sum of the pressure (P ), the kinetic energy

per unit volume 
ρv2

2






  and the potential energy

per unit volume (ρgh) remains a constant.
Note that in applying the energy conservation

principle, there is an assumption that no energy
is lost due to friction. But in fact, when fluids
flow, some energy does get lost due to internal
friction. This arises due to the fact that in a
fluid flow, the different layers of the fluid flow
with different velocities. These layers exert
frictional forces on each other resulting in a loss
of energy. This property of the fluid is called
viscosity and is discussed in more detail in a
later section. The lost kinetic energy of the fluid
gets converted into heat energy. Thus,
Bernoulli’s equation ideally applies to fluids with

zero viscosity or non-viscous fluids. Another

restriction on application of Bernoulli theorem

is that the fluids must be incompressible, as

the elastic energy of the fluid is also not taken

into consideration. In practice, it has a large

number of useful applications and can help

explain a wide variety of phenomena for low

viscosity incompressible fluids.  Bernoulli’s

equation also does not hold for non-steady or

turbulent flows, because in that situation

velocity and pressure are constantly fluctuating

in time.

When a fluid is at rest i.e., its velocity is zero

everywhere, Bernoulli’s equation becomes

P
1
 + ρgh

1
 = P

2
 + ρgh

2

(P
1
− P

2
) = ρg (h

2 
− h

1
)

which is same as Eq. (10.6).

10.4.1 Speed of Efflux: Torricelli’s Law

The word efflux means fluid outflow. Torricelli
discovered that the speed of efflux from an open
tank is given by a formula identical to that of a
freely falling body. Consider a tank containing
a liquid of density ρ with a small hole in its side
at a height y

1
 from the bottom (see Fig. 10.10).

The air above the liquid, whose surface is at
height y

2
, is at pressure P. From the equation

of continuity [Eq. (10.10)] we have
v

1 
A

1
 = v

2 
A

2

v
A

A
v2

1

2

= 1

Fig. 10.10 Torricelli’s law. The speed of efflux, v
1
,

from the side of the container is given by

the application of Bernoulli’s equation.

If the container is open at the top to the

atmosphere then 1   2  hv g= .

2021-22



260 PHYSICS

If the cross-sectional area of the tank A
2
 is

much larger than that of the hole (A
2
 >>A

1
), then

we may take the fluid to be approximately at rest
at the top, i.e., v

2
 = 0. Now, applying the Bernoulli

equation at points 1 and 2 and noting that at
the hole P

1
 = P

a
, the atmospheric pressure, we

have from Eq. (10.12)

2
1 1 2

1

2
aP  v g y P g y             + ρ + ρ = + ρ

Taking  y
2
 – y

1
 = h we have

( )2
2

a

1

P P
v g h     

−
= +

ρ (10.14)

When P >>P
a 
and 2 g h may be ignored, the

speed of efflux is determined by the container
pressure. Such a situation occurs in rocket
propulsion. On the other hand, if the tank is
open to the atmosphere, then P  = P

a 
and

hgv    21 = (10.15)

This is also the speed of a freely falling body.
Equation (10.15) represents Torricelli’s law.

10.4.2 Venturi-meter

The Venturi-meter is a device to measure the
flow speed of incompressible fluid. It consists of
a tube with a broad diameter and a small
constriction at the middle as shown in
Fig. (10.11). A manometer in the form of a
U-tube is also attached to it, with one arm at
the broad neck point of the tube and the other
at constriction as shown in Fig. (10.11). The
manometer contains a liquid of density ρ

m
. The

speed v
1 
of the liquid flowing through the tube

at the broad neck area A is to be measured
from equation of continuity Eq. (10.10) the speed

at the constriction becomes 2 1
v v=

A

a
. Then

using Bernoulli’s equation (Eq.10.12) for (h
1
=h

2
),

we get

P
1
+ 

1

2
 ρv

1
2 = P

2
+

1

2
 ρv

1
2 (A/a)2

So that

P
1
- P

2
 = 

1

2
 ρv

1
2 

A

a



















2

1– (10.16)

This pressure difference causes the fluid in
the U-tube connected at the narrow neck to rise
in comparison to the other arm. The difference
in height h measure the pressure difference.

P
1
– P

2
 = ρ

m
gh = 

1

2
 ρv

1
2 

2

–1
A

a

  
  
   

So that the speed of fluid at wide neck is

v
1
= 

–½2
2

–1m gh A

a

ρ
ρ

    
         

(10.17)

The principle behind this meter has many
applications. The carburetor of automobile has
a Venturi channel (nozzle) through which air
flows with a high speed. The pressure is then
lowered at the narrow neck and the petrol
(gasoline) is sucked up in the chamber to provide
the correct mixture of air to fuel necessary for
combustion. Filter pumps or aspirators, Bunsen
burner, atomisers and sprayers [See Fig. 10.12]
used for perfumes or to spray insecticides work
on the same principle.

Fig. 10.12 The spray gun. Piston forces air at high

speeds causing a lowering of pressure

at the neck of the container.

h

A

a

2

1

Fig. 10.11 A schematic diagram of Venturi-meter.
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Example 10.7 Blood velocity: The flow of
blood in a large artery of an anesthetised
dog is diverted through a Venturi meter.
The wider part of the meter has a cross-
sectional area equal to that of the artery.
A = 8 mm2. The narrower part has an area
a = 4 mm2. The pressure drop in the artery
is 24 Pa. What is the speed of the blood in
the artery?

Answer We take the density of blood from Table
10.1 to be 1.06 ×  103 kg m-3. The ratio of the

areas is 
A

a

 
 
 

 = 2. Using Eq. (10.17) we obtain

t

10.4.3 Blood Flow and Heart Attack

Bernoulli’s principle helps in explaining blood

flow in artery. The artery may get constricted

due to the accumulation of plaque on its inner

walls. In order to drive the blood through this

constriction a greater demand is placed on the

activity of the heart. The speed of the flow of

the blood in this region is raised which lowers

the pressure inside and the artery may

collapse due to the external pressure. The

heart exerts further pressure to open this

artery and forces the blood through. As the

blood rushes through the opening, the

internal pressure once again drops due to

same reasons leading to a repeat collapse.

This may result in heart attack.

10.4.4 Dynamic Lift

Dynamic lift is the force that acts on a body,

such as airplane wing, a hydrofoil or a spinning

ball, by virtue of its motion through a fluid. In

many games such as cricket, tennis, baseball,

or golf, we notice that a spinning ball deviates

from its parabolic trajectory as it moves through

air. This deviation can be partly explained on

the basis of Bernoulli’s principle.

(i) Ball moving without spin: Fig. 10.13(a)

shows the streamlines around a

non-spinning ball moving relative to a fluid.

From the symmetry of streamlines it is clear

that the velocity of fluid (air) above and below

the ball at corresponding points is the same

resulting in zero pressure difference. The air

therefore, exerts no upward or downward

force on the ball.

(ii) Ball moving with spin: A ball which is

spinning drags air along with it. If the

surface is rough more air will be dragged.

Fig 10.13(b) shows  the streamlines of air

for a ball which is moving and spinning at

the same time. The ball is moving forward

and relative to it the air is moving

backwards. Therefore, the velocity of air

above the ball relative to the ball is larger

and below it is smaller (see Section 10.3).

The stream lines, thus, get crowded above

and rarified below.

This difference in the velocities of air results

in the pressure difference between the lower and

upper faces and there is a net upward force on

the ball. This dynamic lift due to spining is called

Magnus effect.

(a) (b) (c)

Fig 10.13 (a) Fluid streaming past a static sphere. (b) Streamlines for a fluid around a sphere spinning  clockwise.

(c) Air flowing past an aerofoil.
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Aerofoil or lift on aircraft wing: Figure 10.13

(c) shows an aerofoil, which is a solid piece

shaped to provide an upward dynamic lift when

it moves horizontally through air. The cross-

section of the wings of an aeroplane looks

somewhat like the aerofoil shown in Fig. 10.13 (c)

with streamlines around it. When the aerofoil

moves against the wind, the orientation of the

wing relative to flow direction causes the

streamlines to crowd together above the wing

more than those below it. The flow speed on top

is higher than that below it. There is an upward

force resulting in a dynamic lift of the wings and

this balances the weight of the plane. The

following example illustrates this.

Example 10.8 A fully loaded Boeing

aircraft has a mass of 3.3 ×  105 kg. Its total

wing area is 500 m2. It is in level flight with

a speed of 960 km/h. (a) Estimate the

pressure difference between the lower and

upper surfaces of the wings (b) Estimate

the fractional increase in the speed of the

air on the upper surface of the wing relative

to the lower surface. [The density of air is ρ
= 1.2 kg m-3]

Answer (a) The weight of the Boeing aircraft is

balanced by the upward force due to the

pressure difference

∆P × A = 3.3 ×  105 kg ×  9.8

P∆ = (3.3 ×  105 kg ×  9.8 m s–2) / 500 m2

      = 6.5 × 103 Nm-2

(b) We ignore the small height difference

between the top and bottom sides in Eq. (10.12).

The pressure difference between them is

then

∆P v v= ( )ρ
2

2
2

1
2–

where v
2
 is the speed of air over the upper

surface and v
1
 is the speed under the bottom

surface.

v v
P

v v
2 1

2 1

2
–( ) =

+( )
∆

ρ

Taking the average speed

v
av
 = (v

2 
+ v

1
)/2 = 960 km/h = 267 m s-1,

we have

v v v
P

v
2 1 2

– /( ) =av

av

∆
ρ ≈  0.08

The speed above the wing needs to be only 8
% higher than that below. t

10.5  VISCOSITY

Most of the fluids are not ideal ones and offer some

resistance to motion. This resistance to fluid motion

is like an internal friction analogous to friction when

a solid moves on a surface. It is called  viscosity.

This force exists when there is relative motion

between layers of the liquid. Suppose we consider

a fluid  like oil  enclosed between two glass plates

as shown in Fig. 10.14 (a). The bottom plate is fixed

while the top plate is moved with a constant

velocity v relative to the fixed plate. If oil is

replaced by honey, a greater force is required to

move the plate with the same velocity. Hence

we say that honey is more viscous than oil. The

fluid in contact with a surface has the same

velocity as that of the surfaces. Hence, the layer

of the liquid in contact with top surface moves

with a velocity v and the layer of the liquid in

contact with the fixed surface is stationary. The

velocities of layers increase uniformly from

bottom (zero velocity) to the top layer (velocity

v). For any layer of liquid, its upper layer pulls

it forward while lower layer pulls it backward.

This results in force between the layers. This

type of flow is known as laminar. The layers of

liquid slide over one another as the pages of a

book do when it is placed flat on a table and a

horizontal force is applied to the top cover. When

a fluid is flowing in a pipe or a tube, then  velocity

of the liquid layer along the axis of the tube is

maximum and  decreases  gradually as we move

towards the walls where it becomes zero, Fig.

10.14 (b). The velocity on a cylindrical surface

in a tube is constant.

On account of this motion, a portion of liquid,

which at some instant has the shape ABCD, take

the shape of AEFD after short interval of time
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(∆t). During this time interval the liquid has

undergone a shear strain of

∆x/l. Since, the strain in a flowing fluid

increases with time continuously. Unlike a solid,

here the stress is found experimentally to depend

on ‘rate of change of strain’ or ‘strain rate’ i.e.

∆x/(l ∆t) or v/l instead of strain itself. The

coefficient of viscosity (pronounced ‘eta’) for a

fluid is defined as the ratio of shearing stress to

the strain rate.

η = =
F A

v l

F l

v A

/

/ (10.18)

The SI unit of viscosity is poiseiulle (Pl). Its

other units are N s m-2 or Pa s. The dimensions

of viscosity are [ML-1T-1]. Generally, thin liquids,

like water, alcohol, etc., are less viscous than

thick liquids, like coal tar, blood, glycerine, etc.

The coefficients of viscosity for some common

fluids are listed in Table 10.2. We point out two

facts about blood and water that you may find

interesting. As Table 10.2 indicates, blood is

‘thicker’ (more viscous) than water. Further, the

relative viscosity (η/η
water

) of blood remains

constant between 0 oC and 37 oC.

The viscosity of liquids decreases with

temperature, while it increases in the case of gases.

Example 10.9 A metal block of area 0.10 m2

is connected to a 0.010 kg mass via a string

that passes over an ideal pulley (considered

massless and frictionless), as in Fig. 10.15.

A liquid with a film thickness of 0.30 mm

is placed between the block and the table.

When released the block moves to the right

with a constant speed of 0.085 m s-1. Find

the coefficient of viscosity of the liquid.

Answer The metal block moves to the right

because of the tension in the string. The tension

T is equal in magnitude to the weight of the

suspended mass m. Thus, the shear force  F  is

F = T = mg = 0.010 kg ×  9.8 m s–2 = 9.8 ×  10-2 N

Shear stress on the fluid = F/A = N/m2

Strain rate = 

η =
stress

strain rate
s-1

  = 

  = 3.46 × 10-3 Pa s
  t

(a)

Fig. 10.15 Measurement of the coefficient of viscosity

of a liquid.

(b)

Fig 10.14 (a) A layer of liquid sandwiched between

two parallel glass plates, in which the

lower plate is fixed and the upper one is

moving to the right with velocity v
(b) velocity distribution for viscous flow in

a pipe.
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where ρ and σ are mass densities of sphere and

the fluid, respectively. We obtain

v
t
 = 2a2 (ρ-σ)g / (9η) (10.20)

So the terminal velocity v
t
 depends on the

square of the radius of the sphere and inversely

on the viscosity of the medium.

You may like to refer back to Example 6.2 in

this context.

Example 10.10 The terminal velocity of a

copper ball of radius 2.0 mm falling through

a tank of oil at 20oC is 6.5 cm s-1. Compute

the viscosity of the oil at 20oC. Density of

oil is 1.5 ×103 kg m-3, density of copper is

8.9 × 103 kg m-3.

Answer We have v
t 
= 6.5 × 10-2 ms-1, a = 2 × 10-3 m,

g = 9.8 ms-2,  ρ = 8.9 × 103 kg m-3,

σ =1.5 ×103 kg m-3. From Eq. (10.20)

   =  9.9 × 10-1 kg m–1 s–1 t

10.6  SURFACE TENSION

You must have noticed that, oil and water do

not mix; water wets you and me but not ducks;

mercury does not wet glass but water sticks to

it, oil rises up a cotton wick, inspite of gravity,

Sap and water rise up to the top of the leaves of

the tree,  hair of a paint brush do not cling

together when dry and even when dipped in

water but form a fine tip when taken out of it.

All these and many more such experiences are

related with the free surfaces of liquids. As

liquids have no definite shape but have a

definite volume, they acquire a free surface when

poured in a container. These surfaces  possess

some additional  energy. This phenomenon is

known as surface tension and it is concerned

with only liquid as gases do not have free

surfaces.  Let us now understand this

phenomena.

Table10.2 The viscosities of some fluids

Fluid T(oC) Viscosity (mPl)

Water 20 1.0

100 0.3

Blood 37 2.7

Machine Oil 16 113

38 34

Glycerine 20 830

Honey – 200

Air 0 0.017

40 0.019

10.5.1 Stokes’ Law

When a body falls through a fluid it drags the

layer of the fluid in contact with it. A relative

motion between the different layers of the fluid

is set and, as a result, the body experiences a

retarding force. Falling of a raindrop and

swinging of a pendulum bob are some common

examples of such motion. It is seen that the

viscous force is proportional to the velocity of

the object and is opposite to the direction of

motion. The other quantities on which the force

F depends are viscosity η of the fluid and radius

a of the sphere. Sir George G. Stokes (1819–

1903), an English scientist enunciated clearly

the viscous drag force F as

6F avη= π (10.19)

This is known as Stokes’ law. We shall not

derive Stokes’ law.

This law is an interesting example of retarding

force, which is proportional to velocity. We can

study its consequences on an object falling

through a viscous  medium. We consider a

raindrop in air. It accelerates initially due to

gravity. As the velocity increases, the retarding

force also increases. Finally, when viscous force

plus buoyant force becomes equal to the force

due to gravity, the net force becomes zero and so

does the acceleration. The sphere (raindrop) then

descends with a constant velocity. Thus, in

equilibrium, this terminal velocity v
t 
is given by

6πηav
t
 = (4π/3) a3 (ρ-σ)g

2021-22



MECHANICAL PROPERTIES OF FLUIDS 265

Fig. 10.16 Schematic picture of molecules in a liquid, at the surface and balance of forces. (a) Molecule inside

a liquid. Forces on a molecule due to others are shown. Direction of arrows indicates attraction of

repulsion. (b) Same, for a molecule at a surface. (c) Balance of attractive (AI and repulsive (R) forces.

terms of this fact. What is the energy required

for having a molecule at the surface? As

mentioned above, roughly it is half the energy

required to remove it entirely from the liquid

i.e., half the heat of evaporation.

Finally, what is a surface? Since a liquid

consists of molecules moving about, there cannot

be a perfectly sharp surface. The density of the

liquid molecules drops rapidly to zero around

z = 0 as we move along the direction indicated

Fig 10.16 (c) in a distance of the order of a few

molecular sizes.

and to disperse them far away from each other

in order to evaporate or vaporise, the heat of

evaporation required is quite large. For water it

is of the order of 40 kJ/mol.

Let us consider a molecule near the surface

Fig. 10.16(b). Only lower half side of it is

surrounded by liquid molecules. There is some

negative potential energy due to these, but

obviously it is less than that of a molecule in

bulk, i.e., the one fully inside. Approximately

it is half of the latter. Thus, molecules on a

liquid surface have some extra energy in

comparison to molecules in the interior.  A

liquid, thus, tends to have the least surface

area which external conditions permit.

Increasing surface area requires energy. Most

surface phenomenon can be understood in

10.6.2 Surface Energy and Surface Tension

As we have discussed that an extra energy is

associated with surface of liquids, the creation

of more surface (spreading of surface) keeping

other things like volume fixed requires

additional energy. To appreciate this, consider

a horizontal liquid film ending in bar free to slide

over parallel guides Fig (10.17).

10.6.1 Surface Energy

A liquid stays together because of attraction

between molecules. Consider a molecule well

inside a liquid. The intermolecular distances are

such that it is attracted to all the surrounding

molecules [Fig. 10.16(a)]. This attraction results

in a negative potential energy for the molecule,

which depends on the number and distribution

of molecules around the chosen one. But the

average potential energy of all the molecules is

the same. This is supported by the fact that to

take a collection of such molecules (the liquid)

Fig. 10.17 Stretching a film. (a) A film in equilibrium;

(b) The film stretched an extra distance.
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Suppose that we move the bar by a small

distance d as shown. Since the area of the

surface increases, the system now has more

energy, this means that some work has been

done against an internal force. Let this internal

force be F, the work done by the applied force is

F.d = Fd. From conservation of energy, this is

stored as additional energy in the film. If the

surface energy of the film is S per unit area, the

extra area is 2dl. A film has two sides and the

liquid in between, so there are two surfaces and

the extra energy is

S (2dl) = Fd (10.21)

Or, S=Fd/2dl = F/2l (10.22)

This quantity S is the magnitude of surface

tension. It is equal to the surface energy per unit

area of the liquid interface and is also equal to

the force per unit length exerted by the fluid on

the movable bar.

So far we have talked about the surface of one

liquid. More generally, we need to consider fluid

surface in contact with other fluids or solid

surfaces. The surface energy in that case depends

on the materials on both sides of the surface. For

example, if the molecules of the materials attract

each other, surface energy is reduced while if they

repel each other the surface energy is increased.

Thus, more appropriately, the surface energy is

the energy of the interface between two materials

and depends on both of them.

We make the following observations from

above:

(i) Surface tension is a force per unit length

(or surface energy per unit area) acting in

the plane of the interface between the plane

of the liquid and any other substance; it also

is the extra energy that the molecules at the

interface have as compared to molecules in

the interior.

(ii) At any point on the interface besides the

boundary, we can draw a line and imagine

equal and opposite surface tension forces S

per unit length of the line acting

perpendicular to the line, in the plane of the

interface. The line is in equilibrium. To be

more specific, imagine a line of atoms or

molecules at the surface. The atoms to the

left pull the line towards them; those to the

right pull it towards them! This line of atoms

is in equilibrium under tension. If the line

really marks the end of the interface, as in

Figure 10.16 (a) and (b) there is only the force

S per unit length acting inwards.

Table 10.3 gives the surface tension of various

liquids. The value of surface tension depends

on temperature. Like viscosity, the surface

tension of a liquid usually falls with

temperature.

Table 10.3 Surface tension of some liquids at the
temperatures indicated with the
heats of the vaporisation

Liquid Temp (oC) Surface Heat of

Tension vaporisation
 (N/m)  (kJ/mol)

Helium –270 0.000239 0.115

Oxygen –183 0.0132 7.1

Ethanol 20 0.0227 40.6

Water 20 0.0727 44.16

Mercury 20 0.4355 63.2

A fluid will stick to a solid surface if the

surface energy between fluid and the solid is

smaller than the sum of surface energies

between solid-air, and fluid-air. Now there is

attraction between the solid surface and the

liquid. It can be directly measured

experimentaly as schematically shown in Fig.

10.18. A flat vertical glass plate, below which a

vessel of some liquid is kept, forms one arm of

the balance. The plate is balanced by weights
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on the other side, with its horizontal edge just

over water. The vessel is raised slightly till the

liquid just touches the glass plate and pulls it

down a little because of surface tension. Weights

are added till the plate just clears water.

Fig. 10.18 Measuring Surface Tension.

Suppose the additional weight required is W.

Then from Eq. 10.22 and the discussion given

there, the surface tension of the liquid-air

interface is

S
la 

= (W/2l) = (mg/2l ) (10.23)

where m is the extra mass and l is the length of

the plate edge. The subscript (la) emphasises

the fact that the liquid-air interface tension is

involved.

10.6.3 Angle of Contact

The surface of liquid near the plane of contact,

with another medium is in general curved. The

angle between tangent to the liquid surface at

the point of contact and solid surface inside the

liquid is termed as angle of contact. It is denoted

by θ. It is different at interfaces of different pairs

of liquids and solids. The value of θ determines

whether a liquid will spread on the surface of a

solid or it will form droplets on it. For example,

water forms droplets on lotus leaf as shown in

Fig. 10.19 (a) while spreads over a clean plastic

plate as shown in Fig. 10.19(b).

(a)

(b)

Fig. 10.19 Different shapes of water drops with

interfacial tensions (a) on a lotus leaf (b)

on a clean plastic plate.

We consider the three interfacial tensions at

all the three interfaces, liquid-air, solid-air and

solid-liquid denoted by S
la
, S

sa
 and S

sl 
, respectively

as given in Fig. 10.19 (a) and (b). At the line of

contact, the surface forces between the three media

must be in equilibrium. From the Fig. 10.19(b) the

following relation is easily derived.

S
la
 cos θ  +  S

sl
 =  S

sa
(10.24)

The angle of contact is an obtuse angle if

S
sl  

> S
la
 as in the case of water-leaf interface

while it is an acute angle if S
sl  

< S
la
 as in the

case of water-plastic interface. When θ is an

obtuse angle then molecules of liquids are

attracted strongly to themselves and weakly to

those of solid, it costs a lot of energy to create a

liquid-solid surface, and liquid then does not

wet the solid. This is what happens with water

on a waxy or oily surface, and with mercury on

any surface. On the other hand, if the molecules

of the liquid are strongly attracted to those of
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the solid, this will reduce S
sl
 and therefore,

cos θ may increase or θ may decrease. In this

case θ is an acute angle. This is what happens

for water on glass or on plastic and for kerosene

oil on virtually anything (it just spreads). Soaps,

detergents and dying substances are wetting

agents. When they are added the angle of

contact becomes small so that these may

penetrate well and become effective. Water

proofing agents on the other hand are added to

create a large angle of contact between the water

and fibres.

10.6.4 Drops and Bubbles

One consequence of surface tension is that free

liquid drops and bubbles are spherical if effects

of gravity can be neglected. You must have seen

this especially clearly in small drops just formed

in a high-speed spray or jet, and in soap bubbles

blown by most of us in childhood. Why are drops

and bubbles spherical? What keeps soap

bubbles stable?

As we have been saying repeatedly, a liquid-

air interface has energy, so for a given volume

the surface with minimum energy is the one with

the least area. The sphere has this property.

Though it is out of the scope of this book, but

you can check that a sphere is better than at

least a cube in this respect! So, if gravity and

other forces (e.g. air resistance) were ineffective,

liquid drops would be spherical.

Another interesting consequence of surface

tension is that the pressure inside a spherical

drop Fig. 10.20(a) is more than the pressure

outside. Suppose a spherical drop of radius r is

in equilibrium. If its radius increase by ∆r. The

extra surface energy is

[4π(r + ∆r) 2- 4πr2] S
la
 = 8πr ∆r S

la
(10.25)

If the drop is in equilibrium this energy cost is

balanced by the energy gain due to

expansion under the pressure difference (P
i
 – P

o
)

between the inside of the bubble and the outside.

The work done is

W = (P
i
 – P

o
) 4πr2∆r (10.26)

so that

(P
i
 – P

o
) = (2 S

la
/ r) (10.27)

In general, for a liquid-gas interface, the

convex side has a higher pressure than the

concave side. For example, an air bubble in a

liquid, would have higher pressure inside it.

See Fig 10.20 (b).

Fig. 10.20 Drop, cavity and bubble of radius r.

A bubble Fig 10.20 (c) differs from a drop

and a cavity; in this it has two interfaces.

Applying the above argument we have for a

bubble

 (P
i
 – P

o
) = (4 S

la
/ r) (10.28)

This is probably why you have to blow hard,

but not too hard, to form a soap bubble. A little

extra air pressure is needed inside!

10.6.5 Capillary Rise

One consequence of the pressure difference

across a curved liquid-air interface is the well-

known effect that water rises up in a narrow

tube in spite of gravity. The word capilla means

hair in Latin; if the tube were hair thin, the rise

would be very large. To see this, consider a

vertical capillary tube of circular cross section

(radius a) inserted into an open vessel of water

(Fig. 10.21). The contact angle between water

Fig. 10.21 Capillary rise, (a) Schematic picture of a

narrow tube immersed water.

(b) Enlarged picture near interface.
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and glass is acute. Thus the surface of water in

the capillary is concave. This means that

there is a pressure difference between the

two sides of the top surface. This is given by

(P
i
 – P

o
) =(2S/r) = 2S/(a sec θ )

= (2S/a) cos θ (10.29)

Thus the pressure of the water inside the

tube, just at the meniscus (air-water interface)

is less than the atmospheric pressure. Consider

the two points A and B in Fig. 10.21(a). They

must be at the same pressure, namely

P
0
 + h ρ  g = P

i
 = P

A
(10.30)

where ρρρρρ is the density of water and h is called

the capillary rise [Fig. 10.21(a)]. Using

Eq. (10.29) and (10.30) we have

h ρ  g = (P
i
 – P

0
) = (2S cos θ  )/a    (10.31)

The discussion here, and the Eqs. (10.26) and

(10.27) make it clear that the capillary rise is

due to surface tension. It is larger, for a smaller

a. Typically it is of the order of a few cm for fine

capillaries. For example, if a = 0.05 cm, using

the value of surface tension for water (Table

10.3), we find that

h = 2S/(ρ  g a)

  

-1

3 -3 -2 -4

2×(0.073 N m )
=

(10 kg m ) (9.8 m s )(5 × 10 m)

  = 2.98 ×  10–2 m = 2.98 cm

Notice that if the liquid meniscus is convex,

as for mercury, i.e., if cos θ is negative then from

Eq. (10.30) for example, it is clear that the liquid

will be lower in the capillary !

10.6.6 Detergents and Surface Tension

We clean dirty clothes containing grease and oil

stains sticking to cotton or other fabrics by

adding detergents or soap to water, soaking

clothes in it and shaking. Let us understand

this process better.

Washing with water does not remove grease

stains. This is because water does not wet greasy

dirt; i.e., there is very little area of contact

between them. If water could wet grease, the flow

of water could carry some grease away.

Something of this sort is achieved through

detergents. The molecules of detergents are

hairpin shaped, with one end attracted to water
and the other to molecules of grease, oil or wax,
thus tending to form water-oil interfaces. The result
is shown in Fig. 10.22 as a sequence of figures.

In our language, we would say that addition
of detergents, whose molecules attract at one
end and say, oil on the other, reduces drastically
the surface tension S (water-oil). It may even
become energetically favourable to form such
interfaces, i.e., globs of dirt surrounded by
detergents and then by water. This kind of
process using surface active detergents or
surfactants is important not only for cleaning,
but also in recovering oil, mineral ores etc.

Fig. 10.22 Detergent action in terms of what

detergent molecules do.

.
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t

Example 10.11 The lower end of a capillary
tube of diameter 2.00 mm is dipped 8.00
cm below the surface of water in a beaker.
What is the pressure required in the tube
in order to blow a hemispherical bubble at
its end in water? The surface tension of
water at temperature of the experiments is
7.30×10-2 Nm-1. 1 atmospheric pressure =
1.01 × 105 Pa, density of water = 1000 kg/m3,
g = 9.80 m s-2. Also calculate the excess
pressure.

Answer The excess pressure in a bubble of gas
in a liquid is given by 2S/r, where S is the
surface tension of the liquid-gas interface. You
should note there is only one liquid surface in
this case. (For a bubble of liquid in a gas, there
are two liquid surfaces, so the formula for

excess pressure in that case is 4S/r.) The
radius of the bubble is r. Now the pressure
outside the bubble P

o
 equals atmospheric

pressure plus the pressure due to 8.00 cm of
water column. That is

P
o
 = (1.01 × 105 Pa + 0.08 m × 1000 kg m–3

    × 9.80 m s–2)
    = 1.01784 × 105 Pa

Therefore, the pressure inside the bubble is
  P

i 
 = P

o
 + 2S/r

= 1.01784 × 105 Pa + (2 × 7.3 × 10-2 Pa m/10-3 m)
= (1.01784 + 0.00146) × 105  Pa
= 1.02  × 105 Pa

where the radius of the bubble is taken
to be equal to the radius of the capillary tube,
since the bubble is hemispherical ! (The answer
has been rounded off to three significant
figures.) The excess pressure in the
bubble is 146 Pa. t

SUMMARY

1. The basic property of a fluid is that it can flow. The fluid does not have any

resistance to change of its shape. Thus, the shape of a fluid is governed by the

shape of its container.

2. A liquid is incompressible and has a free surface of its own. A gas is compressible

and it expands to occupy all the space available to it.

3. If F is the normal force exerted by a fluid on an area A then the average pressure P
av

is defined as the ratio of the force to area

A

F
P

av
=

4. The unit of the pressure is the pascal (Pa). It is the same as N m-2. Other common

units of pressure are

1 atm = 1.01×105 Pa

1 bar = 105 Pa

1 torr = 133 Pa = 0.133 kPa

1 mm of Hg = 1 torr = 133 Pa

5. Pascal’s law states that: Pressure in a fluid at rest is same at all points which are at

the same height. A change in pressure applied to an enclosed fluid is transmitted

undiminished to every point of the fluid and the walls of the containing vessel.

6. The pressure in a fluid varies with depth h according to the expression

P = P
a 
+ ρgh

where  ρ is the density of the fluid, assumed uniform.

7. The volume of an incompressible fluid passing any point every second in a pipe of

non uniform crossection is the same in the steady flow.

v A = constant ( v is the velocity and A is the area of crossection)

The equation is due to mass conservation in incompressible fluid flow.
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8. Bernoulli’s principle states that as we move along a streamline, the sum of the

pressure (P), the kinetic energy per unit volume (ρv2/2) and the potential energy per

unit volume (ρgy) remains a constant.

P + ρv2/2 + ρgy = constant

The equation is basically the conservation of energy applied to non viscuss fluid

motion in steady state. There is no fluid which have zero viscosity, so the above

statement is true only approximately. The viscosity is like friction and converts the

kinetic energy to heat energy.

9. Though shear strain in a fluid does not require shear stress, when a shear stress is

applied to a fluid, the motion is generated which causes a shear strain growing

with time. The ratio of the shear stress to the time rate of shearing strain is known

as coefficient of viscosity, η.

where symbols have their usual meaning and are defined in the text.

10. Stokes’ law states that the viscous drag force F on a sphere of radius a moving with

velocity v through a fluid of viscosity is, F = 6πηav.

11. Surface tension is a force per unit length (or surface energy per unit area) acting in

the plane of interface between the liquid and the bounding surface. It is the extra

energy that the molecules at the interface have as compared to the interior.

POINTS TO PONDER

1. Pressure is a scalar quantity. The definition of the pressure as “force per unit area”
may give one false impression that pressure is a vector. The “force” in the numerator of
the definition is the component of the force normal to the area upon which it is
impressed. While describing fluids as a concept, shift from particle and rigid body
mechanics is required. We are concerned with properties that vary from point to point
in the fluid.

2.  One should not think of pressure of a fluid as being exerted only on a solid like the
walls of a container or a piece of solid matter immersed in the fluid. Pressure exists at
all points in a fluid. An element of a fluid (such as the one shown in Fig. 10.2) is in
equilibrium because the pressures exerted on the various faces are equal.

3. The expression for pressure
P = P

a 
+ ρgh

holds true if fluid is incompressible. Practically speaking it holds for liquids, which
are largely incompressible and hence  is a constant with height.

4. The gauge pressure is the difference of the actual pressure and the atmospheric pressure.
P – P

a 
= P

g

Many pressure-measuring devices measure the gauge pressure. These include the tyre
pressure gauge and the blood pressure gauge (sphygmomanometer).

5. A streamline is a map of fluid flow. In a steady flow two streamlines do not intersect as
it means that the fluid particle will have two possible velocities at the point.

6. Bernoulli’s principle does not hold in presence of viscous drag on the fluid. The work
done by this dissipative viscous force must be taken into account in this case, and P

2

[Fig. 10.9] will be lower than the value given by Eq. (10.12).
7. As the temperature rises the atoms of the liquid become more mobile and the coefficient

of viscosity, η  falls. In a gas the temperature rise increases the random motion of
atoms and η  increases.

8. Surface tension arises due to excess potential energy of the molecules on the surface
in comparison to their potential energy in the interior. Such a surface energy is present
at the interface separating two substances at least one of which is a fluid. It is not the
property of a single fluid alone.
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EXERCISES

10.1 Explain why
(a) The blood pressure in humans is greater at the feet than at the brain
(b) Atmospheric pressure at a height of about 6 km decreases to nearly half of

its value at the sea level, though the height of the atmosphere is more than
100 km

(c) Hydrostatic pressure is a scalar quantity even though pressure is force
divided by area.

10.2 Explain why
(a) The angle of contact of mercury with glass is obtuse, while that of water

with glass is acute.
(b) Water on a clean glass surface tends to spread out while mercury on the

same surface tends to form drops. (Put differently, water wets glass while
mercury does not.)

(c) Surface tension of a liquid is independent of the area of the surface
(d) Water with detergent disolved in it should have small angles of contact.
(e) A drop of liquid under no external forces is always spherical in shape

10.3 Fill in the blanks using the word(s) from the list appended with each statement:
(a) Surface tension of liquids generally . . . with temperatures (increases / decreases)
(b) Viscosity of gases . . . with temperature, whereas viscosity of   liquids  . . .  with

temperature (increases / decreases)
(c) For solids with elastic modulus of rigidity, the shearing force is proportional

to . . . , while for fluids it is proportional to . . . (shear strain / rate of shear
strain)

(d) For a fluid in a steady flow, the increase in flow speed at a constriction follows
(conservation of mass / Bernoulli’s principle)

(e) For the model of  a plane in a wind tunnel, turbulence occurs at a ... speed for
turbulence for an actual plane (greater / smaller)

10.4 Explain why
(a) To keep a piece of paper horizontal, you should blow over, not under, it
(b) When we try to close a water tap with our fingers, fast jets of water gush

through the openings between our fingers
(c) The size of the needle of a syringe controls flow rate better than the thumb

pressure exerted by a doctor while administering an injection
(d) A fluid flowing out of a small hole in a vessel results in a backward thrust on

the vessel
(e) A spinning cricket ball in air does not follow a parabolic trajectory

10.5 A 50 kg girl wearing high heel shoes balances on a single heel. The heel is circular with
a diameter 1.0 cm. What is the pressure exerted by the heel on the horizontal floor ?
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10.6 Toricelli’s barometer used mercury. Pascal duplicated it using French wine of density
984 kg m–3. Determine the height of the wine column for normal atmospheric
pressure.

10.7 A vertical off-shore structure is built to withstand a maximum stress of 109 Pa. Is
the structure suitable for putting up on top of an oil well in the ocean ? Take the
depth of the ocean to be roughly 3 km, and ignore ocean currents.

10.8 A hydraulic automobile lift is designed to lift cars with a maximum mass of 3000
kg. The area of cross-section of the piston carrying the load is 425 cm2. What
maximum pressure would the smaller piston have to bear ?

10.9 A U-tube contains water and methylated spirit separated by mercury. The mercury
columns in the two arms are in level with 10.0 cm of water in one arm and 12.5 cm
of spirit in the other. What is the specific gravity of spirit ?

10.10 In the previous problem, if 15.0 cm of water and spirit each are further poured into
the respective arms of the tube, what is the difference in the levels of mercury in
the two arms ? (Specific gravity of mercury = 13.6)

10.11 Can Bernoulli’s equation be used to describe the flow of water through a rapid in a
river ? Explain.

10.12 Does it matter if one uses gauge instead of absolute pressures in applying Bernoulli’s
equation ? Explain.

10.13 Glycerine flows steadily through a horizontal tube of length 1.5 m and radius 1.0
cm. If the amount of glycerine collected per second at one end is 4.0 ×  10–3 kg s–1,
what is the pressure difference between the two ends of the tube ? (Density of glycerine
= 1.3 ×  103 kg m–3 and viscosity of glycerine = 0.83 Pa s). [You may also like to check
if the assumption of laminar flow in the tube is correct].

10.14 In a test experiment on a model aeroplane in a wind tunnel, the flow speeds on the
upper and lower surfaces of the wing are 70 m s–1and 63 m s-1 respectively. What is
the lift on the wing if its area is 2.5 m2  ? Take the density of air to be 1.3 kg m–3.

10.15 Figures 10.23(a) and (b) refer to the steady flow of a (non-viscous) liquid. Which of
the two figures is incorrect ? Why ?

Fig. 10.23

10.16 The cylindrical tube of a spray pump has a cross-section of 8.0 cm2 one end of
which has 40 fine holes each of diameter 1.0 mm. If the liquid flow inside the tube
is 1.5 m min–1, what is the speed of ejection of the liquid through the holes ?

10.17 A U-shaped wire is dipped in a soap solution, and removed. The thin soap film
formed between the wire and the light slider supports a weight of 1.5 ×  10–2 N
(which includes the small weight of the slider). The length of the slider is 30 cm.
What is the surface tension of the film ?

10.18 Figure 10.24 (a) shows a thin liquid film supporting a small weight = 4.5 ×  10–2 N.
What is the weight supported by a film of the same liquid at the same temperature
in Fig. (b) and (c) ? Explain your answer physically.
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Fig. 10.24

10.19 What is the pressure inside the drop of mercury of radius 3.00 mm at room
temperature ? Surface  tension of mercury  at that temperature  (20 °C) is 4.65 ×
10–1 N m–1. The atmospheric pressure is 1.01 × 105 Pa. Also give the excess pressure
inside the drop.

10.20 What is the excess pressure inside a bubble of soap solution of radius 5.00 mm,
given that the surface tension of soap solution at the temperature (20 °C) is 2.50 ×
10–2 N m–1 ? If an air bubble of the same dimension were formed at depth of 40.0
cm inside a container containing the soap solution (of relative density 1.20), what
would be the pressure inside the bubble ? (1 atmospheric pressure is  1.01 ×  105 Pa).

Additional Exercises

10.21 A tank with a square base of area 1.0 m2 is divided by a vertical partition in the
middle. The bottom of the partition has a small-hinged door of area 20 cm2. The
tank is filled with water in one compartment, and an acid (of relative density 1.7) in
the other, both to a height of 4.0 m. compute the force necessary to keep the door
close.

10.22 A manometer reads the pressure of a gas in an enclosure as shown in Fig. 10.25 (a)
When a pump removes some of the gas, the manometer reads as in Fig. 10.25 (b)
The liquid used in the manometers is mercury and the atmospheric pressure is 76
cm of mercury.
(a) Give the absolute and gauge pressure of the gas in the enclosure for cases (a)

and (b), in units of cm of mercury.
(b) How would the levels change in case (b) if 13.6 cm of water (immiscible with

mercury) are poured into the right limb of the manometer ? (Ignore the small
change in the volume of the gas).

Fig. 10.25

10.23 Two vessels have the same base area but different shapes. The first vessel takes
twice the volume of water that the second vessel requires to fill upto a particular
common height. Is the force exerted by the water on the base of the vessel the same
in the two cases ? If so, why do the vessels filled with water to that same height give
different readings on a weighing scale ?
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10.24 During blood transfusion the needle is inserted in a vein where the gauge pressure
is 2000 Pa. At what height must the blood container be placed so that blood may
just enter the vein ? [Use the density of whole blood from Table 10.1].

10.25 In deriving Bernoulli’s equation, we equated the work done on the fluid in the tube
to its change in the potential and kinetic energy. (a) What is the largest average
velocity of blood flow in an artery of diameter 2 ×  10–3 m if the flow must remain
laminar ?  (b) Do the dissipative forces become more important as the fluid velocity
increases ? Discuss qualitatively.

10.26 (a) What is the largest average velocity of blood flow in an artery of radius 2×10–3m
if the flow must remain lanimar? (b) What is the corresponding flow rate ? (Take
viscosity of blood to be 2.084 ×  10–3 Pa s).

10.27 A plane is in level flight at constant speed and each of its two wings has an area of
25 m2. If the speed of the air is 180 km/h over the lower wing and 234 km/h over
the upper wing surface, determine the plane’s mass. (Take air density to be 1 kg
m–3).

10.28 In Millikan’s oil drop experiment, what is the terminal speed of an uncharged drop
of radius 2.0 ×  10–5 m and density 1.2 ×  103 kg m–3. Take the viscosity of air at the
temperature of the experiment to be 1.8 ×  10–5 Pa s. How much is the viscous force
on the drop at that speed ? Neglect buoyancy of the drop due to air.

10.29 Mercury has an angle of contact equal to 140° with soda lime glass. A narrow tube
of radius 1.00 mm made of this glass is dipped in a trough containing mercury. By
what amount does the mercury dip down in the tube relative to the liquid surface
outside ? Surface tension of mercury at the temperature of the experiment is 0.465
N m–1. Density of mercury = 13.6 ×  103 kg m–3.

10.30 Two  narrow  bores  of  diameters  3.0 mm and 6.0 mm  are joined together to form
a U-tube open at both ends. If the U-tube contains water, what is the difference in
its levels in the two limbs of the tube ? Surface tension of water at the temperature
of the experiment is 7.3 × 10–2 N m–1. Take the angle of contact to be zero and
density of water to be 1.0 ×  103 kg m–3 (g = 9.8 m s–2) .

Calculator/Computer – Based  Problem

10.31 (a) It is known that density ρ of air decreases with height y as

0
oy/ye −ρ = ρ

where ρ
0
 = 1.25 kg m–3 is the density at sea level, and y

0
 is a constant. This density

variation is called the law of atmospheres. Obtain this law assuming that the
temperature of atmosphere remains a constant (isothermal conditions). Also assume
that the value of g remains constant.
(b) A large He balloon of volume 1425 m3 is used to lift a payload of 400 kg. Assume
that the balloon maintains constant radius as it rises. How high does it rise ?

[Take y
0
 = 8000 m and ρ

He
 = 0.18 kg m–3].
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APPENDIX 10.1 : WHAT IS BLOOD PRESSURE ?

In evolutionary history there occurred a time when animals started spending a significant amount
of time in the upright position. This placed a number of demands on the circulatory system. The
venous system that returns blood from the lower extremities to the heart underwent changes. You
will recall that veins are blood vessels through which blood returns to the heart. Humans and
animals such as the giraffe have adapted to the problem of moving blood upward against gravity.
But animals such as snakes, rats and rabbits will die if held upwards, since the blood remains in
the lower extremities and the venous system is unable to move it towards the heart.

Fig. 10.26 Schematic view of the gauge pressures in the arteries in various parts of the human body while

standing or lying down. The pressures shown are averaged over a heart cycle.

Figure 10.26 shows the average pressures observed in the arteries at various points in the human body.
Since viscous effects are small, we can use Bernoulli’s equation, Eq. (10.13),

21
Constant

2
P v gy+ ρ + ρ =

to understand these pressure values. The kinetic energy term (ρ  v2/2) can be ignored since the velocities in
the three arteries are small (≈  0.1 m s–1) and almost constant. Hence the gauge pressures at the brain P

B
,

the heart P
H
, and the foot P

F 
are related by

P
F
 = P

H
 +  ρ g h

H
 = P

B
 + ρ g h

B
(10.34)

where ρ is the density of blood.

Typical values of the heights to the heart and the brain are h
H
 = 1.3 m and h

B
 = 1.7 m. Taking

ρ = 1.06 ×  103 kg m–3 we obtain that P
F  

= 26.8 kPa (kilopascals) and
 
P

B
 = 9.3 kPa given that P

H
 = 13.3 kPa.

Thus the pressures in the lower and upper parts of the body are so different when a person is standing,
but are almost equal when he is lying down. As mentioned in the text the units for pressure more
commonly employed in medicine and physiology are torr and mm of Hg. 1 mm of Hg = 1 torr = 0.133 kPa.
Thus the average pressure at the heart is P

H
 = 13.3 kPa = 100 mm of Hg.

The human body is a marvel of nature. The veins in the lower extremities are equipped with valves,
which open when blood flows towards the heart and close if it tends to drain down. Also, blood is returned
at least partially by the pumping action associated with breathing and by the flexing of the skeletal muscles
during walking. This explains why a soldier who is required to stand at attention may faint because of
insufficient return of the blood to the heart. Once he is made to lie down, the pressures become equalized
and he regains consciousness.

An instrument called the sphygmomanometer usually measures the blood pressure of humans. It is a
fast, painless and non-invasive technique and gives the doctor a reliable idea about the patient’s health.
The measurement process is shown in Fig. 10.27. There are two reasons why the upper arm is used. First,
it is at the same level as the heart and measurements here give values close to that at the heart. Secondly,
the upper arm contains a single bone and makes the artery there (called the brachial artery) easy to
compress. We have all measured pulse rates by placing our fingers over the wrist. Each pulse takes a little
less than a second. During each pulse the pressure in the heart and the  circulatory  system goes through a

2021-22



MECHANICAL PROPERTIES OF FLUIDS 277

maximum as the blood is pumped by the heart (systolic  pressure) and a minimum as the heart relaxes

(diastolic pressure). The sphygmomanometer is a device, which measures these extreme pressures. It

works on the principle that blood flow in the brachial (upper arm) artery can be made to go from
laminar to turbulent by suitable compression. Turbulent flow is dissipative, and its sound can be
picked up on the stethoscope.

The gauge pressure in an air sack wrapped around the upper arm is measured using a manometer or a

dial pressure gauge (Fig. 10.27). The pressure in the sack is first increased till the brachial artery is closed.

The pressure in the sack is then slowly reduced while a stethoscope placed just below the sack is used to
listen to noises arising in the brachial artery. When

the pressure is just below the systolic (peak)

pressure, the artery opens briefly. During this brief

period, the blood velocity in the highly constricted

artery is high and turbulent and hence noisy. The

resulting noise is heard as a tapping sound on the
stethoscope. When the pressure in the sack is

lowered further, the artery remains open for a longer

portion of the heart cycle. Nevertheless, it remains

closed during the diastolic (minimum pressure)

phase of the heartbeat. Thus the duration of the

tapping sound is longer. When the pressure in the
sack reaches the diastolic pressure the artery is

open during the entire heart cycle. The flow is

however, still turbulent and noisy. But instead of a

tapping sound we hear a steady, continuous roar

on the stethoscope.

The blood pressure of a patient is presented as the ratio of systolic/diastolic pressures. For a resting

healthy adult it is typically 120/80 mm of Hg (120/80 torr). Pressures above 140/90 require medical

attention and advice. High blood pressures may seriously damage the heart, kidney and other organs and

must be controlled.

Fig. 10.27 Blood pressure measurement using the

sphygmomanometer and stethoscope.
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