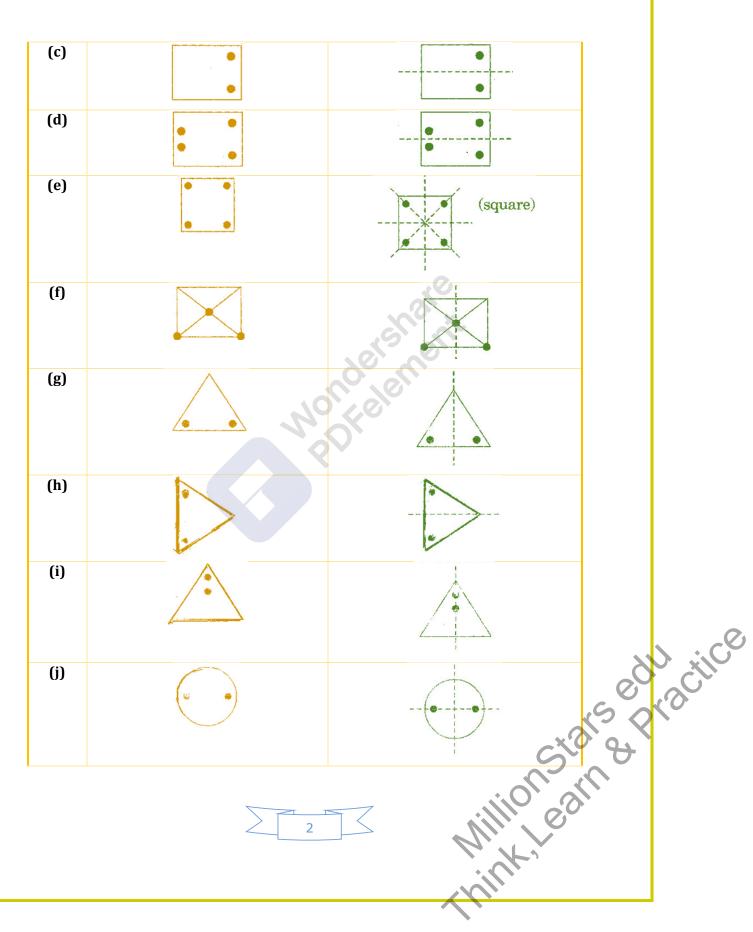

## **Mathematics**

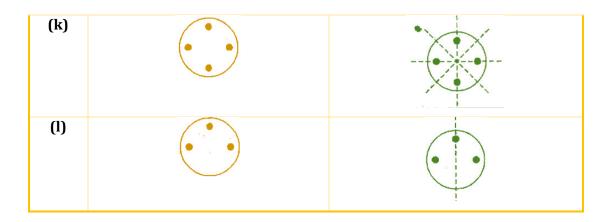
(Chapter - 14) (Symmetry)(Class - VII)

### Exercise 14.1

### **Question 1:**

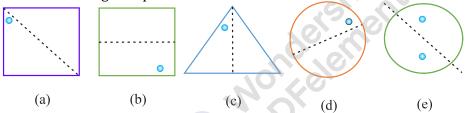

Copy the figures with punched holes and find the axes of symmetry for the following:




### Answer 1:

| (a)          |      |         |
|--------------|------|---------|
| (rectangle)  |      |         |
| (b) (square) | NS S | y dilce |
|              |      |         |







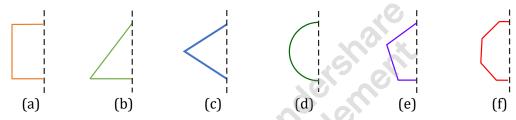



### **Question 2:**

Express the following in exponential form:



### Answer 2.


| Ewati Answ | er 2:               |                        |     |          |
|------------|---------------------|------------------------|-----|----------|
| S.No.      | Line(s) of symmetry | Other holes on figures |     |          |
| (a)        |                     |                        |     |          |
| (b)        | •                   |                        |     | C.       |
| (c)        |                     |                        | 600 | y actice |
| (d)        |                     |                        | A-  |          |
|            | 3                   | Willing 6.5            |     |          |
|            |                     |                        |     | •        |



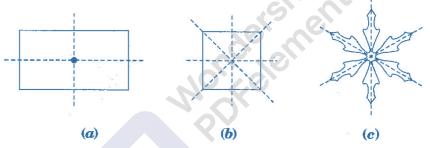


### **Question 3:**

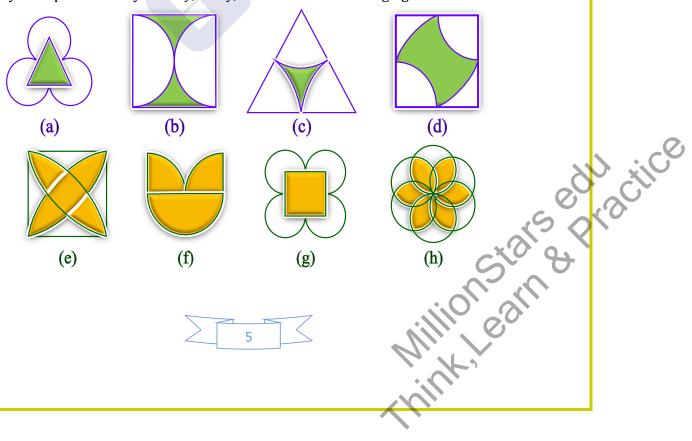
In the following figures, the mirror line (i.e., the line of symmetry) is given as a dotted line. Complete each figure performing reflection in the dotted (mirror) line. (You might perhaps place a mirror along the dotted line and look into the mirror for the image). Are you able to recall the name of the figure you complete?



### **E**MARI Answer 3:


| S.No. | Question figures | Complete figures | Names of the figure |             |
|-------|------------------|------------------|---------------------|-------------|
| (a)   |                  |                  | Square              |             |
| (b)   |                  |                  | Triangle            |             |
| (c)   |                  |                  | Rhombus             | is practice |
| (d)   |                  |                  | Circle              | 77          |
|       |                  | 4                | Willion Say         |             |
|       |                  |                  |                     |             |




| (e) |  | Pentagon |
|-----|--|----------|
| (f) |  | Octagon  |

### **Question 4:**

The following figures have more than one line of symmetry. Such figures are said to have multiple lines of symmetry:



Identify multiple lines of symmetry, if any, in each of the following figures:





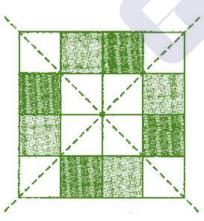
### Answer 4.

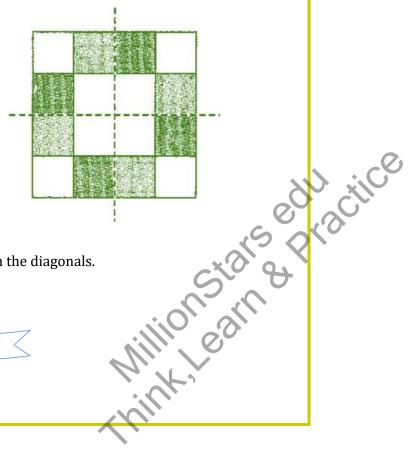
| S.No. | Problem Figures | Lines of symmetry |          |          |
|-------|-----------------|-------------------|----------|----------|
| (a)   |                 |                   |          |          |
| (b)   |                 |                   |          |          |
| (c)   |                 |                   |          |          |
| (d)   |                 |                   |          |          |
| (e)   |                 |                   |          |          |
| (f)   |                 |                   |          | ی . دی   |
| (g)   |                 | Sign              | \$ \$ \$ | , ocillo |
|       | 6               |                   |          |          |
|       |                 |                   |          |          |





### **Question 5:**


Copy the figure given here:


Take any one diagonal as a line of symmetry and shade a few more squares to make the figure symmetric about a diagonal. Is there more than one way to do that? Will the figure be symmetric about both the diagonals?

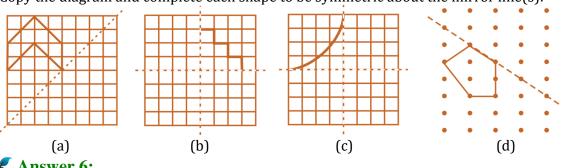


### **E**MANSWER 5:

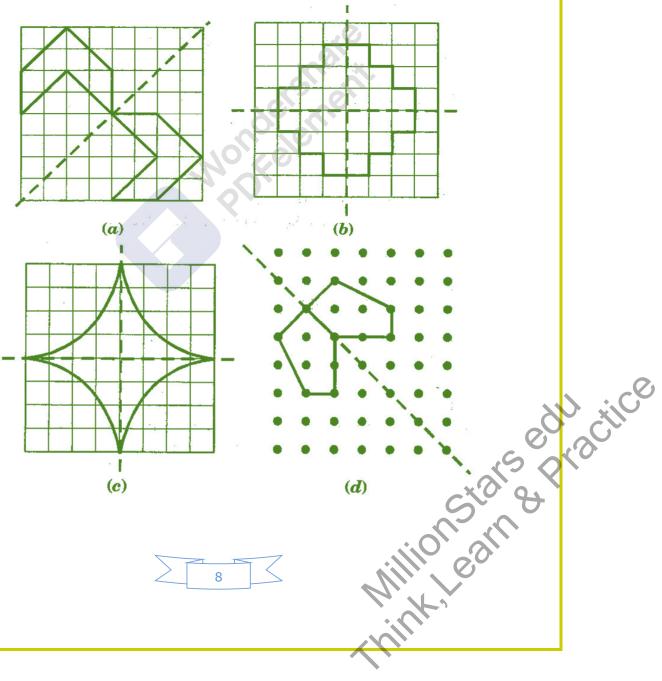
Answer figures are:






Yes, there is more than one way.

Yes, this figure will be symmetric about both the diagonals.




### **Question 6:**

Copy the diagram and complete each shape to be symmetric about the mirror line(s):



**Exact** Answer 6:





### **Question 7:**

State the number of lines of symmetry for the following figures:

(a) An equilateral triangle

(g) A parallelogram

- (b) An isosceles triangle
- (e) A rectangle
- (h) A quadrilateral
- (c) A scalene triangle
- (f) A rhombus
- (i) A regular hexagon

# (j) A circle

(d) A square

| S.No. | Figure's name        | Diagram with symmetry | Number of lines |            |
|-------|----------------------|-----------------------|-----------------|------------|
| (a)   | Equilateral triangle | symmetry              | 3               |            |
| (b)   | Isosceles triangle   |                       | 1               |            |
| (c)   | Scalene triangle     |                       | 0               |            |
| (d)   | Square               |                       | 4               |            |
| (e)   | Rectangle            |                       | 2               | . ~0       |
| (f)   | Rhombus              |                       | 2               | egy actice |
| (g)   | Parallelogram        |                       | 0 5             | (H)        |
|       |                      | 9                     | O Sid           |            |
|       |                      |                       | 10,             |            |



| (h) | Quadrilateral   | 0        |
|-----|-----------------|----------|
| (i) | Regular Hexagon | 6        |
| (i) | Circle          | Infinite |

### **Question 8:**

What letters of the English alphabet have reflectional symmetry (i.e., symmetry related to mirror reflection) about.

- (a) a vertical mirror
- (b) a horizontal mirror
- (c) both horizontal and vertical mirrors

### Answer 8:

(a) Vertical mirror - A, H, I, M, O, T, U, V, W, X and Y

| mirror |     | mirror |   |  |
|--------|-----|--------|---|--|
| A      | ı A | U      | U |  |
| H      | H   | v      | V |  |
| Ι      | I   | W      | W |  |
| M      | M   | X      | X |  |
| 0      | 0   | Y      | Y |  |
| T      | Т   | ,      |   |  |

|            | Α            | A     |         |              |                                        | U         | U                                      |     |       |       |   |
|------------|--------------|-------|---------|--------------|----------------------------------------|-----------|----------------------------------------|-----|-------|-------|---|
|            | H            | Н     |         | i.           |                                        | V         | V                                      |     |       |       |   |
|            | I            | I     |         |              |                                        | W         | W                                      |     |       |       |   |
|            | M            | M     |         |              |                                        | X         | X                                      |     |       |       |   |
|            | 0            | 0     |         |              |                                        | Y         | Y                                      |     |       |       |   |
|            | $\mathbf{T}$ | Т     |         |              |                                        |           |                                        |     |       |       | 2 |
| b) Horizor | ntal mir     | ror – | В, С, Г | , E, H,      | I, O a                                 | nd X      |                                        |     |       |       | 0 |
|            | В            | C     | D       | $\mathbf{E}$ | H                                      | I         | O                                      | X   |       | 40    | 2 |
| mirror     |              |       |         |              | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |           | ************************************** | 777 |       |       |   |
|            | В            | C     | D       | E            | H                                      | Ι         | О                                      | X   |       | 6     | 4 |
| c) Both ho | rizonta      | l and | vertic  | al mir       | ror – l                                | H, I, O a | and X                                  |     | -(    | 12.10 |   |
|            |              |       | _       |              |                                        |           | 7                                      |     | .(10) |       |   |
|            |              |       | Ì       | > [          | 10                                     |           |                                        |     |       | 0     |   |
|            |              |       | -       |              |                                        |           | _                                      |     | Mi.   |       |   |
|            |              |       |         |              |                                        |           |                                        |     |       | )     |   |
|            |              |       |         |              |                                        |           |                                        |     |       |       |   |
|            |              |       |         |              |                                        |           |                                        | 4   |       |       |   |
|            |              |       |         |              |                                        |           |                                        |     | *     |       |   |



#### **Question 9:**

Give three examples of shapes with no line of symmetry.

### Answer 9:

The three examples are:

- Quadrilateral
- Scalene triangle
- Parallelogram

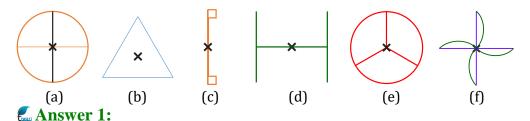
### **Question 10:**

What other name can you give to the line of symmetry of:

- (a) an isosceles triangle?
- (b) a circle?

#### Answer 10:

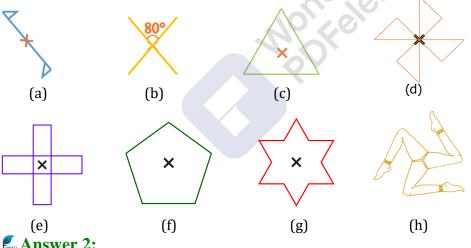
- (a) The line of symmetry of an isosceles triangle is median or altitude.
- (b) The line of symmetry of a circle is diameter.





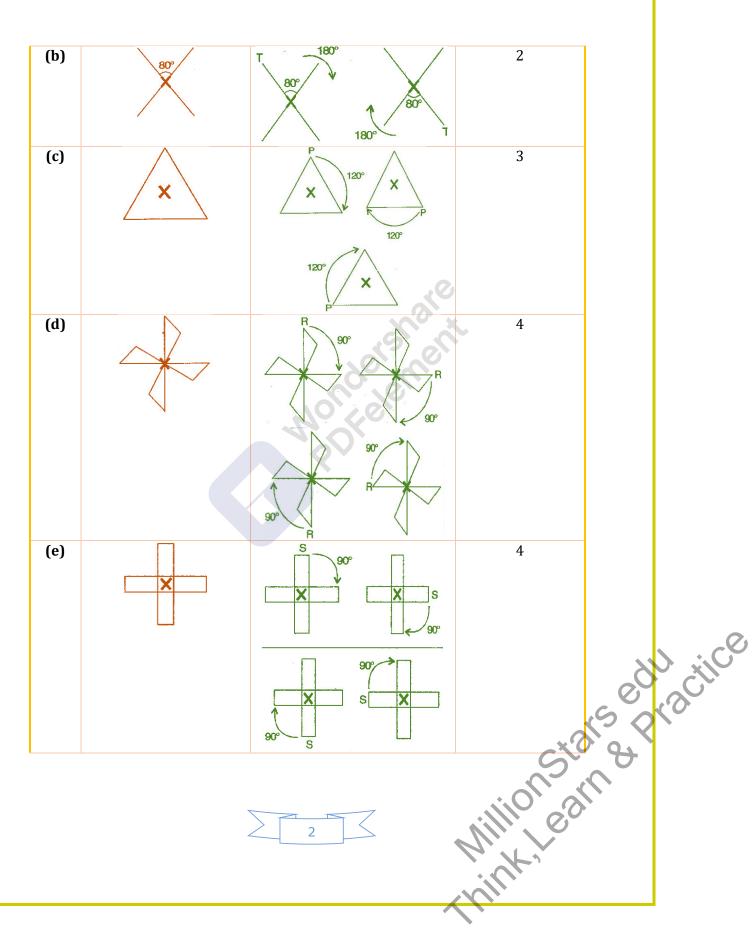

### Exercise 14.2

### **Question 1:**

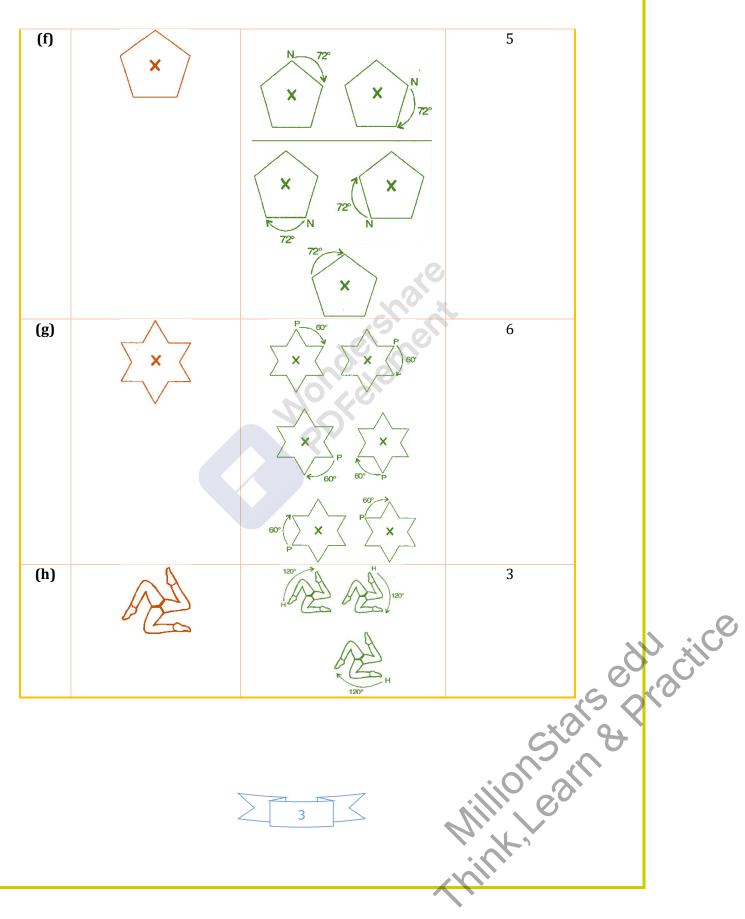

Which of the following figures have rotational symmetry of order more than 1:



Rotational symmetry of order more than 1 are (a),(b),(d),(e) and (f) because in these figures, a complete turn, more than 1 number of times, an object looks exactly the same.


### **Question 2:**

Give the order the rotational symmetry for each figure:




| (e)   | (f)<br>wer 2:   | (g)             | (h)   |                     |        |
|-------|-----------------|-----------------|-------|---------------------|--------|
| S.No. | Problem figures | Rotational figu |       | rotational<br>metry | J dice |
| (a)   | *               | 180°            | *     | 2 50 9              | (3)    |
|       |                 | 1               | Milli | F. Sall             |        |
|       |                 |                 |       |                     |        |









3



### Exercise 14.3

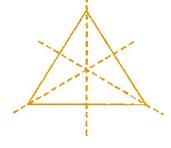
### **Question 1:**

Name any two figures that have both line symmetry and rotational symmetry.

#### **L**Answer 1:

Circle and Square.

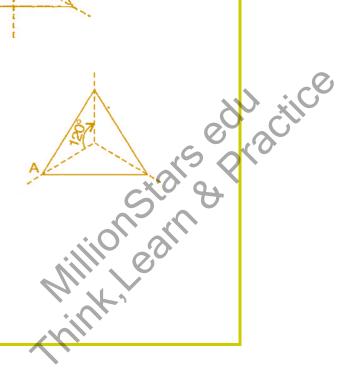
### **Question 2:**


Draw, wherever possible, a rough sketch of:

- (i) a triangle with both line and rotational symmetries of order more than 1.
- (ii) a triangle with only line symmetry and no rotational symmetry of order more than 1.
- (iii) a quadrilateral with a rotational symmetry of order more than 1 but not a line symmetry.
- (iv) a quadrilateral with line symmetry but not a rotational symmetry of order more than 1.

#### Answer 2:

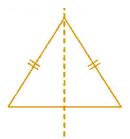
(i) An equilateral triangle has both line and rotational symmetries of order more than 1.


Line symmetry:

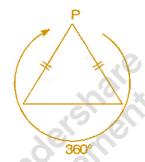


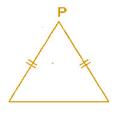
Rotational symmetry:





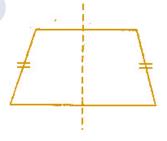


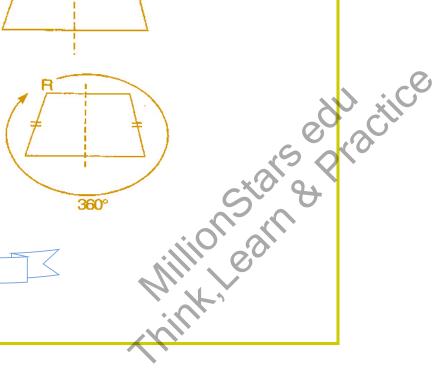


(ii) An isosceles triangle has only one line of symmetry and no rotational symmetry of order more than 1.

Line symmetry:




Rotational symmetry:






- (iii) It is not possible because order of rotational symmetry is more than 1 of a figure, most acertain the line of symmetry.
- (iv) A trapezium which has equal non-parallel sides, a quadrilateral with line symmetry but not a rotational symmetry of order more than 1.

Line symmetry:



 $Rotational\ symmetry:$ 





### **Question 3:**

In a figure has two or more lines of symmetry, should it have rotational symmetry of order more than 1?

### Answer 3:

Yes, because every line through the centre forms a line of symmetry and it has rotational symmetry around the centre for every angle.

### **Question 4:**

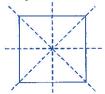
Fill in the blanks:

| I III III the blanks. |                    |                   |                   |
|-----------------------|--------------------|-------------------|-------------------|
| Shape                 | Centre of Rotation | Order of Rotation | Angle of Rotation |
| Square                |                    | 40                |                   |
| Rectangle             |                    | VO. X             |                   |
| Rhombus               |                    | (2, %)            |                   |
| Equilateral triangle  |                    | 90,000            |                   |
| Regular hexagon       |                    |                   |                   |
| Circle                | - 1                |                   |                   |
| Semi-circle           |                    | 2                 |                   |

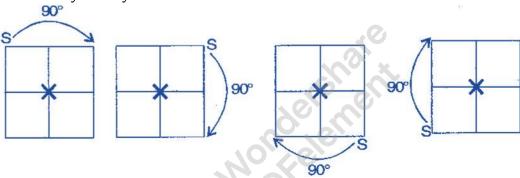
### Answer 4:

| Shape                | Centre of Rotation               | Order of Rotation | Angle of Rotation |          |
|----------------------|----------------------------------|-------------------|-------------------|----------|
| Square               | Intersecting point of diagonals. | 4                 | 90°               |          |
| Rectangle            | Intersecting point of diagonals. | 2                 | 180°              |          |
| Rhombus              | Intersecting point of diagonals. | 2                 | 180°              | 01       |
| Equilateral triangle | Intersecting point of medians.   | 3                 | 120°              | add dice |
| Regular<br>hexagon   | Intersecting point of diagonals. | 6                 | 60°               | SOKO     |
| Circle               | Centre                           | infinite          | At every point    | Q. X     |
| Semi-circle          | Mid-point of diameter            | 1                 | 360°              | 0        |
|                      | 3                                |                   | Willio, egi       |          |
|                      |                                  | *                 |                   |          |




### **Question 5:**

Name the quadrilateral which has both line and rotational symmetry of order more than


### **Car** Answer 5:

Square has both line and rotational symmetry of order more than 1.

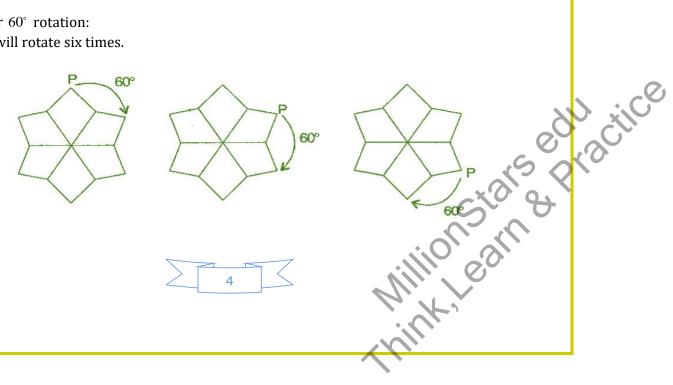
Line symmetry:



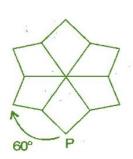
Rotational symmetry:

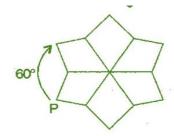


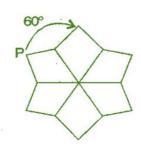
### **Question 6:**


After rotating by 60° about a centre, a figure looks exactly the same as its original position. At what other angles will this happen for the figure?

### **Answer 6:**

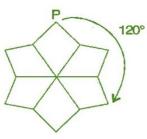

Other angles will be 120°,180°, 240°, 300°, 360°.


For 60° rotation:

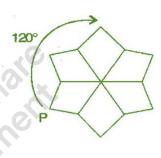

It will rotate six times.





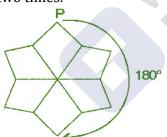





For  $120^{\circ}$  rotation:

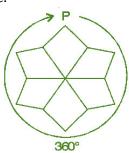
It will rotate three times.

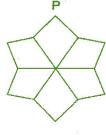







For  $180^{\circ}$  rotation:


It will rotate two times.






For 360° rotation:

It will rotate one time.







Millions and Aracito's Anillion earns and a cities and a



### **Question 7:**

Can we have a rotational symmetry of order more than 1 whose angle of rotation is:

(i) 45°

(ii) 17°?

### **L**Answer 7:

- (i) If the angle of rotation is 45°, then symmetry of order is possible and would be 8 rotations.
- (ii) If the angle of rotational is 17°, then symmetry of order is not possible because 360° is not complete divided by 17°.

