Mathematics (Chapter – 2) (Polynomials) (Class – X) ## Exercise 2.1 ## Question 1: The graphs of y = p(x) are given in following figure, for some polynomials p(x). Find the number of zeroes of p(x), in each case. (i) (ii) (iii) Million Stars & Practic! Million Stars & Practic! (iv) (v) (v) Williams of the state st #### Answer 1: - (i) The number of zeroes is 0 as the graph does not cut the x-axis at any point. - (ii) The number of zeroes is 1 as the graph intersects the x-axis at only 1 point. - (iii) The number of zeroes is 3 as the graph intersects the x-axis at 3 points. - (iv) The number of zeroes is 2 as the graph intersects the x-axis at 2 points. - (v) The number of zeroes is 4 as the graph intersects the x-axis at 4 points. - (vi) The number of zeroes is 3 as the graph intersects the x-axis at 3 Million Stars & Practice points. # **Mathematics** (Chapter – 2) (Polynomials) (Class X) ## Exercise 2.2 ## Question 1: Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. $$(i)x^2-2x-8$$ $$(ii)4s^2-4s+1$$ $$(iii)6x^2-3-7x$$ $$(iv)4u^2 + 8u$$ $$(v)t^2 - 15$$ $$(v)t^2-15$$ $(vi)3x^2-x-4$ ## Answer 1: (i) $$x^2 - 2x - 8 = (x - 4)(x + 2)$$ The value of $x^2 - 2x - 8$ is zero when x - 4 = 0 or x + 2 = 0, i.e., when x= 4 or x = -2 Therefore, the zeroes of $x^2 - 2x - 8$ are 4 and -2. Sum of zeroes = $$4-2=2=\frac{-(-2)}{1}=\frac{-(\text{Coefficient of } x)}{\text{Coefficient of } x^2}$$ Product of zeroes $$= 4 \times (-2) = -8 = \frac{(-8)}{1} = \frac{\text{Constant term}}{\text{Coefficient of } x^2}$$ (ii) $4s^2 - 4s + 1 = (2s - 1)^2$ The value of $4s^2 - 4s + 1$ is zero when 2s - 1 = 0, i.e., $s = \frac{1}{2}$ Therefore, the zeroes of $4s^2 - 4s + 1$ are $\frac{1}{2}$ and $\frac{1}{2}$. Sum of zeroes = $$\frac{1}{2} + \frac{1}{2} = 1 = \frac{-(-4)}{4} = \frac{-(\text{Coefficient of } s)}{(\text{Coefficient of } s^2)}$$ Product of zeroes = $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4} = \frac{\text{Constant term}}{\text{Coefficient of } s^2}$ (iii) $6x^2 - 3 - 7x = 6x^2 - 7x - 3 = (3x + 1)(2x - 3)$ The value of $6x^2 - 3 - 7x$ is zero when $3x + 1 = 0$ or $2x - 3 = 0$, i.e., (iii) $$6x^2 - 3 - 7x = 6x^2 - 7x - 3 = (3x + 1)(2x - 3)$$ $$x = \frac{-1}{3}$$ or $x = \frac{3}{2}$ Therefore, the zeroes of $6x^2 - 3 - 7x$ are $\frac{-1}{3}$ and $\frac{3}{2}$. Sum of zeroes = $$\frac{-1}{3} + \frac{3}{2} = \frac{7}{6} = \frac{-(-7)}{6} = \frac{-(\text{Coefficient of } x)}{\text{Coefficient of } x^2}$$ Product of zeroes = $$\frac{-1}{3} \times \frac{3}{2} = \frac{-1}{2} = \frac{-3}{6} = \frac{\text{Constant term}}{\text{Coefficient of } x^2}$$ (iv) $$4u^2 + 8u = 4u^2 + 8u + 0$$ = $4u(u+2)$ The value of $4u^2 + 8u$ is zero when 4u = 0 or u + 2 = 0, i.e., u = 0 or u = -2 Therefore, the zeroes of $4u^2 + 8u$ are 0 and -2. Sum of zeroes = $$0+(-2)=-2=\frac{-(8)}{4}=\frac{-(\text{Coefficient of }u)}{\text{Coefficient of }u^2}$$ Product of zeroes = $$0 \times (-2) = 0 = \frac{0}{4} = \frac{\text{Constant term}}{\text{Coefficient of } u^2}$$ (v) $$t^2 - 15$$ = $t^2 - 0.t - 15$ = $(t - \sqrt{15})(t + \sqrt{15})$ Aillion Stars & Practice The value of $t^2 - 15$ is zero when $t - \sqrt{15} = 0$ or $t + \sqrt{15} = 0$, i.e., when $t = \sqrt{15}$ or $t = -\sqrt{15}$ Therefore, the zeroes of $t^2 - 15$ are $\sqrt{15}$ and $-\sqrt{15}$. Sum of zeroes = $$\sqrt{15} + (-\sqrt{15}) = 0 = \frac{-0}{1} = \frac{-(\text{Coefficient of } t)}{(\text{Coefficient of } t^2)}$$ Product of zeroes = $$(\sqrt{15})(-\sqrt{15}) = -15 = \frac{-15}{1} = \frac{\text{Constant term}}{\text{Coefficient of } x^2}$$ (vi) $$3x^2 - x - 4$$ = $(3x-4)(x+1)$ The value of $3x^2 - x - 4$ is zero when 3x - 4 = 0 or x + 1 = 0, i.e., when $$x = \frac{4}{3}$$ or $x = -1$ Therefore, the zeroes of $3x^2 - x - 4$ are 4/3 and -1 Sum of zeroes = $$\frac{4}{3} + (-1) = \frac{1}{3} = \frac{-(-1)}{3} = \frac{-(\text{Coefficient of } x)}{\text{Coefficient of } x^2}$$ Product of zeroes $$=\frac{4}{3}(-1) = \frac{-4}{3} = \frac{\text{Constant term}}{\text{Coefficient of } x^2}$$ ## Question 2: Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively. (i) $\frac{1}{4}$,-1 - (ii) $\sqrt{2}, \frac{1}{3}$ - Million Stars & Practice Aillion Stars & Practice (iv) 1,1 - $(v) -\frac{1}{4}, \frac{1}{4}$ ## Answer 2: (i) $$\frac{1}{4}$$,-1 Let the polynomial be $ax^2 + bx + c$ and its zeroes be α and β . $$\alpha + \beta = \frac{1}{4} = \frac{-b}{a}$$ $$\alpha \beta = -1 = \frac{-4}{4} = \frac{c}{a}$$ If $a = 4$, then $b = -1$, $c = -4$ Therefore, the quadratic polynomial is $4x^2 - x - 4$. (ii) $$\sqrt{2}, \frac{1}{3}$$ Let the polynomial be $ax^2 + bx + c$ and its zeroes be α and β . $$\alpha + \beta = \sqrt{2} = \frac{3\sqrt{2}}{3} = \frac{-b}{a}$$ $$\alpha \beta = \frac{1}{3} = \frac{c}{a}$$ If $a = 3$, then $b = -3\sqrt{2}$, $c = 1$ Therefore, the quadratic polynomial is $3x^2 - 3\sqrt{2}x + 1$. (iii) $$0, \sqrt{5}$$ Let the polynomial be $ax^2 + bx + c$ and its zeroes be α and β . $$\alpha + \beta = 0 = \frac{0}{1} = \frac{-b}{a}$$ $$\alpha \times \beta = \sqrt{5} = \frac{\sqrt{5}}{1} = \frac{c}{a}$$ If $a = 1$, then $b = 0$, $c = \sqrt{5}$ Therefore, the quadratic polynomial is $x^2 + \sqrt{5}$. ## (iv) 1, 1 illions tars educaciice Let the polynomial be $ax^2 + bx + c$ and its zeroes be α and β . Million Stars & Practice $$\alpha + \beta = 1 = \frac{1}{1} = \frac{-b}{a}$$ $$\alpha \times \beta = 1 = \frac{1}{1} = \frac{c}{a}$$ If $a = 1$, then $b = -1$, $c = 1$ Therefore, the quadratic polynomial is $x^2 - x + 1$. $$(v) = -\frac{1}{4}, \frac{1}{4}$$ Let the polynomial be $ax^2 + bx + c$ and its zeroes be α and β . $$\alpha + \beta = \frac{-1}{4} = \frac{-b}{a}$$ $$\alpha \times \beta = \frac{1}{4} = \frac{c}{a}$$ If $a = 4$, then $b = 1$, $c = 1$ Therefore, the quadratic polynomial is $4x^2 + x + 1$. Let the polynomial be $ax^2 + bx + c$ and its zeroes be α and β . $$\alpha + \beta = 4 = \frac{4}{1} = \frac{-b}{a}$$ $$\alpha \times \beta = 1 = \frac{1}{1} = \frac{c}{a}$$ If $a = 1$, then $b = -4$, $c = 1$ Therefore, the quadratic polynomial is $x^2 - 4x + 1$. # **Mathematics** (Chapter - 2) (Polynomials) (Class - X) ## Exercise 2.3 ## Question 1: Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following: (i) $$p(x) = x^3 - 3x^2 + 5x - 3$$, $g(x) = x^2 - 2$ (ii) $$p(x) = x^4 - 3x^2 + 4x + 5$$, $g(x) = x^2 + 1 - x$ (iii) $$p(x) = x^4 - 5x + 6$$, $g(x) = 2 - x^2$ #### Answer 1: Answer 1: (i) $$p(x) = x^3 - 3x^2 + 5x - 3$$ $q(x) = x^2 - 2$ $x - 3$ $$\begin{array}{r} x-3 \\ x^2-2 \overline{\smash)x^3-3x^2+5x-3} \\ x^3 -2x \\ \underline{- + \\ -3x^2+7x-3} \\ -3x^2 +6 \\ \underline{+ - \\ 7x-9} \end{array}$$ Quotient = $$x - 3$$ Remainder = $$7x - 9$$ (ii) $$p(x) = x^4 - 3x^2 + 4x + 5 = x^4 + 0 \cdot x^3 - 3x^2 + 4x + 5$$ $q(x) = x^2 + 1 - x = x^2 - x + 1$ $$\begin{array}{r} x^2 + x - 3 \\ x^2 - x + 1 \overline{)x^4 + 0.x^3 - 3x^2 + 4x + 5} \\ x^4 - x^3 + x^2 \\ - + - \\ x^3 - 4x^2 + 4x + 5 \\ x^3 - x^2 + x \\ - + - \\ - 3x^2 + 3x + 5 \\ - 3x^2 + 3x - 3 \\ + - + \\ 8 \end{array}$$ Quotient = $$x^2 + x - 3$$ Remainder $$= 8$$ Alling States of actic (iii) $$p(x) = x^4 - 5x + 6 = x^4 + 0.x^2 - 5x + 6$$ $q(x) = 2 - x^2 = -x^2 + 2$ $$\begin{array}{r} -x^2 - 2 \\ -x^2 + 2 \overline{)} \quad x^4 + 0.x^2 - 5x + 6 \\ x^4 - 2x^2 \\ \underline{- + } \\ 2x^2 - 5x + 6 \\ 2x^2 - 4 \\ \underline{- + } \\ -5x + 10 \end{array}$$ Quotient = $$-x^2 - 2$$ Remainder = $$-5x + 10$$ ## Question 2: Million Stars Practice Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial: (i) $$t^2 - 3, 2t^4 + 3t^3 - 2t^2 - 9t - 12$$ (ii) $$x^2 + 3x + 1, 3x^4 + 5x^3 - 7x^2 + 2x + 2$$ (iii) $$x^3 - 3x + 1, x^5 - 4x^3 + x^2 + 3x + 1$$ #### Answer 2: (i) $$t^2-3$$, $2t^4+3t^3-2t^2-9t-12$ $$t^{2}-3 = t^{2}+0.t-3$$ $$2t^{2}+3t+4$$ $$t^{2}+0.t-3) 2t^{4}+3t^{3}-2t^{2}-9t-12$$ $$2t^{4}+0.t^{3}-6t^{2}$$ $$--+$$ $$3t^{3}+4t^{2}-9t-12$$ $$3t^{3}+0.t^{2}-9t$$ $$--+$$ $$4t^{2}+0.t-12$$ $$4t^{2}+0.t-12$$ $$--+$$ $$0$$ Since the remainder is 0, Hence, $t^2 - 3$ is a factor of $2t^4 + 3t^3 - 2t^2 - 9t - 12$. (ii) $$x^2 + 3x + 1$$, $3x^4 + 5x^3 - 7x^2 + 2x + 2$ $$\begin{array}{r} 3x^2 - 4x + 2 \\ x^2 + 3x + 1 \overline{\smash)3x^4 + 5x^3 - 7x^2 + 2x + 2} \\ 3x^4 + 9x^3 + 3x^2 \\ - - - \\ -4x^3 - 10x^2 + 2x + 2 \\ -4x^3 - 12x^2 - 4x \\ + + + \\ 2x^2 + 6x + 2 \\ 2x^2 + 6x + 2 \\ 0 \end{array}$$ Since the remainder is 0, Williams by actice Hence, $x^2 + 3x + 1$ is a factor of $3x^4 + 5x^3 - 7x^2 + 2x + 2$. (iii) $$x^3 - 3x + 1$$, $x^5 - 4x^3 + x^2 + 3x + 1$ $$\begin{array}{r} x^{2}-1 \\ x^{3}-3x+1 \overline{)} x^{5}-4x^{3}+x^{2}+3x+1 \\ x^{5}-3x^{3}+x^{2} \\ \underline{-+--} \\ -x^{3} +3x+1 \\ -x^{3} +3x-1 \\ \underline{+---+} \\ 2 \end{array}$$ Since the remainder $\neq 0$, Hence, $x^3 - 3x + 1$ is not a factor of $x^5 - 4x^3 + x^2 + 3x + 1$ ## Question 3: Obtain all other zeroes of $3x^4 + 6x^3 - 2x^2 - 10x - 5$, if two of its zeroes are $$\sqrt{\frac{5}{3}}$$ and $-\sqrt{\frac{5}{3}}$ #### Answer 3: $$p(x) = 3x^4 + 6x^3 - 2x^2 - 10x - 5$$ Since the two zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$ Since the two zeroes are $$\sqrt{\frac{5}{3}}$$ and $-\sqrt{\frac{5}{3}}$ $$\therefore \left(x - \sqrt{\frac{5}{3}}\right) \left(x + \sqrt{\frac{5}{3}}\right) = \left(x^2 - \frac{5}{3}\right)$$ is a factor of $3x^4 + 6x^3 - 2x^2 - 10x - 5$ Therefore, we divide the given polynomial by $x^2 - \frac{5}{3}$ Therefore, we divide the given polynomial by $x^2 - \frac{5}{3}$ $$x^{2} + 0.x - \frac{5}{3}) \frac{3x^{2} + 6x + 3}{3x^{4} + 6x^{3} - 2x^{2} - 10x - 5}$$ $$3x^{4} + 0x^{3} - 5x^{2}$$ $$- - +$$ $$6x^{3} + 3x^{2} - 10x - 5$$ $$6x^{3} + 0x^{2} - 10x$$ $$- - +$$ $$3x^{2} + 0x - 5$$ $$3x^{2} + 0x - 5$$ $$- - +$$ $$0$$ $$3x^{4} + 6x^{3} - 2x^{2} - 10x - 5 = \left(x^{2} - \frac{5}{3}\right) \left(3x^{2} + 6x + 3\right)$$ $$= 3\left(x^{2} - \frac{5}{3}\right) \left(x^{2} + 2x + 1\right)$$ We factorize $x^{2} + 2x + 1$ $$= (x + 1)^{2}$$ We factorize $$x^2 + 2x + 1$$ = $(x+1)^2$ Therefore, its zero is given by x + 1 = 0 or x = -1 As it has the term $(x+1)^2$, therefore, there will be 2 zeroes at x=-1. $\sqrt{\frac{5}{3}}$, $-\sqrt{\frac{5}{3}}$ -1 and -1. Hence, the zeroes of the given polynomial are ## Question 4: Million Stars & Practice Willion Stars & Practice On dividing x^3-3x^2+x+2 by a polynomial g(x), the quotient and remainder were x - 2 and -2x + 4, respectively. Find g(x). ### Answer 4: $$p(x) = x^3 - 3x^2 + x + 2$$ (Dividend) $$g(x) = ?$$ (Divisor) Quotient = $$(x - 2)$$ Remainder = $$(-2x + 4)$$ Dividend = Divisor × Quotient + Remainder $$x^3 - 3x^2 + x + 2 = g(x) \times (x - 2) + (-2x + 4)$$ $$x^3 - 3x^2 + x + 2 + 2x - 4 = g(x)(x-2)$$ $$x^3 - 3x^2 + 3x - 2 = g(x)(x-2)$$ g(x) is the quotient when we divide (x^3-3x^2+3x-2) by (x-2) $$\begin{array}{r} x^{2} - x + 1 \\ x - 2) \overline{)x^{3} - 3x^{2} + 3x - 2} \\ x^{3} - 2x^{2} \\ \underline{- + } \\ -x^{2} + 3x - 2 \\ -x^{2} + 2x \\ \underline{+ - } \\ x - 2 \\ x - 2 \\ \underline{- + } \\ 0 \end{array}$$ $$\therefore g(x) = (x^2 - x + 1)$$ ## Question 5: Million Stars & Practice Willion Stars & Practice Give examples of polynomial p(x), g(x), q(x) and r(x), which satisfy the division algorithm and - (i) $\deg p(x) = \deg q(x)$ - (ii) deg $q(x) = \deg r(x)$ (iii) deg $$r(x) = 0$$ #### **Answer 5:** According to the division algorithm, if p(x) and q(x) are two polynomials with $g(x) \neq 0$, then we can find polynomials g(x) and r(x) such that $p(x) = g(x) \times q(x) + r(x),$ where r(x) = 0 or degree of r(x) < degree of g(x) Degree of a polynomial is the highest power of the variable in the polynomial. (i) $\deg p(x) = \deg q(x)$ Degree of quotient will be equal to degree of dividend when divisor is constant (i.e., when any polynomial is divided by a constant). Let us assume the division of $6x^2 + 2x + 2$ by 2. Here, $$p(x) = 6x^2 + 2x + 2$$ $$q(x) = 2$$ $$q(x) = 3x^2 + x + 1$$ and $r(x) = 0$ Degree of p(x) and q(x) is the same i.e., 2. Checking for division algorithm, $p(x) = g(x) \times q(x) + r(x)$ $$6x^2 + 2x + 2 = (2)(3x^2 + x + 1) + 0$$ Thus, the division algorithm is satisfied. (ii) $$\deg q(x) = \deg r(x)$$ Here, $$p(x) = x^3 + x g(x) = x^2 q(x) = x$$ and $r(x) = x$ There, $p(x) = x^3 + x \ g(x) = x^2 \ q(x) = x \ \text{and} \ r(x) = x$ Clearly, the degree of q(x) and r(x) is the same i.e., 1. Checking for division algorithm, $p(x) = g(x) \times q(x) + r(x)$ $$x^3 + x = (x^2) \times x + x \times x^3 + x = x^3 + x$$ Thus, the division algorithm is satisfied. (iii)deg $$r(x) = 0$$ Degree of remainder will be 0 when remainder comes to a constant. Let us assume the division of $x^3 + 1$ by x^2 . Here, $$p(x) = x^3 + 1$$ $g(x) = x^2$ $q(x) = x$ and $r(x) = 1$ Clearly, the degree of r(x) is 0. Checking for division algorithm, $$p(x) = g(x) \times q(x) + r(x) x^3 + 1 = (x^2) \times x + 1 x^3 + 1 = x^3 + 1$$ Thus, the division algorithm is satisfied. # **Mathematics** (Chapter - 2) (Polynomials)(Class - X) ## Exercise 2.4 ### Question 1: Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficients in each case: (i) $$2x^3 + x^2 - 5x + 2$$; $\frac{1}{2}$, 1, -2 (ii) $$x^3 - 4x^2 + 5x - 2$$; 2,1,1 (i) $$p(x) = 2x^3 + x^2 - 5x + 2$$ Answer 1: (i) $$p(x) = 2x^3 + x^2 - 5x + 2$$. Zeroes for this polynomial are $\frac{1}{2}$, 1, -2 $$p(\frac{1}{2}) = 2(\frac{1}{2})^3 + (\frac{1}{2})^2 - 5(\frac{1}{2}) + 2$$ $$= \frac{1}{4} + \frac{1}{4} - \frac{5}{2} + 2$$ $$= 0$$ $$p(1) = 2 \times 1^3 + 1^2 - 5 \times 1 + 2$$ = 0 $$p(-2) = 2(-2)^3 + (-2)^2 - 5(-2) + 2$$ = -16 + 4 + 10 + 2 = 0 Million Stars & Practice Therefore, $\frac{1}{2}$, 1, and -2 are the zeroes of the given polynomial. Comparing the given polynomial with $ax^3 + bx^2 + cx + d$, we obtain $$a = 2$$, $b = 1$, $c = -5$, $d = 2$ We can take $$\alpha = \frac{1}{2}$$, $\beta = 1$, $\gamma = -2$ $\alpha + \beta + \gamma = \frac{1}{2} + 1 + (-2) = -\frac{1}{2} = \frac{-b}{a}$ $$\alpha\beta + \beta\gamma + \alpha\gamma = \frac{1}{2} \times 1 + 1(-2) + \frac{1}{2}(-2) = \frac{-5}{2} = \frac{c}{a}$$ $$\alpha\beta\gamma = \frac{1}{2} \times 1 \times (-2) = \frac{-1}{1} = \frac{-(2)}{2} = \frac{-d}{a}$$ Therefore, the relationship between the zeroes and the coefficients is verified. (ii) $$p(x) = x^3 - 4x^2 + 5x - 2$$ Zeroes for this polynomial are 2, 1, 1. $$p(2) = 2^3 - 4(2^2) + 5(2) - 2$$ = 8 - 16 + 10 - 2 = 0 $$p(1) = 1^3 - 4(1)^2 + 5(1) - 2$$ $$= 1 - 4 + 5 - 2 = 0$$ Therefore, 2, 1, 1 are the zeroes of the given polynomial. Comparing the given polynomial with $ax^3 + bx^2 + cx + d$, we obtain $$a = 1$$, $b = -4$, $c = 5$, $d = -2$. Verification of the relationship between zeroes and coefficient of the Million Stars & Practice given polynomial Sum of zeroes = $$2+1+1=4=\frac{-(-4)}{1}=\frac{-b}{a}$$ Multiplication of zeroes taking two at a time = (2)(1) + (1)(1) + (2)(1) = 2 + 1 + 2 = 5 = $$\frac{(5)}{1} = \frac{c}{a}$$ Multiplication of zeroes = $$2 \times 1 \times 1 = 2$$ = $\frac{-(-2)}{1} = \frac{-d}{a}$ Hence, the relationship between the zeroes and the coefficients is verified. ## Question 2: Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as 2, - 7, - 14 respectively. #### **Answer 2:** $ax^3 + bx^2 + cx + d$ and the zeroes be α, β , and γ Let the polynomial be It is given that $$\alpha + \beta + \gamma = \frac{2}{1} = \frac{-b}{a}$$ $$\alpha\beta + \beta\gamma + \alpha\gamma = \frac{-7}{1} = \frac{c}{a}$$ $$\alpha\beta\gamma = \frac{-14}{1} = \frac{-d}{a}$$ If a = 1, then b = -2, c = -7, d = 14 Hence, the polynomial is $x^3 - 2x^2 - 7x + 14$. ## Question 3: Zeroes are a-b, a+a+bComparing the given polynomial with px^3+qx^2+rx+t , we obtain p=1, q=-3, r=1, t=1If the zeroes of polynomial, x^3-3x^2+x+1 are a-b,a,a+b find a and b. $$p(x) = x^3 - 3x^2 + x + 1$$ Sum of zeroes = a - b + a + a + b $$\frac{-q}{p} = 3a$$ $$\frac{-(-3)}{1} = 3a$$ $$3 = 3a$$ $$a = 1$$ The zeroes are 1-b, 1, 1+b Multiplication of zeroes = 1(1-b)(1+b) $$\frac{-t}{p} = 1 - b^2$$ $$\frac{-1}{1} = 1 - b^2$$ $$1 - b^2 = -1$$ $$1 + 1 = b^2$$ $$b = \pm \sqrt{2}$$ Hence, a = 1 and $b = \sqrt{2}$ or $-\sqrt{2}$ ## Question 4:]It two zeroes of the polynomial, $x^4-6x^3-26x^2+138x-35$ are $2\pm\sqrt{3}$ find other zeroes. polynomial. $(2 + \sqrt{3}) [x - (2 - \sqrt{3})] = x^2 + 4 - 4x - 3$ $= x^2 - 4x + 1 \text{ is a factor of the given polynomial}$ For finding the remaining zeroes of the given polynomial, we will find $$\begin{array}{r} x^2 - 2x - 35 \\ x^2 - 4x + 1 \overline{\smash)} x^4 - 6x^3 - 26x^2 + 138x - 35 \\ x^4 - 4x^3 + x^2 \\ \underline{\qquad - + -} \\ -2x^3 - 27x^2 + 138x - 35 \\ -2x^3 + 8x^2 - 2x \\ \underline{\qquad + - +} \\ -35x^2 + 140x - 35 \\ -35x^2 + 140x - 35 \\ \underline{\qquad + - +} \\ 0 \end{array}$$ Clearly, $$x^4 - 6x^3 - 26x^2 + 138x - 35 = (x^2 - 4x + 1)(x^2 - 2x - 35)$$ $(x^2-2x-35)$ is also a factor of the given It can be observed that polynomial $(x^2-2x-35) = (x-7)(x+5)$ Therefore, the value of the polynomial is also zero when x-7=0 or x + 5 = 0 Or x = 7 or -5 Hence, 7 and -5 are also zeroes of this polynomial. If the polynomial $x^4 - 6x^3 + 16x^2 - 25x + 10$ is divided by another polynomial, $x^2 - 2x + k$ the remainder comes out to be x + a, find k and a. #### **Answer 5:** By division algorithm, Dividend = Divisor × Quotient + Remainder Dividend - Remainder = Divisor × Quotient $$x^4 - 6x^3 + 16x^2 - 25x + 10 - x - a = x^4 - 6x^3 + 16x^2 - 26x + 10 - a$$ will be divisible by $x^2 - 2x + k$. Let us divide $x^4 - 6x^3 + 16x^2 - 26x + 10 - a$ by $x^2 - 2x + k$ $$x^2 - 4x + (8 - k)$$ $$(-10+2\kappa)\lambda + (10-a-6\kappa+\kappa)$$ Million Stars & Chacilice Chink, Learn & Chink, Learn & Chink, Learn & Chink $(-10+2k)x+(10-a-8k+k^2)$ Will be It can be observed that 0. Therefore, $$(-10+2k) = 0$$ and $(10-a-8k+k^2) = 0$ For $$(-10+2k) = 0$$, $2k = 10$ And thus, $k = 5$ For $$(10-a-8k+k^2) = 0$$ $$10 - a - 8 \times 5 + 25 = 0$$ $10 - a - 40 + 25 = 0$ $-5 - a = 0$ Therefore, $a = -5$ Hence, k = 5 and a = -5