

Millionsians Practice
Chink, Learns Practice

Mathematics

(Chapter – 4) (Principle of Mathematical Induction))
(Class – XI)

Exercise 4.1

Question 1:

Prove the following by using the principle of mathematical induction for all $n \in \mathbb{N}$:

$$1+3+3^2+...+3^{n-1}=\frac{\left(3^n-1\right)}{2}$$

Answer 1:

Let the given statement be P(n), i.e.,

P(n): 1 + 3 + 3² + ...+ 3ⁿ⁻¹ =
$$\frac{(3^n - 1)}{2}$$

For n = 1, we have

P(1):=
$$\frac{(3^1-1)}{2} = \frac{3-1}{2} = \frac{2}{2} = 1$$
, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$1+3+3^2+...+3^{k-1}=\frac{\left(3^k-1\right)}{2}$$
 ...(i)

We shall now prove that P(k + 1) is true.

$$1 + 3 + 32 + ... + 3k-1 + 3(k+1)-1$$
$$= (1 + 3 + 32 + ... + 3k-1) + 3k$$

$$= \frac{\left(3^{k} - 1\right)}{2} + 3^{k} \qquad \text{[Using (i)]}$$

$$= \frac{\left(3^{k} - 1\right) + 2 \cdot 3^{k}}{2}$$

$$= \frac{\left(1 + 2\right)3^{k} - 1}{2}$$

$$= \frac{3 \cdot 3^{k} - 1}{2}$$

$$= \frac{3^{k+1} - 1}{2}$$

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 2:

Prove the following by using the principle of mathematical induction for all $n \in \mathbb{N}$:

$$1^3 + 2^3 + 3^3 + ... + n^3 = \left(\frac{n(n+1)}{2}\right)^2$$

Answer 2:

Let the given statement be P(n), i.e.,

P(n):
$$1^3 + 2^3 + 3^3 + ... + n^3 = \left(\frac{n(n+1)}{2}\right)^2$$

For n = 1, we have

P(1):
$$1^3 = 1 = \left(\frac{1(1+1)}{2}\right)^2 = \left(\frac{1.2}{2}\right)^2 = 1^2 = 1$$
, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$1^{3} + 2^{3} + 3^{3} + \dots + k^{3} = \left(\frac{k(k+1)}{2}\right)^{2} \qquad \dots (i)$$

We shall now prove that P(k + 1) is true. Consider

$$1^{3} + 2^{3} + 3^{3} + \dots + k^{3} + (k+1)^{3}$$

$$= (1^{3} + 2^{3} + 3^{3} + \dots + k^{3}) + (k+1)^{3}$$

$$= \left(\frac{k(k+1)}{2}\right)^{2} + (k+1)^{3}$$

$$= \frac{k^{2}(k+1)^{2}}{4} + (k+1)^{3}$$

$$= \frac{k^{2}(k+1)^{2} + 4(k+1)^{3}}{4}$$

$$= \frac{(k+1)^{2} \{k^{2} + 4(k+1)\}}{4}$$

$$= \frac{(k+1)^{2} \{k^{2} + 4k + 4\}}{4}$$

$$= \frac{(k+1)^{2} (k+2)^{2}}{4}$$

$$= \frac{(k+1)^{2} (k+1+1)^{2}}{4}$$

$$= \left(\frac{(k+1)^{2} (k+1+1)^{2}}{4}\right)^{2}$$

Thus, P(k + 1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 3:

Prove the following by using the principle of mathematical induction for all $n \in \mathbb{N}$:

$$1 + \frac{1}{(1+2)} + \frac{1}{(1+2+3)} + \dots + \frac{1}{(1+2+3+\dots n)} = \frac{2n}{(n+1)}$$

Answer 3:

Let the given statement be P(n), i.e.,

P(n):
$$1 + \frac{1}{1+2} + \frac{1}{1+2+3} + \dots + \frac{1}{1+2+3+\dots n} = \frac{2n}{n+1}$$

For n = 1, we have

P(1):
$$1 = \frac{2.1}{1+1} = \frac{2}{2} = 1$$
, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$1 + \frac{1}{1+2} + \dots + \frac{1}{1+2+3} + \dots + \frac{1}{1+2+3+\dots+k} = \frac{2k}{k+1}$$

... (i) Stars Practic!

Williams Stars Practic!

We shall now prove that P(k + 1) is true.

$$1 + \frac{1}{1+2} + \frac{1}{1+2+3} + \dots + \frac{1}{1+2+3+\dots + k} + \frac{1}{1+2+3+\dots + k + (k+1)}$$

$$= \left(1 + \frac{1}{1+2} + \frac{1}{1+2+3} + \dots + \frac{1}{1+2+3+\dots k}\right) + \frac{1}{1+2+3+\dots + k + (k+1)}$$

$$= \frac{2k}{k+1} + \frac{1}{1+2+3+\dots + k + (k+1)} \qquad \qquad \left[\text{Using (i)}\right]$$

$$= \frac{2k}{k+1} + \frac{2}{(k+1)} \frac{(k+1)(k+1+1)}{2}$$

$$= \frac{2k}{(k+1)} \left(\frac{k}{k+2}\right)$$

$$= \frac{2}{(k+1)} \left(\frac{k^2 + 2k + 1}{k+2}\right)$$

$$= \frac{2(k+1)}{(k+1)} \frac{(k^2 + 2k + 1)}{k+2}$$

$$= \frac{2(k+1)}{(k+2)}$$
Thus, $P(k+1)$ is true whenever $P(k)$ is true.

Hence, by the principle of mathematical induction, statement $P(n)$ is true for all natural numbers i.e., N .

Question 4:

Prove the following by using the principle of mathematical induction for all $n \in \mathbb{N}$:

$$1.2.3 + 2.3.4 + ... + n(n+1)(n+2) = \frac{n(n+1)(n+2)(n+3)}{4}$$

Answer 4:

Let the given statement be P(n), i.e.,

P(n): 1.2.3 + 2.3.4 + ... +
$$n(n + 1)(n + 2) = \frac{n(n+1)(n+2)(n+3)}{4}$$

For n = 1, we have

P(1): 1.2.3 = 6 =
$$\frac{1(1+1)(1+2)(1+3)}{4} = \frac{1.2.3.4}{4} = 6$$
, which is true.

Let P(k) be true for some positive integer k, i.e.,

1.2.3 + 2.3.4 + ... +
$$k(k + 1)(k + 2) = \frac{k(k+1)(k+2)(k+3)}{4}$$
 ... (i)

We shall now prove that P(k + 1) is true.

$$1.2.3 + 2.3.4 + ... + k(k + 1) (k + 2) + (k + 1) (k + 2) (k + 3)$$

$$= \{1.2.3 + 2.3.4 + ... + k(k + 1) (k + 2)\} + (k + 1) (k + 2) (k + 3)$$

$$= \frac{k(k+1)(k+2)(k+3)}{4} + (k+1)(k+2)(k+3)$$
 [Using (i)]

$$= (k+1)(k+2)(k+3)\left(\frac{k}{4}+1\right)$$

$$= \frac{(k+1)(k+2)(k+3)(k+4)}{4}$$

$$= \frac{(k+1)(k+1+1)(k+1+2)(k+1+3)}{4}$$

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 5:

Prove the following by using the principle of mathematical induction for all $n \in \mathbb{N}$:

$$1.3 + 2.3^{2} + 3.3^{3} + \dots + n.3^{n} = \frac{(2n-1)3^{n+1} + 3}{4}$$

Answer 5:

Let the given statement be P(n), i.e.,

P(n):
$$1.3 + 2.3^2 + 3.3^3 + ... + n3^n = \frac{(2n-1)3^{n+1} + 3}{4}$$

For n = 1, we have

Let the given statement be P(n), i.e.,
$$P(n): 1.3+2.3^2+3.3^3+...+n3^n=\frac{(2n-1)3^{n+1}+3}{4}$$
 For $n=1$, we have
$$P(1): 1.3=3 = \frac{(2.1-1)3^{1+1}+3}{4}=\frac{3^2+3}{4}=\frac{12}{4}=3$$
, which is true. Let P(k) be true for some positive integer k , i.e.,

Let P(k) be true for some positive integer k, i.e.,

$$1.3 + 2.3^{2} + 3.3^{3} + ... + k3^{k} = \frac{(2k-1)3^{k+1} + 3}{4} \qquad ... (i)$$

We shall now prove that P(k + 1) is true. Consider

$$1.3 + 2.3^{2} + 3.3^{3} + ... + k.3^{k} + (k+1).3^{k+1}$$

$$= (1.3 + 2.3^{2} + 3.3^{3} + ... + k.3^{k}) + (k+1).3^{k+1}$$

$$= \frac{(2k-1)3^{k+1} + 3}{4} + (k+1)3^{k+1}$$

$$= \frac{(2k-1)3^{k+1} + 3 + 4(k+1)3^{k+1}}{4}$$

$$= \frac{3^{k+1} \{2k-1+4(k+1)\} + 3}{4}$$

$$= \frac{3^{k+1} \{6k+3\} + 3}{4}$$

$$= \frac{3^{k+1}.3\{2k+1\} + 3}{4}$$

$$= \frac{3^{(k+1)+1} \{2k+1\} + 3}{4}$$

$$= \frac{\{2(k+1)-1\}3^{(k+1)+1} + 3}{4}$$

Inus, P(k + 1) is true whenever P(k) is true. Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 6:

Prove the following by using the principle of mathematical induction for all

$$1.2 + 2.3 + 3.4 + ... + n.(n+1) = \left\lceil \frac{n(n+1)(n+2)}{3} \right\rceil$$

Answer 6:

Let the given statement be P(n), i.e.,

P(n):
$$1.2+2.3+3.4+...+n.(n+1) = \left\lceil \frac{n(n+1)(n+2)}{3} \right\rceil$$

For n = 1, we have

P(1):
$$1.2 = 2 = \frac{1(1+1)(1+2)}{3} = \frac{1.2.3}{3} = 2$$
, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$1.2 + 2.3 + 3.4 + \dots + k.(k+1) = \left[\frac{k(k+1)(k+2)}{3}\right] \dots (i)$$

We shall now prove that P(k + 1) is true.

$$1.2 + 2.3 + 3.4 + ... + k.(k + 1) + (k + 1).(k + 2)$$

$$= [1.2 + 2.3 + 3.4 + ... + k.(k + 1)] + (k + 1).(k + 2)$$

$$= \frac{k(k+1)(k+2)}{3} + (k+1)(k+2)$$
 [Using (i)]

$$= (k+1)(k+2)\left(\frac{k}{3}+1\right)$$

$$= \frac{(k+1)(k+2)(k+3)}{3}$$

$$= \frac{(k+1)(k+1+1)(k+1+2)}{3}$$

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 7:

Prove the following by using the principle of mathematical induction for all $n \in N$:

$$1.3 + 3.5 + 5.7 + \dots + (2n-1)(2n+1) = \frac{n(4n^2 + 6n - 1)}{3}$$

Answer 7:

Let the given statement be P(n), i.e.,

P(n):
$$1.3+3.5+5.7+...+(2n-1)(2n+1)=\frac{n(4n^2+6n-1)}{3}$$

For n = 1, we have

$$P(1):1.3=3=\frac{1(4.1^2+6.1-1)}{3}=\frac{4+6-1}{3}=\frac{9}{3}=3$$
 , which is true.

Let P(k) be true for some positive integer k, i.e.,

$$1.3+3.5+5.7+.....+(2k-1)(2k+1) = \frac{k(4k^2+6k-1)}{3} ... (i)$$

We shall now prove that P(k + 1) is true.

(1.3 + 3.5 + 5.7 + ... +
$$(2k - 1)(2k + 1) + \{2(k + 1) - 1\}\{2(k + 1) + 1\}$$

$$= \frac{k(4k^2 + 6k - 1)}{3} + (2k + 2 - 1)(2k + 2 + 1)$$
 [Using (i)]
$$= \frac{k(4k^2 + 6k - 1)}{3} + (2k + 1)(2k + 3)$$

$$= \frac{k(4k^2 + 6k - 1)}{3} + (4k^2 + 8k + 3)$$

$$= \frac{k(4k^2 + 6k - 1) + 3(4k^2 + 8k + 3)}{3}$$

$$= \frac{4k^3 + 6k^2 - k + 12k^2 + 24k + 9}{3}$$

$$= \frac{4k^3 + 18k^2 + 23k + 9}{3}$$

$$= \frac{4k^3 + 14k^2 + 9k + 4k^2 + 14k + 9}{3}$$

$$= \frac{k(4k^2 + 14k + 9) + 1(4k^2 + 14k + 9)}{3}$$

$$= \frac{(k + 1)(4k^2 + 14k + 9)}{3}$$

$$= \frac{(k + 1)\{4(k^2 + 2k + 1) + 6(k + 1) - 1\}}{3}$$

$$= \frac{(k + 1)\{4(k^2 + 2k + 1) + 6(k + 1) - 1\}}{3}$$

$$= \frac{(k + 1)\{4(k + 1)^2 + 6(k + 1) - 1\}}{3}$$

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 8:

Prove the following by using the principle of mathematical induction for all $n \in \mathbb{N}$: 1.2 +

$$2.2^{2} + 3.2^{2} + ... + n.2^{n} = (n - 1) 2^{n+1} + 2$$

Answer 8:

Let the given statement be P(n), i.e.,

$$P(n)$$
: 1.2 + 2.2² + 3.2² + ... + n .2 ^{n} = $(n - 1)$ 2 ^{$n+1$} + 2

For n = 1, we have

P(1):
$$1.2 = 2 = (1 - 1) 2^{1+1} + 2 = 0 + 2 = 2$$
, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$1.2 + 2.2^2 + 3.2^2 + ... + k.2^k = (k-1) 2^{k+1} + 2 ... (i)$$

We shall now prove that P(k + 1) is true.

Consider

$$\begin{cases}
1.2 + 2.2^{2} + 3.2^{3} + ... + k.2^{k} + (k+1) \cdot 2^{k+1} \\
= (k-1)2^{k+1} + 2 + (k+1)2^{k+1} \\
= 2^{k+1} \left\{ (k-1) + (k+1) \right\} + 2 \\
= 2^{k+1} \cdot 2k + 2 \\
= k \cdot 2^{(k+1)+1} + 2 \\
= \left\{ (k+1) - 1 \right\} 2^{(k+1)+1} + 2$$

Thus, P(k + 1) is true whenever P(k) is true.

Millions and Start & Practice

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 9:

Prove the following by using the principle of mathematical induction for all

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} = 1 - \frac{1}{2^n}$$

Answer 9:

Let the given statement be
$$P(n)$$
, i.e.,

 $P(n)$: $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + ... + \frac{1}{2^n} = 1 - \frac{1}{2^n}$

For $n = 1$, we have

 $P(1)$: $\frac{1}{2} = 1 - \frac{1}{2^1} = \frac{1}{2}$, which is true.

P(1):
$$\frac{1}{2} = 1 - \frac{1}{2^1} = \frac{1}{2}$$
, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^k} = 1 - \frac{1}{2^k}$$
 ... (i)

We shall now prove that P(k + 1) is true. Consider

$$\left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^k}\right) + \frac{1}{2^{k+1}}$$

$$= \left(1 - \frac{1}{2^k}\right) + \frac{1}{2^{k+1}}$$

$$= 1 - \frac{1}{2^k} + \frac{1}{2 \cdot 2^k}$$

$$= 1 - \frac{1}{2^k} \left(1 - \frac{1}{2}\right)$$

$$= 1 - \frac{1}{2^k} \left(\frac{1}{2}\right)$$

$$= 1 - \frac{1}{2^{k+1}}$$
[Using (i)]

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 10:

Prove the following by using the principle of mathematical induction for all $n \in \mathbb{N}$:

$$\frac{1}{2.5} + \frac{1}{5.8} + \frac{1}{8.11} + \dots + \frac{1}{(3n-1)(3n+2)} = \frac{n}{(6n+4)}$$

Answer 10:

Let the given statement be P(n), i.e.,

P(n):
$$\frac{1}{2.5} + \frac{1}{5.8} + \frac{1}{8.11} + \dots + \frac{1}{(3n-1)(3n+2)} = \frac{n}{(6n+4)}$$

For n = 1, we have

$$P(1) = \frac{1}{2.5} = \frac{1}{10} = \frac{1}{6.1 + 4} = \frac{1}{10}$$
 , which is true.

Let P(k) be true for some positive integer k, i.e.,

$$\frac{1}{2.5} + \frac{1}{5.8} + \frac{1}{8.11} + \dots + \frac{1}{(3k-1)(3k+2)} = \frac{k}{6k+4}$$
 ... (i)

We shall now prove that P(k + 1) is true.

Consider

Consider
$$\frac{1}{2.5} + \frac{1}{5.8} + \frac{1}{8.11} + \dots + \frac{1}{(3k-1)(3k+2)} + \frac{1}{\{3(k+1)-1\}\{3(k+1)+2\}}$$

$$= \frac{k}{6k+4} + \frac{1}{(3k+2)(3k+5)}$$

$$= \frac{k}{6k+4} + \frac{1}{(3k+2)(3k+5)}$$

$$= \frac{k}{2(3k+2)} + \frac{1}{(3k+2)(3k+5)}$$

$$= \frac{1}{(3k+2)} \left(\frac{k}{2} + \frac{1}{3k+5} \right)$$

$$= \frac{1}{(3k+2)} \left(\frac{k(3k+5)+2}{2(3k+5)} \right)$$

$$= \frac{1}{(3k+2)} \left(\frac{3k^2+5k+2}{2(3k+5)} \right)$$

$$= \frac{1}{(3k+2)} \left(\frac{(3k+2)(k+1)}{2(3k+5)} \right)$$

$$= \frac{(k+1)}{6k+10}$$

$$= \frac{(k+1)}{6(k+1)+4}$$

William Stars & Practice William Stars & Practice

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Millions and Apractice Williams Practice

Mathematics

(Chapter – 4) (Principle of Mathematical Induction))
(Class – XI)

Exercise 4.1

Question 11:

Prove the following by using the principle of mathematical induction for all $n \in \mathbb{N}$:

$$\frac{1}{1.2.3} + \frac{1}{2.3.4} + \frac{1}{3.4.5} + \dots + \frac{1}{n(n+1)(n+2)} = \frac{n(n+3)}{4(n+1)(n+2)}$$

Answer 11:

Let the given statement be P(n), i.e.,

P(n):
$$\frac{1}{1.2.3} + \frac{1}{2.3.4} + \frac{1}{3.4.5} + \dots + \frac{1}{n(n+1)(n+2)} = \frac{n(n+3)}{4(n+1)(n+2)}$$

For n = 1, we have

$$P(1): \frac{1}{1\cdot 2\cdot 3} = \frac{1\cdot (1+3)}{4(1+1)(1+2)} = \frac{1\cdot 4}{4\cdot 2\cdot 3} = \frac{1}{1\cdot 2\cdot 3}$$
, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$\frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{2 \cdot 3 \cdot 4} + \frac{1}{3 \cdot 4 \cdot 5} + \dots + \frac{1}{k(k+1)(k+2)} = \frac{k(k+3)}{4(k+1)(k+2)}$$

We shall now prove that P(k + 1) is true.

Consider

and the state of the circle of

$$\left[\frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{2 \cdot 3 \cdot 4} + \frac{1}{3 \cdot 4 \cdot 5} + \dots + \frac{1}{k(k+1)(k+2)}\right] + \frac{1}{(k+1)(k+2)(k+3)}$$

$$= \frac{k(k+3)}{4(k+1)(k+2)} + \frac{1}{(k+1)(k+2)(k+3)} \qquad [Using (i)]$$

$$= \frac{1}{(k+1)(k+2)} \left\{ \frac{k(k+3)}{4} + \frac{1}{k+3} \right\}$$

$$= \frac{1}{(k+1)(k+2)} \left\{ \frac{k(k+3)^2 + 4}{4(k+3)} \right\}$$

$$= \frac{1}{(k+1)(k+2)} \left\{ \frac{k^3 + 6k^2 + 9k + 4}{4(k+3)} \right\}$$

$$= \frac{1}{(k+1)(k+2)} \left\{ \frac{k^3 + 2k^2 + k + 4k^2 + 8k + 4}{4(k+3)} \right\}$$

$$= \frac{1}{(k+1)(k+2)} \left\{ \frac{k(k^2 + 2k + 1) + 4(k^2 + 2k + 1)}{4(k+3)} \right\}$$

$$= \frac{1}{(k+1)(k+2)} \left\{ \frac{k(k+1)^2 + 4(k+1)^2}{4(k+3)} \right\}$$

$$= \frac{(k+1)^2(k+4)}{4(k+1)(k+2)(k+3)}$$

$$= \frac{(k+1)^2(k+4)}{4(k+1)(k+2)(k+3)}$$

$$= \frac{(k+1)^2(k+4)}{4(k+1)(k+2)(k+3)}$$

$$= \frac{(k+1)^2(k+1) + 3}{4\{(k+1) + 1\}\{(k+1) + 2\}}$$

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 12:

Prove the following by using the principle of mathematical induction for all $n \in \mathbb{N}$:

$$a + ar + ar^{2} + ... + ar^{n-1} = \frac{a(r^{n} - 1)}{r - 1}$$

Answer 12:

Let the given statement be P(n), i.e.,

$$P(n): a + ar + ar^{2} + ... + ar^{n-1} = \frac{a(r^{n} - 1)}{r - 1}$$

For n = 1, we have

$$P(1): a = \frac{a(r^1 - 1)}{(r - 1)} = a$$
, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$a + ar + ar^{2} + \dots + ar^{k-1} = \frac{a(r^{k} - 1)}{r - 1}$$
 ... (i)

We shall now prove that P(k + 1) is true. Consider

$$\left\{ a + ar + ar^2 + \dots + ar^{k-1} \right\} + ar^{(k+1)-1} \\
 = \frac{a(r^k - 1)}{r - 1} + ar^k \qquad [Using(i)] \\
 = \frac{a(r^k - 1) + ar^k (r - 1)}{r - 1} \\
 = \frac{a(r^k - 1) + ar^{k+1} - ar^k}{r - 1} \\
 = \frac{ar^k - a + ar^{k+1} - ar^k}{r - 1} \\
 = \frac{ar^{k+1} - a}{r - 1} \\
 = \frac{a(r^{k+1} - 1)}{r - 1}$$

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 13:

Prove the following by using the principle of mathematical induction for all $n \in \mathbb{N}$:

$$\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right)...\left(1+\frac{(2n+1)}{n^2}\right)=\left(n+1\right)^2$$

Answer 13:

Let the given statement be P(n), i.e.,

$$P(n): \left(1 + \frac{3}{1}\right) \left(1 + \frac{5}{4}\right) \left(1 + \frac{7}{9}\right) ... \left(1 + \frac{(2n+1)}{n^2}\right) = (n+1)^2$$

For n = 1, we have

$$P(1): (1+\frac{3}{1})=4=(1+1)^2=2^2=4$$
, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right)...\left(1+\frac{(2k+1)}{k^2}\right)=\left(k+1\right)^2 ... (1)$$

We shall now prove that P(k + 1) is true. Consider

$$\left[\left(1 + \frac{3}{1} \right) \left(1 + \frac{5}{4} \right) \left(1 + \frac{7}{9} \right) ... \left(1 + \frac{(2k+1)}{k^2} \right) \right] \left\{ 1 + \frac{\{2(k+1)+1\}}{(k+1)^2} \right\}$$

$$= (k+1)^2 \left[1 + \frac{2(k+1)+1}{(k+1)^2} \right]$$

$$= (k+1)^2 \left[\frac{(k+1)^2 + 2(k+1)+1}{(k+1)^2} \right]$$

$$= (k+1)^2 + 2(k+1)+1$$

$$= \{(k+1)+1\}^2$$
Thus, $P(k+1)$ is true whenever $P(k)$ is true.

Hence, by the principle of mathematical induction, statement $P(n)$ is true for all natural numbers i.e., $P(k+1)$.

Question 14:

Prove the following by using the principle of mathematical induction for all $n \in \mathbb{N}$:

$$\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)...\left(1+\frac{1}{n}\right)=(n+1)$$

Answer 14:

Let the given statement be P(n), i.e.,

$$P(n): \left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)...\left(1+\frac{1}{n}\right)=(n+1)$$

For n = 1, we have

$$P(1): (1+\frac{1}{1})=2=(1+1)$$
 , which is true.

Let P(k) be true for some positive integer k, i.e.,

$$P(k): \left(1 + \frac{1}{1}\right) \left(1 + \frac{1}{2}\right) \left(1 + \frac{1}{3}\right) \dots \left(1 + \frac{1}{k}\right) = (k+1)$$
 ... (1)

We shall now prove that P(k + 1) is true.

$$\left[\left(1 + \frac{1}{1} \right) \left(1 + \frac{1}{2} \right) \left(1 + \frac{1}{3} \right) \dots \left(1 + \frac{1}{k} \right) \right] \left(1 + \frac{1}{k+1} \right) \\
= (k+1) \left(1 + \frac{1}{k+1} \right) \qquad \left[\text{Using (1)} \right] \\
= (k+1) \left(\frac{(k+1)+1}{(k+1)} \right) \\
= (k+1)+1$$

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 15:

Prove the following by using the principle of mathematical induction for all $n \in N$:

$$1^{2} + 3^{2} + 5^{2} + ... + (2n-1)^{2} = \frac{n(2n-1)(2n+1)}{3}$$

Answer 15:

Let the given statement be P(n), i.e.,

$$P(n) = 1^2 + 3^2 + 5^2 + \dots + (2n-1)^2 = \frac{n(2n-1)(2n+1)}{3}$$

For n = 1, we have

$$P(1) = 1^2 = 1 = \frac{1(2.1-1)(2.1+1)}{3} = \frac{1.1.3}{3} = 1$$
, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$P(k) = 1^2 + 3^2 + 5^2 + \dots + (2k-1)^2 = \frac{k(2k-1)(2k+1)}{3} \dots (1)$$

We shall now prove that P(k + 1) is true.

Consider

$$\begin{cases}
1^2 + 3^2 + 5^2 + \dots + (2k-1)^2 \\
= \frac{k(2k-1)(2k+1)}{3} + (2k+2-1)^2 \\
= \frac{k(2k-1)(2k+1)}{3} + (2k+1)^2 \\
= \frac{k(2k-1)(2k+1)}{3} + (2k+1)^2 \\
= \frac{k(2k-1)(2k+1) + 3(2k+1)^2}{3} \\
= \frac{(2k+1)\{k(2k-1) + 3(2k+1)\}}{3} \\
= \frac{(2k+1)\{2k^2 - k + 6k + 3\}}{3}$$

Using (1)

$$= \frac{(2k+1)\{2k^2+5k+3\}}{3}$$

$$= \frac{(2k+1)\{2k^2+2k+3k+3\}}{3}$$

$$= \frac{(2k+1)\{2k(k+1)+3(k+1)\}}{3}$$

$$= \frac{(2k+1)(k+1)(2k+3)}{3}$$

$$= \frac{(k+1)\{2(k+1)-1\}\{2(k+1)+1\}}{3}$$
Thus, P(k + 1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement for all natural numbers i.e., N.

Hence, by the principle of mathematical induction, statement P(n) is true

Question 16:

Prove the following by using the principle of mathematical induction for all $n \in N$:

$$\frac{1}{1.4} + \frac{1}{4.7} + \frac{1}{7.10} + \dots + \frac{1}{(3n-2)(3n+1)} = \frac{n}{(3n+1)}$$

Answer 16:

Let the given statement be P(n), i.e.,

$$P(n): \frac{1}{1.4} + \frac{1}{4.7} + \frac{1}{7.10} + \dots + \frac{1}{(3n-2)(3n+1)} = \frac{n}{(3n+1)}$$

For n = 1, we have

$$P(1) = \frac{1}{1.4} = \frac{1}{3.1+1} = \frac{1}{4} = \frac{1}{1.4}$$
, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$P(k) = \frac{1}{1.4} + \frac{1}{4.7} + \frac{1}{7.10} + \dots + \frac{1}{(3k-2)(3k+1)} = \frac{k}{3k+1} \qquad \dots (1)$$

We shall now prove that P(k + 1) is true.

Hence, by the principle of mathematical induction, statement P(n) is true

for all natural numbers i.e., N.

Question 17:

Prove the following by using the principle of mathematical induction for all $n \in \mathbb{N}$:

$$\frac{1}{3.5} + \frac{1}{5.7} + \frac{1}{7.9} + \dots + \frac{1}{(2n+1)(2n+3)} = \frac{n}{3(2n+3)}$$

Answer 17:

Let the given statement be P(n), i.e.,
$$P(n): \frac{1}{3.5} + \frac{1}{5.7} + \frac{1}{7.9} + ... + \frac{1}{(2n+1)(2n+3)} = \frac{n}{3(2n+3)}$$
 For $n = 1$, we have

For n = 1, we have

$$P(1): \frac{1}{3.5} = \frac{1}{3(2.1+3)} = \frac{1}{3.5}$$
 , which is true.

Let P(k) be true for some positive integer k, i.e.,

$$P(k): \frac{1}{3.5} + \frac{1}{5.7} + \frac{1}{7.9} + \dots + \frac{1}{(2k+1)(2k+3)} = \frac{k}{3(2k+3)}$$

We shall now prove that P(k + 1) is true. Consider

$$\left[\frac{1}{3.5} + \frac{1}{5.7} + \frac{1}{7.9} + \dots + \frac{1}{(2k+1)(2k+3)}\right] + \frac{1}{\{2(k+1)+1\}\{2(k+1)+3\}}$$

$$= \frac{k}{3(2k+3)} + \frac{1}{(2k+3)(2k+5)} \qquad [Using (1)]$$

$$= \frac{1}{(2k+3)} \left[\frac{k}{3} + \frac{1}{(2k+5)}\right]$$

$$= \frac{1}{(2k+3)} \left[\frac{k(2k+5)+3}{3(2k+5)}\right]$$

$$= \frac{1}{(2k+3)} \left[\frac{2k^2+5k+3}{3(2k+5)}\right]$$

$$= \frac{1}{(2k+3)} \left[\frac{2k^2+2k+3k+3}{3(2k+5)}\right]$$

$$= \frac{1}{(2k+3)} \left[\frac{2k(k+1)+3(k+1)}{3(2k+5)}\right]$$

$$= \frac{(k+1)(2k+3)}{3(2k+3)(2k+5)}$$

$$= \frac{(k+1)}{3\{2(k+1)+3\}}$$

Millions and Practice Williams And Control of the Practice of Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Remove Watermark

Question 18:

Prove the following by using the principle of mathematical induction for all n N:

Answer 18:

Let the given statement be P(n), i.e.,

It can be noted that P(n) is true for n = 1 since

Let P(k) be true for some positive integer k, i.e.,

Millions are appractice.

White are a practice. We shall now prove that P(k + 1) is true whenever P(k) is true. Consider

$$(1+2+...+k)+(k+1)<\frac{1}{8}(2k+1)^2+(k+1)$$
 [Using(1)]

$$<\frac{1}{8}\{(2k+1)^2+8(k+1)\}$$

$$<\frac{1}{8}\{4k^2+4k+1+8k+8\}$$

$$<\frac{1}{8}\{4k^2+12k+9\}$$

$$<\frac{1}{8}(2k+3)^2$$

$$<\frac{1}{8}\{2(k+1)+1\}^2$$

Hence, $(1+2+3+...+k)+(k+1)<\frac{1}{8}(2k+1)^2+(k+1)$

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 19:

Prove the following by using the principle of mathematical induction for all $n \in N$:

P(n): n (n + 1) (n + 5), which is a multiple of 3. It can be noted that P(n) is true for n = 1 since 1 (1 + 1) (1 + 5) = 12, which is a multiple of 3.

Let P(k) be true for some positive integer k, i.e.,

$$k(k + 1)(k + 5)$$
 is a multiple of 3.

$$: k (k + 1) (k + 5) = 3m$$
, where $m \in \mathbb{N}$... (1)

We shall now prove that P(k + 1) is true whenever P(k) is true.

Consider

$$(k+1)\{(k+1)+1\}\{(k+1)+5\}$$

$$= (k+1)(k+2)\{(k+5)+1\}$$

$$= (k+1)(k+2)(k+5)+(k+1)(k+2)$$

$$= \{k(k+1)(k+5)+2(k+1)(k+5)\}+(k+1)(k+2)$$

$$= 3m+(k+1)\{2(k+5)+(k+2)\}$$

$$= 3m+(k+1)\{2k+10+k+2\}$$

$$= 3m+(k+1)(3k+12)$$

$$= 3m+3(k+1)(k+4)$$

$$= 3\{m+(k+1)(k+4)\} = 3\times q, \text{ where } q = \{m+(k+1)(k+4)\} \text{ is some natural number}$$
Therefore, $(k+1)\{(k+1)+1\}\{(k+1)+5\}$ is a multiple of 3.

Thus, P(k + 1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 20:

Prove the following by using the principle of mathematical induction for all $n \in \mathbb{N}$:

 $10^{2n-1} + 1$ is divisible by 11.

Answer 20:

Let the given statement be P(n), i.e.,

P(n): $10^{2n-1} + 1$ is divisible by 11.

It can be observed that P(n) is true for n = 1

since $P(1) = 10^{2.1-1} + 1 = 11$, which is divisible by 11.

Let P(k) be true for some positive integer k,

i.e., $10^{2k-1} + 1$ is divisible by 11.

 $10^{2k-1} + 1 = 11m$, where $m \in \mathbb{N}$... (1)

We shall now prove that P(k + 1) is true whenever P(k) is true.

$$10^{2(k+1)-1} + 1$$

$$= 10^{2k+2-1} + 1$$

$$= 10^{2(k+1)} + 1$$

$$= 10^{2} (10^{2k-1} + 1 - 1) + 1$$

$$= 10^{2} (10^{2k-1} + 1) - 10^{2} + 1$$

$$= 10^{2} .11m - 100 + 1 \qquad [Using (1)]$$

$$= 100 \times 11m - 99$$

$$= 11(100m - 9)$$

$$= 11r, \text{ where } r = (100m - 9) \text{ is some natural number}$$
Therefore, $10^{2(k+1)-1} + 1$ is divisible by 11.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Mathematics

(Chapter – 4) (Principle of Mathematical Induction)) (Class - XI)

Exercise 4.1

Question 21:

Prove the following by using the principle of mathematical induction for all $n \in N$:

 $x^{2n} - y^{2n}$ is divisible by x + y.

Answer 21:

Let the given statement be P(n), i.e.,

P(n): $x^{2n} - y^{2n}$ is divisible by x + y.

It can be observed that P(n) is true for n = 1.

This is so because $x^{2 \times 1} - y^{2 \times 1} = x^2 - y^2 = (x + y)(x - y)$ is divisible by (x + y).

Let P(k) be true for some positive integer k, i.e.,

 $x^{2k} - y^{2k}$ is divisible by x + y.

: Let $x^{2k} - y^{2k} = m (x + y)$, where $m \in \mathbb{N}$... (1)

Million Stars Practice We shall now prove that P(k + 1) is true whenever P(k) is true. Consider

$$x^{2(k+1)} - y^{2(k+1)}$$

$$= x^{2k} \cdot x^2 - y^{2k} \cdot y^2$$

$$= x^2 \left(x^{2k} - y^{2k} + y^{2k} \right) - y^{2k} \cdot y^2$$

$$= x^2 \left\{ m(x+y) + y^{2k} \right\} - y^{2k} \cdot y^2 \qquad [Using (1)]$$

$$= m(x+y)x^2 + y^{2k} \cdot x^2 - y^{2k} \cdot y^2$$

$$= m(x+y)x^2 + y^{2k} \left(x^2 - y^2 \right)$$

$$= m(x+y)x^2 + y^{2k} \left(x + y \right) (x-y)$$

$$= (x+y) \left\{ mx^2 + y^{2k} \left(x - y \right) \right\}, \text{ which is a factor of } (x+y).$$

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 22:

Million Stars & Practice
Williams Stars & Practice Prove the following by using the principle of mathematical induction for all $n \in \mathbb{N}$: $3^{2n+2} - 8n - 9$ is divisible by 8.

Answer 22:

Let the given statement be P(n), i.e.,

P(n): $3^{2n+2} - 8n - 9$ is divisible by 8.

It can be observed that P(n) is true for n = 1

since $3^{2 \times 1 + 2} - 8 \times 1 - 9 = 64$, which is divisible by 8.

Let P(k) be true for some positive integer

$$k$$
, i.e., $3^{2k+2} - 8k - 9$ is divisible by 8.

$$3^{2k+2} - 8k - 9 = 8m$$
; where $m \in \mathbb{N}$... (1)

We shall now prove that P(k + 1) is true whenever P(k) is true.

Consider

$$3^{2(k+1)+2} - 8(k+1) - 9$$

$$= 3^{2k+2} \cdot 3^2 - 8k - 8 - 9$$

$$= 3^2 (3^{2k+2} - 8k - 9 + 8k + 9) - 8k - 17$$

$$= 3^2 (3^{2k+2} - 8k - 9) + 3^2 (8k + 9) - 8k - 17$$

$$= 9.8m + 9(8k + 9) - 8k - 17$$

$$= 9.8m + 72k + 81 - 8k - 17$$

$$= 9.8m + 64k + 64$$

$$= 8(9m + 8k + 8)$$

$$= 8r, \text{ where } r = (9m + 8k + 8) \text{ is a natural number}$$
Therefore, $3^{2(k+1)+2} - 8(k+1) - 9$ is divisible by 8.

Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 23:

Prove the following by using the principle of mathematical induction for all $n \in \mathbb{N}$:

 $41^{n} - 14^{n}$ is a multiple of 27.

Answer 23:

Let the given statement be P(n), i.e.,

 $P(n):41^{n} - 14^{n}$ is a multiple of 27.

It can be observed that P(n) is true for n = 1

since $41^1 - 14^1 = 27$, which is a multiple of 27.

Let P(k) be true for some positive integer k, i.e.,

 $41^k - 14^k$ is a multiple of 27

We shall now prove that P(k + 1) is true whenever P(k) is true.

$$41^{k+1} - 14^{k+1}$$

$$= 41^{k} \cdot 41 - 14^{k} \cdot 14$$

$$= 41(41^{k} - 14^{k} + 14^{k}) - 14^{k} \cdot 14$$

$$= 41(41^{k} - 14^{k}) + 41.14^{k} - 14^{k} \cdot 14$$

$$= 41.27m + 14^{k}(41 - 14)$$

$$= 41.27m + 27.14^{k}$$

$$= 27(41m - 14^{k})$$

$$= 27 \times r, \text{ where } r = (41m - 14^{k}) \text{ is a natural number}$$
Therefore, $41^{k+1} - 14^{k+1}$ is a multiple of 27.

Thus, P(k + 1) is true whenever P(k) is true. Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.

Question 24:

Prove the following by using the principle of mathematical induction for all $n \in \mathbb{N}$:

$$(2n+7) < (n+3)^2$$

Answer 24:

Let the given statement be P(n), i.e.,

$$P(n)$$
: $(2n + 7) < (n + 3)^2$

It can be observed that P(n) is true for n = 1

since $2.1 + 7 = 9 < (1 + 3)^2 = 16$, which is true.

Let P(k) be true for some positive integer k, i.e.,

$$(2k + 7) < (k + 3)^2 \dots (1)$$

We shall now prove that P(k + 1) is true whenever P(k) is true. Consider

$$\{2(k+1)+7\} = (2k+7)+2$$

$$\therefore \{2(k+1)+7\} = (2k+7)+2 < (k+3)^2 +2$$

$$[u sin g (1)]$$

$$2(k+1)+7 < k^2 +6k+9+2$$

$$2(k+1)+7 < k^2 +6k+11$$

$$Now, k^2 +6k+11 < k^2 +8k+16$$

$$\therefore 2(k+1)+7 < (k+4)^2$$

$$2(k+1)+7 < \{(k+1)+3\}^2$$

Thus, P(k + 1) is true whenever P(k) is true. Hence, by the principle of mathematical induction, statement P(n) is true for all natural numbers i.e., N.