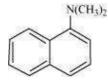


(Chapter 13)(Amines)

Intext Questions


Question 13.1:

Classify the following amines as primary, secondary or tertiary:

(i)

(ii)

(iii) (C₂H₅)₂CHNH₂

(iv) $(C_2H_5)_2NH$

Answer

Primary: (i) and (iii)

Secondary: (iv)

Tertiary: (ii)

Question 13.2:

- (i) Write structures of different isomeric amines corresponding to the molecular formula, C4H11N
- (ii) Write IUPAC names of all the isomers.
- (iii) What type of isomerism is exhibited by different pairs of amines?

- Answer

 (i), (ii) The structures and their IUPAC names of different isomeric amines corresponding to the molecular formula, C₄H₁₁N are given below:

 (a) CH₃-CH₂-CH₂-CH₂-NH₂

 Butanamine (1⁰)

(b)
$$CH_3 - CH_2 - CH - CH_3$$

Butan-2-amine (10)

2-Methylpropanamine (1⁰)

(d)

2-Methylpropan-2-amine (10)

(e) CH₃-CH₂-CH₂-NH-CH₃

N-Methylpropanamine (20)

(f) CH₃-CH₂-NH-CH₂-CH₃

N-Ethylethanamine (2⁰)

(g)

N-Methylpropan-2-amine (2⁰)

(h)

$$CH_3$$

 $CH_3 - CH_2 - N - CH_3$

N,N-Dimethylethanamine (3°)

(iii) The pairs (a) and (b) and (e) and (g) exhibit position isomerism.

Ine pairs (e) and (f) and (g) exhibit metamerism.

All primary amines exhibit functional isomerism with secondary and tertiary amines and vice-versa.

Question 13.3:

How will you convert?

- (i) Benzene into aniline
- (ii) Benzene into N, N-dimethylaniline
- (iii) $CI-(CH_2)_4-CI$ into hexan-1, 6-diamine?

Answer

(i)

$$C1 - (CH_2)_4 - C1$$
 Ethanolic NaCN \searrow $N = C - (CH_2)_4 - C = N$
 $1, 4 - Dichlorobutane$ H_2/Ni

$${\rm H_2N-CH_2-(CH_2)_4-CH_2-NH_2}$$

Hexane -1,6 - diamine

Question 13.4:

Millionsian & Practice Arrange the following in increasing order of their basic strength:

- (i) $C_2H_5NH_2$, $C_6H_5NH_2$, NH_3 , $C_6H_5CH_2NH_2$ and $(C_2H_5)_2NH_3$
- (ii) $C_2H_5NH_2$, $(C_2H_5)_2NH$, $(C_2H_5)_3N$, $C_6H_5NH_2$
- (iii) CH₃NH₂, (CH₃)₂NH, (CH₃)₃N, C₆H₅NH₂, C₆H₅CH₂NH₂. Answer

Remove Watermark

(i) Considering the inductive effect of alkyl groups, NH₃, C₂H₅NH₂, and (C₂H₅)₂NH can be arranged in the increasing order of their basic strengths as:

$$NH_1 < C_2H_5NH_3 < (C_3H_5), NH_3$$

Again, C₆H₅NH₂ has proton acceptability less than NH₃. Thus, we have:

$$C_6H_5NH_7 < NH_3 < C_7H_5NH_7 < (C_7H_5), NH$$

Due to the -I effect of C_6H_5 group, the electron density on the N-atom in $C_6H_5CH_2NH_2$ is lower than that on the N-atom in $C_2H_5NH_2$, but more than that in NH_3 . Therefore, the given compounds can be arranged in the order of their basic strengths as:

$$C_6H_5NH_2 < NH_3 < C_6H_5CH_2NH_2 < C_2H_5NH_2 < (C_2H_5)_2NH_2$$

Considering the inductive effect and the steric hindrance of the alkyl groups, $C_2H_5NH_2$, $(C_2H_5)_2NH_2$, and their basic strengths as follows:

$$C_1H_2NH_3 < (C_1H_2)_1N < (C_2H_3)_1NH$$

Again, due to the −R effect of C₆H₅ group, the electron density on the N atom in C₆H₅ NH₂ is lower than that on the N atom in C₂H₅NH₂. Therefore, the basicity of C₆H₅NH₂ is lower than that of C₂H₅NH₂. Hence, the given compounds can be arranged in the increasing order of their basic strengths as follows:

$$C_6H_5NH_2 < C_2H_5NH_2 < (C_2H_5)_3N < (C_2H_5)_2NH$$

(iii) Considering the inductive effect and the steric hindrance of alkyl groups, CH₃NH₂, $(CH_3)_2NH$, and $(CH_3)_3N$ can be arranged in the increasing order of their basic strengths as: $(CH_3)_3N < CH_3NH_3 < (CH_3)_3NH$

In C₆H₅NH₂, N is directly attached to the benzene ring. Thus, the lone pair of electrons on the N-atom is delocalized over the benzene ring. In C₆H₅CH₂NH₂, N is not directly attached Again, due to the -I effect of C_6H_5 group, the electron density on the N-atom in $C_6H_5CH_2NH_2$ is lower than that on the N-atom in $(CH_3)_3N$. Therefore, $(CH_3)_2N^{1/2}$

Remove Watermark

than C₆H₅CH₂NH₂. Thus, the given compounds can be arranged in the increasing order of their basic strengths as follows.

$$C_6H_5NH_7 < C_6H_5CH_7NH_7 < (CH_3)_1N < CH_1NH_7 < (CH_3)_7NH_7$$

Question 13.5:

Complete the following acid-base reactions and name the products:

- (i) CH₃CH₂CH₂NH₂ + HCl →
- (ii) $(C_2H_5)_3N + HCI \rightarrow$

Answer

(ii)
$$(C_2H_5)_3N + HCl \longrightarrow (C_2H_5)_3 \stackrel{+}{NH_3} \stackrel{-}{Cl}$$

Triethylamine Triemethylammoniumchloride

Question 13.6:

Write reactions of the final alkylation product of aniline with excess of methyl iodide in the presence of sodium carbonate solution.

Answer

Aniline reacts with methyl iodide to produce N, N-dimethylaniline.

Aniline

N, N – Dimethylaniline

With excess methyl iodide, in the presence of Na2CO3 solution, N, N-dimethylaniline produces N, N, N-trimethylanilinium carbonate.

N, N - Dimethylaniline N, N, N - Trimethylanilinium iodide

N, N, N - Trimethylanilinium Carbonate

Question 13.7:

Write chemical reaction of aniline with benzoyl chloride and write the name of the product obtained.

Answer

N - Phenylbenzamide

Question 13.8:

Answer
The structures of different isomers corresponding to the molecular formula, Catan are given below: Write structures of different isomers corresponding to the molecular formula, C₃H₉N.

(a)
$$CH_3 - CH_2 - CH_2 - NH_2$$

Propan-1-amine (10)

(b)

Propan-2-amine (10)

(c)

N-Methylethanamine (20)

(d)

N,N-Dimethylmethanamine (30)

1ºamines, (a) propan-1-amine, and (b) Propan-2-amine will liberate nitrogen gas on treatment with nitrous acid.

$$CH_3CH_2CH_2NH_2 + HNO_2 \longrightarrow CH_3CH_2CH_2OH + N_2 + HCI$$

Propan-1-amine

Propan-1-ol

Propan - 2 - amine

Propan - 2 - ol

Question 13.9:

Convert

- (i) 3-Methylaniline into 3-nitrotoluene.
- (ii) Aniline into 1,3,5-tribromobenzene.

Answer

(i)

$$\begin{array}{c} NH_2 \\ + N_4NO_2 + 2HCI \\ \hline \\ 3 - Methylaniline \\ \end{array} \begin{array}{c} + N_2\bar{C}I \\ + N_2\bar{C}I \\ + N_4CI + 2H_2O \\ CH_3 \\ \hline \\ N_2B\bar{F}_4 \\ \hline \\ N_2B\bar{F}_4 \\ \hline \\ N_2B\bar{F}_4 \\ \hline \\ N_3B\bar{F}_4 \\ \hline \\ N_3B\bar{$$

(ii)
$$\begin{array}{c} NH_2 \\ Br_2/H_2O \\ \hline -3 \text{ HBr} \end{array}$$

$$\begin{array}{c} NH_2 \\ Br \\ NaNO_2/HCI \\ \hline \end{array}$$

$$\begin{array}{c} Br \\ NaNO_2/HCI \\ \hline \end{array}$$

$$\begin{array}{c} Br \\ Br \\ \hline \end{array}$$

1, 3, 5 - Tribromobenzene Willions and Practice