Equitable Identification of Gifted Students in the Era of BLM

Jack A. Naglieri, Ph.D.
University of Virginia

Mystery Number is 848,400

FOR MORE INFORMATION PLEASE GO TO MY WEB PAGE

How Are You Feeling?

Feeling Overwhelmed? Mindful Breathing

5

Traditional IQ and Achievement Tests

> Working as a school psychologist in 1975 I noticed that items on the WISC we were VERY similar to parts of the achievement tests

- In fact the Peabody Individual Achievement Test (1970) had a General Information and Arithmetic subtests JUST LIKE THE WISC!
- THAT DID NOT MAKE SENSE
- In $1977 \rightarrow$ UGA for Ph.D. w A. S. Kaufman who said VIQ=achievement

1975 Charles Champagne
Elementary, Bethpage, NY

- THAT made sense!

How and Why

- First year as assistant professor at NAU - 1982
- Lecture on Navajo Indians
- Testing on the Havasupai Indian Reservation
- First Research Article
- Naglieri, J. A. (1982). Does the W non-English speaking children? P
- First Test - 1985
- Matrix Analogies Tests Individual
- First Books
- Essentials of CAS Assessment (Na
- Helping All Gifted Students Learn

7

Tests Created with Equity as a Goal

1. Naglieri, J. A. (1985). Matrix Analogies Test - Expanded Form. San Antonio: The Psychological Corporation.
2. Naglieri, J. A. (1985). Matrix Analogies Test - Short Form. San Antonio: The Psychological Corporation.
3. Naglieri, J. A. (1997). Naglieri Nonverbal Ability Test. San Antonio, TX: The Psychological Corporation.
4. Naglieri, J. A., \& Bardos, A. N. (1997). General Ability Scale for Adults (GAMA San Antonio, TX: Pearson.
5. Naglieri, J. A., \& Das, J. P. (1997). Cognitive Assessment System. Austin: ProEd.
6. Naglieri, J. A. (2003). Naglieri Nonverbal Ability Test - Individual Form. San Antonio, TX: Pearson.
7. Wechsler, D., \& Naglieri, J. A. (2006). Wechsler Nonverbal Scale of Ability. San Antonio, TX: Pearson.
8. Naglieri, J. A. (2008). Naglieri Nonverbal Ability Test - 2nd Edition. San Antonio, TX: Pearson.
9. Naglieri, J. A., Das, J. P., \& Goldstein, S. (2014). Cognitive Assessment System Second Edition. Austin, TX: ProEd.
10. Naglieri, J. A. (2016). Naglieri Nonverbal Ability Test - Third Edition. San Antonio, TX: Pearson.
11. Naglieri, J. A., Moreno, M. A., \& Otero, T. M. (2017). Cognitive Assessment System - Español. Austin, TX: ProEd.
12. Kaufman, J. C., Naglieri, J. A., \& Reynolds, C. R. (2020). Kaufman Multidimensional Assessment of Creativity. Markham, Canada: Multi-Health Systems.
13. Naglieri, J. A. (2021). Naglieri General Ability Test: Nonverbal. Markham, CA: Multi-Health Systems.
14. Naglieri, J. A. \& Brulles, D. (2021). Naglieri General Ability Test: Verbal. Markham, CA: Multi-Health Systems.
15. Naglieri, J. A. \& Lansdowne, K. (2021). Naglieri General Ability Test: Quantitative. Markham, CA: Multi-Health Systems.

Equitable Identification of Gifted Students

CONCLUSIONS

\rightarrow Tests typically used to identify gifted/talented students require too much language and information:

- language used in the directions (V, NV, Q)
- Verbal and math knowledge required in the questions (V \& Q)
- Verbal expression to answer verbal questions(V)
$>$ Students who come from low income families, are culturally different, or limited English skills are at disadvantage
$>$ Many Hispanic and Black students are denied entry to gifted education and therefore they don't reach their potential
>BUT...WE CAN and MUST DO BETTER especially NOW!

Identification Methods Vary

Parent and Teacher recommendation
> High scores on intelligence tests (CogAT, WISC, Binet, etc)
$>$ High grades in school
$>$ Universal testing
$>$ National and local norms
$>$ Rating scales of gifted behaviors
$>$ Creativity measures

- A matrix of some of these methods

National Survey of Gifted Education

Obstacle to Equitable Identification

Clarification of terms...

- Gifted = very smart
- Talented = very accomplished
$>$ Identification procedures
- Gifted/Talented students are often identified with traditional IQ tests comprised of subtests like Vocabulary, Similarities, Arithmetic, Comprehension which demand knowledge
- Using a test of ability that demands knowledge of English and understanding verbal directions is not reasonable

Why Talented Black and Hispanic Students Can Go Undiscovered
By SUSAN DYNARSKI APRIL 8, 2016

Devion

> Devion lived with his mother and father and two siblings in Springfield, Illinois
> The family has an annual income of \$12,000
$>$ At home, Devion often reads or does word puzzles while his friends play outside.
> He is writing a book of several chapters using the family's 10-yearold computer, which was bought second-hand for $\$ 100$. It has a broken mouse.
> "I like to read books all day long,"
> He says. "I'm the only one I know that writes stories. It's a special secret I keep."

Wall Street Journal

> He scored 141 out of a possible 150 on the Naglieri Nonverbal Ability Test
> Devion's high Naglieri score brought him an invitation to attend the magnet school last year
$>$ He was the only African-American at his elementary school to qualify for gifted services
> But there were problems
$>$ Devion is NOT getting good grades in school
\Rightarrow He is uncooperative

- Devion's teacher recently told the class to write to Mickey Mouse, congratulating the cartoon character on his 75th birthday.
"Second-graders have to learn how to write a friendly letter," she said.
- Devion said the assignment bored him. He said: "I could write 100 pages about Pokemon. A whole book."
\Rightarrow His teacher did not think he should be in the gifted program

What happened to Devion?

Devion Graduates High School

Gifted Identification

\Rightarrow This presentation is about children who may not have the academic skills or command of the English language to do well in school, yet they are very smart - gifted
$>$ These children can become very talented given the opportunity to learn
\rightarrow There are many children like this in our country, and their numbers are growing
$>$ TESTS used for Gifted and Talented identification?

Testing Gifted Students

Quantitative tests are often contaminated with English

Math word problems require reading and understanding the language used as well as comprehension

Vocabulary, Similarities, Word Analogies, etc.
\square Nonverbal tests get around these problems

Measure ability using tests that do not demand English and have minimal requirement of formal learning - But using what concept of ability????

These questions require General Ability!

Despite the differences in content, each of these questions requires understanding the relationships among parts.

Measure Thinking not Knowledge

What does the student have to know to complete a task?

- This is dependent upon educational opportunity
- How does the student have to think to complete a task?
- This is dependent on the brain

Conclusion: Test content does not define a type of ability

Questions or

 thoughtsIdeas to Consider:

Who conceived the content of our IQ tests

Gifted Identification

> Ability Tests' Content WHERE DID IT COME FROM?

New General Ability Tests

Twice Exceptional Gifted Students

"The hardest part of learning something new is not embracing new ideas, but letting go of old ones."

- Todd Rose, The End of Average

Army Mental Testing (Yoakum \& Yerkes) http://www.jacknaglieri.com/cas2.html

Handbook of Intelligence maximumi mome

Hundred Years of Intelligence
Testing: Moving from Traditional Testing:Moving from Tradion
IQ to Second-Generation Intelligence Tests
JackA. Nagliel

$>$ A group of psychologists met at Harvard in April of 1917 to construct an ability test to help the US military evaluate recruits (WWI) for responsible positions

- Their goal was to develop a workable set of tests called the Army Alpha \& Beta
$>$ That became Verbal \& Performance on WISC

From Alpha \& Beta to Wechsler IQ

Army Alpha

- Synonym- Antonym
- Disarranged Sentences
- Number Series
- Arithmetic Problems
- Analogies
- Information

Army Beta

- Maze
- Cube Imitation
- Cube Construction
- Digit Symbol
- Pictorial Completion
- Geometrical Construction

Take this IQ Test

From: Psychological Examining in the United States Army (Yerkes, 1921, p. 213)

1. Bull Durham is the name of
2. The Mackintosh Red is a kind of
3. The Oliver is a
4. A passenger locomotive type is the
5. Stone \& Webster are well know
6. The Brooklyn Nationals are called
7. Pongee is a
8. Country Gentleman is a kind of
9. The President during the Spanish War was
10. Fatima is a make of
11. tobacco
12. fruit
13. typewriter
14. Mogul
15. engineers
16. Superbas
17. fabric
18. corn
19. Mckinley
20. cigarette

Our Tests Demand Knowledge

Stanford-Binet 5

- Verbal
- Knowledge
- Quantitative Reasoning
- Vocabulary
- Verbal Analogies

WJ-IV and Batería-IV
(including Cross Battery)

- Comprehension Knowledge: Vocabulary \& General Information
- Fluid Reasoning: Number Series \& Concept Formation
- Auditory Processing: Phonological Processing

K-ABC-II

- Knowledge / GC: Riddles, Expressive Vocabulary, Verbal Knowledge

WJ-IV Items from Cognitive and Achievement Tests:

Cognitive: Oral Vocabulary Subtest 1

Achievement: Reading Vocabulary-Synonyms Subtest 17

Very Similar Items on "Different" Tests

```
Sample Items
Point to street on subject's page and say: Another word that means street is road.
A: Erroror No Response
    Sal
    A Correct: big, enormous, gigantic, huge
    Point to sleep and say:Tell me another word for sleep.
        A Correct: nap, doze, rest, snooze
    - B:Error or No Response
    Score item O and say Another word for
    Do not read any other items or tell subject any other words during this test.
```


1920 Army Testing (Yoakum \& Yerkes)

Note there is no mention of measuring verbal and nonverbal intelligences - they saw a social justice issue...and today in the era a BLM the need is even more urgent

METHODS AND RESULTS
Why Beta? Men who fail in alpha are sent to beta in order that injustice. by reason of relative unfamiliarity with English may be avoided. Men who fail in beta are referred for individual examination by means of what may appear to be the most suitable and altogether appropriate procedure among the varied methods available. This reference for careful individual examination is yet another attempt to avoid injustice either by reason of linguistic handicap or accidents incident to group examining.

Gifted Identification

$>$ This presentation is about children who may not have good grades, or the academic skills or command of English, yet they are very smart - gifted
$>$ These children can become very talented given the opportunity to learn
>How many children like this are in our country?

35

Race \& IQ (Naglieri \& Otero, 2017)

Even though these tests

 do not show psychometric bias (Worrell, 2019) they do yield large mean score differences by race

Traditional IQ tests

SB-IV (matched samples)	12.6
WISC-V (normative sample)	11.6
WISC-IV (normative sample)	11.5
WJ- III (normative sample)	10.9
WISC-IV (matched samples)	10.0
WISC-V (statistical controls normative sample)	8.7
Note: The data for these results are reported for the Stanford-	
Binet IV from Wasserman (2000); Woodcock-Johnson III from	
Edwards \& Oakland (2006); Wechsler Intelligence Scale for	
Children - IV (WISC-IV) from O'Donnell (2009), WISC-V from	
Kaufman, Raiford \& Coalson (2016).	

Test Bias is present if there are group differences in ...
Researchers have defined psychometric bias using analysis of:
$>$ internal consistency of items
> reliability of test/retest scores
$>$ rank order of item difficulties
$>$ item intercorrelations
$>$ factor structure of test or items
$>$ magnitude of the factor loadings

- slope \& intercept regression lines
- correlation of raw scores with age
- item characteristic curve
- frequencies of choice of error distracters
- interaction of test items by group membership

Crocker \& Algina (1986). Introduction to Classical \& Modern Test Theory (Hold, Rinehart \& Winston) Nunnally \& Bernstein (1994). Psychometric Theory (McGraw-Hill) Jensen (1980). Bias in Mental Testing (Free Press)
Brody (1992). Intelligence (Academic Press)

Opportunity to learn and Equity

- According to the Standards for Educational and Psychological Testing (AERA, APA \& NCME, 2014), if a person has had limited opportunities to learn the content in a test of intelligence, that test may be considered unfair because it penalizes students for not having learned the content

Equitable assessment can be achieved if all examinees have equal opportunity to perform
The Standards also remind us that even if the

STANDARDS for Exicactional and Psychological Testing norming data do not demonstrate psychometric bias tests can still be considered unfair.

Hispanic Children

NNAT's Small Race \& Ethnic Differences

	N	Mean	Diff
White	2,306	99.3	
Black	2,306	95.1	4.2
White	1,176	101.4	
Hispanic	1,176	98.6	2.8
White	466	103.6	
Asian	446	103.0	0.3

Comparison of White, African American, Hispanic, and Asian Children on the Naglieri Nonverbal Ability Test

Jack A. Naglieri and Margaret E. Ronning
 Ohio State University

This study examined differences between 3 matched samples of White $(n=2,306)$ and African American $(n=2,306)$, White $(n=1,176)$ and Hispanic $(n=1,176)$, and White $(n=466)$ and Asian $(n=466)$ children on the Naglieri Nonverhal Ability Test (NNAT; J. A. Naglieri, 1997a). The groups were selected from 22,620 children included in the NNAT standardization sample and matched on geographic region, socioeconomic status, ethnicity, and type of school setting (public or private). There was only a small
difference between the NNAT scores for the White and African American samples $(d$ ratio $=25$) and difference between the NNAT scores for the White and African American samples $(d$ ratio $=25)$ and
minimal differences between the White and Hispric $(d$ ratio $=.17$) and between the White and Asian $(d$ ratio $=.02)$ groups. The NNAT was moderately correlated widh achievement for the total sample and correlated similarly with achievement for the White and ethnic minority groups. The median corclation of NNAT with reading was 52 and NNAT with math was .63 across the samples. Results suggest that the NNAT scores have use for fair assessment of White and minority children.

NNAT Identified Equal Percentages

$\text { Table } 2$ NNAT Scores							
	White		Black		Hispanic		Expected \%
	n	\%	n	\%	n	\%	
120 \& above	1,571	10.3	269	9.4	190	9.5	9.0
125 \& above	906	5.6	145	5.1	88	4.4	5.0
130 \& above	467	2.5	75	2.6	46	2.3	2.0
135 \& above	190	1.1	42	1.5	18	0.9	1.0
140 \& above	90	0.6	19	0.6	9	0.4	0.4
Total Sample n	14,141		2,863		1,991		

Very Similar percentages of Black, White and Hispanic students earned a standard score of 125 ($95^{\text {th }}$ percentile) or above

41

Wechsler vs CAS for Students with ID

> White children earned the same mean scores on WISC-III and CAS
> Black children earned lower VIQ than PIQ scores due to language / achievement tasks \rightarrow low Full Scale
> Black children earned higher scores on CAS than whites
> Fewer Black children would be identified as having intellectual disability based on Full Scale scores using CAS than WISC-III
> THIS IS A SOCIAL JUSTICE ISSUE.

American Journal on Mental Retardation, 2001, Vol. 106, No. 4, 359-367

Intellectual Classification of Black and White Children in Special Education Programs Using the WISCIII and the Cognitive Assessment System

Jack A. Naglieri
George Mason University

Johannes Rojahn

The Ohio State University

Conclusion: Taking the knowledge out of ability tests improves equity

Questions?

 Reactions?
Gifted Identification

Ideas to Consider

Ability Tests' Content

New General Ability Tests

Twice Exceptional Gifted Students

Wechsler \& Spearman's g

of nonverbal assessment many paces forward. In addition, the emphasis in the WNV Manual that the Full Scale measures general ability nonverbally-and not nonverbal ability-is an important distinction that further ties the WNV to Dr. Wechsler. Although his intelligence tests in the 1930s and 1940s departed from the one-score Stanford-Binet by offering separate Verbal and Performance IQs as well as a profile of scaled scores, Dr. Wechsler remained a firm believer in Spearman's g theory throughout his lifetime. He believed that his Verbal and Performance Scales represented different ways to access g, but he never believed in nonverbal intelligence as being separate from g. Rather, he saw the Performance Scale as the most sensible way to measure the general intelligence of people with hearing impairments, language disorders, or limited proficiency in English. And that is precisely what the WNV is intended to do.

Alan S. Kaufman, PhD
Clinical Professor of Psychology
Yale Child Study Center
Yale University School of Medicine

47

General ability (Naglieri, Brulles \& Lansdowne, 2009)

$>$ General ability (i.e. ' g ')is what allows us to solve many kinds of problems
\Rightarrow The problems may involve

- reasoning, memory, sequencing, verbal and math skills, patterning, connecting ideas across content areas, insights, making connections, drawing inferences, analyzing simple and complex ideas.
Verbal or Nonverbal describes the content of the test NOT a type of intelligence

Journal Information Journal TOC
Search APA PsycNET

PsycARTICLES: Journal Article
Structural validity of the Wechsler Intelligence Scale for ChildrenFifth Edition: Confirmatory factor analyses with the 16 primary and secondary subtests.

© Request Permissions

Canivez, Gary L.,Watkins, Marley W.,Dombrowski, Stefan C.
Canivez, G. L., Watkins, M. W., \& Dombrowski, S. C. (2017). Structural validity of the Wechsler Intelligence Scale for Children-Fifth Edition: Confirmatory factor analyses with the 16 primary and secondary subtests. Psychological Assessment, 29(4), 458-472.
https://dol.org/10.1037/pas0000358
The factor structure of the Wechsier Intelligence Scale for Children-Fifth Edition (WISC-V; Wechsler, 2014a) standardization sample ($\mathrm{N}=2,200$) was examined using confirmatory factor analyses (CFA) with maximum likelihood estimation for all reported models from the WISC-V Technical and Interpretation Manual (Wechsler, 2014b). Additionally, alternative bifactor models were examined and variance estimates and model-based reliability estimates (ω coefficients) were provided. Results from analyses of the 16 primary and secondary WISC-V subtests found that all higher-order CFA models with 5 group factors (VC, VS, FR, WM, and PS) produced model specification errors where the Fluid Reasoning factor produced negative variance and were thus judged inadequate. Of the 16 models tested, the bifactor model containing 4 group factors (VC, PR, WM, and PS) produced the best fit. Results from analyses of the 10 primary WISC-V subtests also found the bifactor model with 4 group factors (VC, PR, WM, and PS) produced the best fit. Variance estimates from both 16 and 10 subtest based bifactor models found dominance of general intelligence (g) in accounting for subtest variance (except for PS subtests) and large ω-hierarchical coefficients supporting general intelligence interpretation. The small portions of variance uniquely captured by the 4 group factors and low w-hierarchical subscale coefficients likely render the group factors of questionable interpretive value independent of g (except perhaps for PS). Present CFA results confirm the EFA results reported by Canivez, Watkins, and Dombrowski (2015); Dombrowski, Canivez, Watkins, and Beaujean (2015); and Canivez, Dombrowski, and Watkins (2015). (PsycINFO Database Record (c) 2019 APA, all rights reserved)

Support for 'g'

> The small portions of variance uniquely captured by [subtests]... render the group factors [scales]of questionable and support the value of general ability
> Present CFA results confirm the EFA results (Canivez, Watkins, \& Dombrowski, 2015); Dombrowski, Canivez, Watkins, \& Beaujean (2015); and Canivez, Dombrowski, \& Watkins (2015).

Support for ' g ': Research on CHC

> John Carroll's three-stratum theory ... is foundational to the contemporary practice of intellectual assessment.
$>$ The results of this study indicate that most cognitive abilities specified in three-stratum theory have little-to-no interpretive relevance above and beyond that of general intelligence.
$>$ Thus, it is likely best to focus score interpretations on measures of general intelligence when engaging in the practice of intellectual assessment.

Research Supports General Ability

Benson, N. F., Beaujean, A. A., McGill, R. J, \& Dombrowski, S. C. (2018). Revisiting Carroll's Survey of Factor-Analytic Studies: Implications for the Clinical Assessment of Intelligence. Psychological Assessment, 30, 8, 1028-1038.

Canivez, G. L., Watkins, M. W., \& Dombrowski, S. C. (2017). Structural validity of the Wechsler Intelligence Scale for Children-Fifth Edition: Confirmatory factor analyses with the 16 primary and secondary subtests. Psychological Assessment, 29, 458-472.

Canivez, G. L., \& McGill, R. J. (2016). Factor structure of the Differential Ability Scales-Second Edition: Exploratory and hierarchical factor analyses with the core subtests. Psychological Assessment, 28, 1475-1488. http://dx.doi.org/10.1037/pas0000279

Canivez, G. L., \& McGill, R. J. (2016). Factor structure of the Differential Ability Scales-Second Edition: Exploratory and hierarchical factor analyses with the core subtests. Psychological Assessment, 28, 1475-1488. https://doi.org/10.1037/pas0000279
Canivez, G. L. (2008). Orthogonal higher order factor structure of the Stanford-Binet Intelligence Scales-Fifth Edition for children and adolescents. School Psychology Quarterly, 23, 533-541.
Dombrowski, S. C., Canivez, G. L., \& Watkins, M. W. (2017, May). Factor structure of the 10 WISC-V primary subtests across four standardization age groups. Contemporary School Psychology. Advance online publication.

Dombrowski, S. C., McGill, R. J., \& Canivez, G. L. (2017). Exploratory and hierarchical factor analysis of the WJ IV Cognitive at school age. Psychological Assessment, 29, 394-407.

McGill, R. J., \& Canivez, G. L. (2017, October). Confirmatory factor analyses of the WISC-IV Spanish core and supplemental Subtests: Validation evidence of the Wechsler and CHC models. International Journal of School and Educational Psychology. Advance online publication

Watkins, M. W., Dombrowski, S. C., \& Canivez, G. L. (2017, October). Reliability and factorial validity of the Canadian Wechsler Intelligence Scale for Children-Fifth Edition. International Journal of School and Educational Psychology.

Test Directions ALSO Matter

California Achievement Test \& Iowa Test of Basic Skills instructions include many basic concepts that students may not have mastered at the ages for which the tests were intended (Cummings \& Nelson, 1980)
> Students' ability to recall directions presented orally was related to their working memory capacity. (Randall, Engle, Carullo, \& Collins, 2015)

$>$ CogAT nonverbal scale demands comprehension of verbal directions

- The instructions for 5 and 6 -year-olds contain approximately 400 words and many verbal concepts and complex verbal statements like: The small circle goes with the large circle in the same way that the small square goes with the large square.
$>$ The inclusion of verbal concepts and strain on working memory are an obstacle for any student with limited verbal skills

53

Measuring
Ability Equitably Using Verbal, Nonverbal and Quantitative Content

Dina Brulles, Kim Lansdowne and I have constructed three new tests that will be used for identification of gifted students

The focus of these tests is EQUITABLE ASSESSMENT of all students

The tests measure general ability using three types of content: Verbal (Naglieri \& Brulles, 2021), Nonverbal (Naglieri, 2021) and Quantitative (Naglieri \& Lansdowne, 2021)

Naglieri General Ability Tests

$>$ The General Ability Tests are group or individually administered using online or paper formats ages 4 to 18 published by Multi-Health System.
$>$ Test items are presented using diagrams and pictures.
$>$ The questions demand reasoning while requiring little to no academic content and can be solved regardless of the language(s) spoken by the student.
> Intended for identification of all students including those from diverse cultural, linguistic, or socioeconomic backgrounds, or those who have had limited educational experiences.

Description of the Verbal Measure of General Ability

Naglieri \& Brulles (in preparation)

Pictorial Instructions for All Students

The instructions for the online tests are presented in a video
> Additional explanation is permitted as needed in all versions of the tests (as done in CAS2)

- Naglieri Verbal (Naglieri \& Brulles, 2021)
- Naglieri Nonverbal (Naglieri, 2021)
- Naglieri Quantitative: (Naglieri \& Lansdowne, 2021)
> A LOOK at the three measures and their validity

Naglieri Ability Test - Verbal

- Online and paper version
- Classroom and individual administration
- Animated instructional video
- Minimal verbal directions by administrator
- Interactive practice questions
- 3 different test forms:
- Kindergarten - Grade 2, Grade 3-6, Grade 7-12

Authors: Jack Naglieri \& Dina Brulles

59

Verbal Pilot Study Results (2019)

- SAMPLE

- 2,482 That closely matches the US population on key demographics
> GENDER
- No difference between males and females for raw score across all forms

RACE/ETHNICITY

- No differences among White, Black, \& Hispanic for raw score across all forms

PARENTAL EDUCATION LEVEL

- No differences among five education levels (No high school diploma; High School graduate; Some college/Associate's degree; Bachelor's degree;
Graduate/professional degree) for raw score across all forms

Description Of The Nonverbal Measure Of General Ability

Naglieri (2021)

Naglieri Ability Test - Non-verbal

- Online and paper versions
- Group or individual administration
- Several NEW types of items have been developed
- Animated instructional video
- Interactive practice questions
- Minimal verbal directions
- Pre-K, Kindergarten, Grade 1, Grade 2, Grade 3/4, Grade 5/6, Grade 7-9, Grade 10-12

63

Nonverbal Pilot Study Results (2019)

- SAMPLE

- 3,630 That closely matches the US population on key demographics
- GENDER
- No difference between males and females for raw score across all forms

RACE/ETHNICITY

- No differences among White, Black, \& Hispanic for raw score across all forms

PARENTAL EDUCATION LEVEL

- No differences among five education levels (No high school diploma; High School graduate; Some college/Associate's degree; Bachelor's degree;
Graduate/professional degree) for raw score across all forms

Description of the Quantitative Measure of General Ability

Naglieri Ability Test - Quantitative

$>$ These items demand analysis of sequences of numbers or relationships among a group of numbers. For example, 1 is to 2 (a difference of 1) as 3 is to ... 4. Alternatively, the items can be solved by simply recognizing that the when analyzed vertically, 1 becomes 3, so 2 should become 4.
$>$ These items test a person's ability to understand relationships and patterns involving numbers, just as understanding relationships among shapes in the NATNonverbal or verbal categories in the NATVerbal.

- Online and paper version
- Classroom and individual administration

Authors: Jack Naglieri \& Kim Lansdowne

67

Quantitative Pilot Study Results (2019)

> SAMPLE

- 2,841 That closely matches the US population on key demographics
$>$ GENDER
- No difference between males and females for raw score across all forms

RACE/ETHNICITY

- No differences among White, Black, \& Hispanic for raw score across all forms

PARENTAL EDUCATION LEVEL

- No differences among five education levels (No high school diploma; High School graduate; Some college/Associate's degree; Bachelor's degree;
Graduate/professional degree) for raw score across all forms

The three tests will be released in 2021 for application using local norms
Data collection for generation of national reference group will resume as soon as it is possible

We know we have highly reliable measures that work well across
ages

Reliability Coefficients of Naglieri

General Ability Tests (July 2020)

Naglieri General Ability Tests Release

Quantitative	Kindergarten	.89
	Grade 1	.90
	Grade 2	.92
	Grades 3 and 4	.94
	Grades 5 and 6	.94
	Grades 7-9	.95
	Grade 10-12	.93
	Median	.93
Nonverbal	PreK	.92
	Kindergarten	.87
	Grade 1	.90
	Grade 2	.86
	Grades 3 and 4	.92
	Grades 5 and 6	.93
	Grades 7-9	.95
	Grade 10 - 12	.94
	Median	.92
Verbal	K-grade 2	.92
	Grades 3-6	.90
	Grades 7-12	.89
	Median	.90

How to Equitably Identify Gifted

$>$ Do universal screening with ability tests that do not require knowledge of English
> Use the Verbal, Nonverbal and Quantitative test scores to help ensure that every student had the opportunity to demonstrate their ability.
\Rightarrow These tests will help increase participation of under-served populations if they are used properly...

Local Norming Procedure for V, NV, \& Q

Obtain scores for ALL students (not only referred students) in the grades for which the GT decisions is needed
$>$ Decide how the information obtained for each student is to be evaluated (i.e., average, and or logic) and if it is to be weighted
> Rank order the students' raw scores on the V, NV \& Q tests

- Raw scores can be converted to percentile or standard scores as desired
> Determine a cut-score based on the number of students the GT program can accommodate
> Evaluate the outcome

Gifted Identification using Traditional IQ

\rightarrow WE CAN devise Verbal and Quantitative tests that can be solved regardless of the language a student speaks with nonverbal directions and no verbal expression required...AND they provide an equitable approach to assessment.

Gifted Identification

Ideas to Consider

Ability Tests' Content

New General Ability Tests

Twice Exceptional Gifted Students

Twice Exceptional

$>$ Tests of general ability are not sufficient for assessment of students who may be gifted and have a specific learning disability (SLD), autism, ADHD, etc.
$>$ Most defensible way to assess for a SLD, for example, is to use the Cognitive Assessment System-Second Edition (CAS2) for the following reasons

- CAS2 measures 'basic psychological processes' - the key to uniting the definition of SLD with the method of detecting it, it yields the smallest race difference, yields profiles for special populations, predicts achievement better than any other tests and has implications for instruction

77

Research on PASS Profiles

Students receiving special education were more than four times as likely to have at least one PASS weakness and a comparable academic weakness than those in regular education

```
Identifying Students
With Learning Disabilities:
Composite Profile Analysis
Using the Cognitive
Assessment System
Leesa V. Huang', Achilles N. Bardos',
and Rik Carl D'Amato'
Abstract
The detection of cognitve patterns in children with learning disabilities (L.) has been a priority
M in the identification process. Subtest profile analysis from traditional cognitive assessment has 
drawn sharp criticism for inaccurate identifation and weak connections to educational planning
ter analysis to augment diagnosis and the instructional process. The Cognitive Assessment System
uses a contemporary theoretical model in which composite scores, instead of subtest scores, are
used for profie analysis. Ten core profiles from a regular eduation sample (N=1.692) and \
With Learning Disabilities:
Composite Profile Analysis
Assessment System
```

Leesa V. Huang', Achilles N. Bardos ${ }^{2}$,
and Rik Carl D'Amato'

Abstract
In the identification processs. Subtest profile analysis from traditional cognitive assessment has drawn sharp criticism for inaccurate idendification and wear connections to educational planning.
Therefore, the purpose of this study is to use a new generation of cognitive tests wiht megaclissuses a contemporary theoretical model in which composite scores. instead of subbest scores, are used for profice analysis Ten core profies from a reqular education sample ($N=1.692$) and 12

School Psychology Quarterly. Vol. 15, No. 4, 2000, pp. 419-433
Can Profile Analysis of Ability Test Scores Work? An Illustration using the PASS Theory and CAS with an Unselected Cohort

Jack A. Naglieri
Ceorge Mason University

A new approach to ipsative, or intraindividual, analysis of children's profiles on a test of ability was studied. The Planning, Attention, Simultancous, and Successive (PASS) processes measured by the Cognitive Assessment System were used to illustrate how profile analysis could be accomplished. Three methods were used to examine the PASS profiles for a nationally representative sample of 1,597 children from ages 5 through 17 years. This sample included children in both regular $(n=1,453)$ and special $(n=144)$ educational settings. Children with significant ipsatized PASS scores, called Relative
"Ten core profiles from a regular education sample ($\mathrm{N}=1,692$) and 12 profiles from a sample of students with LD ($\mathrm{N}=367$) were found.

Correlations: We can do better!

Average correlations between IQ Scales with total achievement scores from Essentials of CAS2
Assessment Naglieri \& Otero (2017)

Georgiou, G., Guo, K., Naveenkumar, N., Vieira, A. P. A., \& Das, J. P. (2019) PASS theory of intelligence and academic achievement: A meta-analytic review. In press Intelligence.

PASS Research

> "The results clearly show that when CAS Full Scale is used it correlates . 60 with reading and . 61 with mathematics."
> "These correlations are significantly stronger ... than the correlations reported in previous metaanalysis for other measures of intelligence (e.g., Peng et al., 2019; Roth et al., 2015)...(e.g., WISC) that include tasks (e.g., Arithmetic, Vocabulary)..."
> "if we conceptualize intelligence as ... cognitive processes that are linked to the functional organization of the brain" it leads to significantly higher relations with academic achievement."

- "and these processes have direct implications for instruction and intervention..."

A Study of Gifted Students

$$
N=142
$$

- Similar numbers of girls and boys in Grade 4, 5 and 6.
- all native speakers of English
- came from families of middle to upper-middle socioeconomic background

Identified according to this definition:

- "Giftedness is exceptional potential and/or performance across a wide range of abilities in one or more of the following areas: general intellectual, specific academic, creative thinking, social, musical, artistic and kinesthetic" (Alberta Education, 2012, p. 6).

A Study of Gifted Students

$>$ Tests given

- WASI -II (Vocabulary and Matrix Reasoning)
- Woodcock-Johnson III (WJ-III; Woodcock, McGrew, \& Mathers, 2001) Broad Reading score from: Letter-Word Identification, Reading Fluency, and Passage Comprehension
- Cognitive Assessment System (CAS; Naglieri \& Das, 1997) to measure PASS neurocognitive processes

A Study of Gifted Students

WASI-II FSIQ slightly higher than CAS FS - but CAS shows more variability
> Average WASI-III Full Scale and CAS Full scale were similar but CAS standard deviation and range was higher

Table 1
Descriptive Statistics for WASI-II, WJ-III Achievement, and

Cognitive Assessment System (CAS)	Scores $(N=142)$			
Variable	Mean	SD	Min	Max
WJ-III Achievement				
\quad Broad Reading	$\mathbf{1 2 5}$	14	97	166
Broad Math	$\mathbf{1 1 6}$	13	91	162
\quad Mean WJ	$\mathbf{1 1 7}$	10	94	152
WASI-II FSIQ	$\mathbf{1 2 3}$	8	105	145
CAS Full Scale	$\mathbf{1 1 8}$	12	91	148
Planning	$\mathbf{1 1 0}$	12	77	146
Simultaneous	$\mathbf{1 2 1}$	16	88	152
Attention	$\mathbf{1 1 3}$	13	79	141
Successive	$\mathbf{1 1 1}$	11	81	137

A Study of Gifted Students

Table 2
Pearson Correlations of WASI-II FSIQ, Cøgnitive As

	WASI-II FSIQ	CAS FS
Broad Reading	.24	.53
Broad Math	.34	.50
Mean WJ-III	.34	.62

Two Types of PASS Profiles

A Study of Gifted Students

54\% of gifted students had a PASS score that was significantly different from that student's average PASS score

- That means the students has a specific neurocognitive processing strength or weakness (i.e., learning profile)

Table 3.
Percentages of Gifted Students with Significant Variability in PASS Standard Scores
($\mathrm{N}=142$).

			Planning	Simultaneous	Attention	Successive
	PASS					
PASS Weakness	n	25	6	18	28	77
	$\%$	18%	4%	13%	20%	54%
PASS Strength	n	7	58	13	12	90
	$\%$	5%	41%	9%	8%	63%

A Study of Gifted Students

The number of gifted students who have a PASS score that is significantly different from that student's average PASS score AND the score is < 90; and with low achievement score.

These students have a
specific PASS processing
weakness less than 90;
suggesting instructional
modifications

Percentages of Gifted Students with Significant Variability in PASS and Achievement Test Scores ($\mathrm{N}=142$).

		Planning	Simultaneous	Attention	Successive	PASS
PASS <90	n	4	0	4	4	12
	\%	3\%	0\%	3\%	3\%	8\%
PASS \& Skills <90	n	3	0	2	1	6
	\%	2\%	0\%	1\%	1\%	4\%

Hale, Naglieri, Kaufman, \& Kavale (2004)

$>$ The IDEA definition of SLD is

- "... a disorder in 1 or more of the basic psychological processes ... [that results] in the imperfect ability to listen, think, speak, read, write, spell, or do mathematical calculations."
"Establishing a disorder in the basic psychology processes is essential for determining SLD"

Discrepancy Consistency Method (DCM)

- The Discrepancy Consistency Method (DCM) was first introduced in 1999 (most recently in 2017)

Pattern of Strengths and Weaknesses Using the Discrepancy/Consistency Method for SLD Determination
Three methods for detecting a pattern of strengths and weaknesses (PSW) that can be used as part of the process of identifying a student with a specific learning disability (SLD) have been suggested by Naglieri in 1999, Hale and Fiorello in 2004, and by Flanagan, Ortiz, and Alfonso in 2007. These authors share the same goal: to present a procedure to detect a PSW in scores that can be used

DON'T FORGET 3.5

The essence of the Discrepancy/ Consistency Method is two discrepancies and one consistency.

Discrepancy I:

Significant variability among the PASS scores indicating a weakness in one or more of the basic psychological processes

Discrepancy 2 :
Significant difference between high PASS scores and low achievement test scores
Consistency:
No significant difference between low PASS scores and low achievement
to identify an SLD (sometimes referred to as a third option; Zirkel \& Thomas, 2010). Despite differences in the composition of the scores used and the definitions of what constitutes a basic psychological process, these methods all rely on finding a combination of differences as well as similarities in scores across academic and cognitive tests. Our approach to operationalizing a PSW is called the Discrepancy/Consistency Method (DCM) for the identification of SLD. Determining SLD is essentially based on the combination of PASS and achievement test scores. The method involves a systematic examination of variability of PASS and academic

Discrepancy Consistency Method (DCM)

- Discrepancy between high and low processing scores
- Discrepancy and between high \longrightarrow Discrepancy processing and low achievement
- Consistency between low processing and low achievement

97

Intervention Protocol (Kryza \& Naglieri, 2017)

- Help the child understand his/her PASS strengths and areas of challenges (be clear)
> Encourage Motivation \& Persistence
- Adjusting the student's mindset to "I can't do it ...yet"
- Failure is an opportunity to learn, just keep trying
> Teach/encourage strategies for approaching tasks to build on strengths and remediate challenges?
- Encourage independence and self efficacy (Metacognition/Self Assessment)
- Ask questions such as: "How will you know if these strategies and ideas are helping you?" What can you do if they are not working?

Planning

Intervention Step 1

- TALK to the student and explain PASS scores
- Encourage the student to "think smart and use a plan"
- See Planning Facilitation handout in Helping Children Learn (Naglieri \& Pickering)

Planning Facilitation for Math Calculation

Math cakuatoon is a compiex a ativity thet indves recaling basic nath tacts, followino proce. dures, wocking ceretulx, and checking oness wokk. Math cabluation requires a carebid (fe., piantiv) move on to mom dificith math ocscoststs and procblem sdvirg weth yreeter eeses then those who are hexing problems in this area For chicren who heve touble with math calkuaton, a teccrique that heps sit
tectrique.
Plaming facilesion helps studerns develop useful strategies to caretify compiete math probiams Frouyt discussion and shered discover, R enocuracoss sturamits to think about how they sclve caresi werss of dong math.

How to Teach Planning Facilitation

Parning lacitation is prowided n three 10 -minute tmie periods: 1110 minules od math. 210 mm .

Teaching Students About Planning

How Learning Depends on Planning Ability

The purpose of education is certainly to provide students with knowledge and skills, but researchers have found that children also need to learn how to learn. To achieve that goal, we must teach students to evaluate, apply solutions, self-monitor, and self-correct-in short, to plan their wrk and use plans to solve allypes of problens. Wher we teach our students 10 become nitve Strategy Instruction (Scheid, 1903), and this is an effective method:
,
When reading, and especially when obtaining meaning from text, the student must plan an approach to examining the information that is provided. This involves applying strategles to separate the important from the less important part of the text, concentrate on the details, self-monitor, and self-correct as needed. Students who are good at witing organize their goals before beginning and reflect and revise during and following production of the text. When doing math, students success of that method, change methods if necessary and check the final answer careftlly This is also sometimes referred to as metacognition, problem solving, strategic behavior, or a selfreliant learning style. When we use cognitive strategy instruction, we are teaching students to think about what they are doing so that they can be more successful.
Importantly, these descriptions of how to learn, and the cognitive strategy instruction approach in general, are descriptions of the behaviors associated with the cognitive processing ability called Planning in this book (see the Planning Explained handout, p. 55). In order to help students be more successful, we must teach them to be more planful.

How to Teach Planning

Think smart and use a plan!

The first step in teaching chi come strategic, self-reliant, t flexible learners is to tell then plan is and give them an eas member to use a plan. In Fig also appears in the PASS pc the CD), we provide a fast ar message: "Think smart and We should provide cognitive in specific academic areas, lary, spelling, witing, math p ing, science, and so forth, s

Helping Children Learn intervention Handouts tor Use, in School and at Home

\qquad
Jack A. Naglieri Eric B. Pickering

99

Iseman \& Naglieri (2010)

http://www.jacknaglieri.com/cas2.html

Abstract

The authors examined the effectiveness of cognitive strategy instruction based or Successive) given by special education teachers to students with ADHD randon experimental group were exposed to a brief cognitive strategy instruction for I development and application of effective planning for mathematical computation, standard math instruction. Standardized tests of cognitive processes and matt students completed math worksheets throughout the experimental phase. Sta Johnson Tests of Achievement, Third Edition, Math Fluency and Wechsler Indivic Numerical Operations) were administered pre- and postintervention, and Matt

Design of the Study

Experimental and Comparison Groups

7 worksheets with Normal Instruction

Pre-Post Means and Effect Sizes for the Students with LD and ADHD

WIAT Numerical Operation Means

WJ Math Fluency Means

[^0]
Iseman (2005)

Baseline Intervention means by PASS profile

Different response to the same intervention

Interventions related to PASS
 Helping Children Learn

Intervention Handouts for Use in School and at
Home, Second Edition (Naglieri, \& Pickering 2011)

104

Section Summary

$>$ This presentation only included a small portion of research evidence about the PASS neuroscience approach to redefining intelligence but what we have seen is that PASS...

- is much more informative than traditional IQ
- is much more relevant to instruction
- Is more fair to diverse students (i.e. more socially just)
- is helpful for identification of Specific Learning Disabilities
$>$ Even students in Gifted programs can have learning challenges, related to varying PASS neurocognitive abilities which warrant instructional modifications and in some cases SLD designation

Conclusion: To find twice exceptional students, use Discrepancy Consistency Method and PASS theory
 Questions or thoughts

Final Thoughts

$>$ The evaluation of students for gifted based on group and individually administered ability tests should take into consideration the content of the tests' directions, items and responses

- We can improve the traditional approach to ability testing by reducing the language and knowledge demand
> Assessment of Twice-Exceptional students such as those with a specific learning disability requires a different approach
- Measure basic psychological processes to be consistent with the definition of SLD in Federal and many State laws
- PASS theory as measured by CAS2 yields the most equitable and valid way of finding students with a specific learning disability

This pandemic will not last forever, but the lessons we teach our children about how to

 cope with adversity will last a lifetime.
Equitable Identification of Gifted Students

[^0]: At 1-year follow-up, 27 of the students were retested on the WJ-III ACH Math Fluency subtest as part of the school's typical yearly evaluation of students. This group included 14 students from the comparison group and 13 students from the experimental group. The results indicated that the improvement of students in the experimental group ($M=16.08$, $S D=19, d=0.85$) was significantly greater than the improvement of students in the comparison group ($M=3.21$, $S D=18.21, d=0.09$).

