

Velocity CAE Program Generator

For Simulation to ATE and
ATE to ATE Conversion

Release 8.0.0.0

User’s Guide

Copyright and Trademark Information

User’s Guide Page i

Velocity CAE Program Generator
User’s Guide

COPYRIGHT NOTICE
Copyright 2012 Alliance ATE Consulting Group, Inc.

All rights reserved

Documentation version 7.6.5

Any technical documentation that is made available by Alliance ATE Consulting Group is the copyrighted
work of Alliance ATE Consulting Group and is owned by Alliance ATE Consulting Group.

NO WARRANTY. The technical documentation is being delivered to you AS-IS and Alliance ATE
Consulting Group makes no warranty as to its accuracy or use. Any use of the technical documentation
or the information contained therein is at the risk of the user. Documentation may contain technical or
other inaccuracies or typographical errors. Alliance ATE Consulting Group, Inc. reserves the right to
make change without prior notice.

No part of this publication may be copied without the express written permission of Alliance ATE
Consulting Group, 3080 Olcott St Suite 110C, Santa Clara, CA 95054.

TRADEMARKS
Velocity CAE Program Generator, ShellConstructor are trademarks of Alliance ATE Consulting Group.

Table of Contents

User’s Guide Page ii

TABLE OF CONTENTS

Page #

Copyright Notice ... i

Trademarks.. i

GENERAL INFORMATION .. 1

VELOCITY CAE ARCHITECTURE .. 2

Default Text editor ... 2

LOG FILE STORAGE ... 2

User Interface ... 4

General Overview and Usage .. 4

Selected Outputs ... 6
Write Pattern, Timing, etc. ... 6
Create Tester Setup Files ... 6
Create Tests and Flow .. 6
Create Verilog Files ... 7
Compile Output Files for Target .. 7
Append Mode ... 7
Debug Mode ... 7

Build Options .. 8
Optimization Level .. 9
Normalize Timing (AC specs track with periods) .. 10
Enable Scan Mode ... 10
Import AC/DC Test Setups (Functional Tests only if disabled) .. 10
Data Bit Rate .. 10
Input Clock Edges Per Output Data Strobe .. 11
Enable Snapping .. 12

Output Files ... 13
Program .. 13
Patterns ... 13
Jobs .. 13
Tester.. 13
Procedures .. 13
STIL ... 13
Code ... 13
Binary ... 13
Verilog ... 13

PRE-DEFINED DEFAULT VALUES ... 14
SERVER .. 14
VCDPAGE ... 15
PAGE ... 16
SCALE ... 17
LIBRARY .. 18
BUS .. 19
CAP .. 20
METHOD .. 20

Table of Contents

User’s Guide Page iii

MEMORY .. 21
MODEL ... 21
OPTION ... 22

Command Line Usage .. 23

Usage .. 23

Options ... 24
Universally Available options .. 24
J750 and J973 specific options ... 25
VCD/EVCD Specific options .. 25
WGL Specific Options ... 25

Appendices .. 26

Source File Types .. 26

General Information

User’s Guide Page 1

GENERAL INFORMATION

The purpose of this document is to describe the purpose and usage of the Velocity Toolkit. This
documentation is included as part of the release of the tool kit and includes detailed descriptions of
the following subjects:

 The architecture of the tool as it integrates with other existing tools or programming
methods

 General Usage definition
 Selected Outputs
 Build Options
 Output File Organization
 Command line execution

Velocity CAE Architecture

User’s Guide Page 2

VELOCITY CAE ARCHITECTURE

Velocity is a tool that is designed to facilitate quick creation of compatible, ready-to-use test
programs for a number of ATE models. The generated programs will have a minimum set of
features that will provide the user with quicker access to methods for executing pre-defined test
sequences, copying reusable source files, and packaging local versions of pattern files as part of the
test program so that these files can be manipulated without fear of destroying information that exists
in the production or database versions of these files.

Tester files and program source files will be created and each pattern will be created as a standalone
representation so that incremental compile can be used for multiple pattern test programs.

DEFAULT TEXT EDITOR

The default text editor that isgoing to be “nedit” for Linux systems. If this is not available or a user
simply wants to use a different editor, the following environment variable can be used to reset what
is used

 VELOCITYEDITOR = ‘alternateEditorCommand’

 This alternateEditorCommand can be “vi”, or “gvim” or any other editor that is wanted.
The syntax for setting this variable depends on the shell type that is chosen. You can ask your local
IT for support on how to set this. Examples are as follows:

 setenv VELOCITYEDITOR=gvim

or
 export VELOCITYEDITOR gvim

LOG FILE STORAGE

By default, log files are always saved in the directory from which the Velocity CFG is loaded.
Additionally, a globally exported coy is sent to “/usr/local/AllianceATE/common”. If this
directory is blocked from write priveleges, the user can redirect this elsewhere by defining the
“HOME” environment variable to point somewhere else

 HOME = ‘somePath’

 Examples are as follows:

 setenv HOME=/home/velocityUser

or
 export HOME /home/velocityUser

Velocity CAE Architecture

User’s Guide Page 3

User Interface

User’s Guide Page 4

USER INTERFACE

The GUI simplifies some aspects of usage for those who do not require the scripted control of the
command line programs. All of the options available to the command line are available from the GUI. In
addition, some other features are available to speed up the program creation process.

General Overview and Usage

All operations of Velocity CAE can be handled through the GUI. These actions include loading and
building configuration files, editing these configuration files, building and compiling target files, viewing
and even editing target files.

User Interface

User’s Guide Page 5

The window itself is organized into 5 sections as follows

 Configuration: This section displays the active configuration that is loaded. This also contains
all of the buttons that initiate Velocity actions.

 Build: In this block, there are pulldowns for selecting the active source and target file types.
Additionally, there are check boxes that will enable/disable certain output files content.

 Options: The section contains pulldowns and check boxes that are used to enable/disable
commonly used features to tune the way output files are created.

 Target Program Files: This is a tree View that will give the user quick access to various output
files for editing and or modification.

 History: This is a text field that shows what has been executed as well as any warning or error
messages.

The ability to generate new configuration files automatically from any of the defined input sources is
available. These CFG files can also be edited from within the GUI.

Output files can be viewed easily from the tool to allow simple edits to any of the ascii files prior to
compilation.

The progress indicator displays in terms of percentage complete to give the user a more accurate idea of
the time remaining in a given translation.

For a step by step recipe on using the GUI, please refer to the Velocity CAE Quick
Start Guide.

User Interface

User’s Guide Page 6

Selected Outputs

Various output files and content can be enabled and disabled with check boxes located in the middle left
box of the Velocity GUI. These outputs and the effects of enabling or disabling these fields is detailed
here

Write Pattern, Timing, etc.

(Enabled By default) This will enable the export of all ascii pattern and timing files. When
disabled, other enabled files will be exported, but the patterns and timings will be blocked.
Generally you would never need to disable this, but if you wanted to update a testflow without
touching the underlying patterns and timing you could disable these.

Create Tester Setup Files

(Enabled By default) This will enable the export of all setup files that are required for either
loading or compiling the resulting binary files. Setup files are the files that are used as inputs to
the compilation process separate from the actual timing and pattern files. These are like the
makefiles for a C++ compilation. Once again, you would typically never run with this de-
activated. If you want to perform a custom compilation that differs from Velocity’s typical
supported formats, you can disable this feature and build your own setups. This is not
recommended however.

Create Tests and Flow

(Enabled By default) This will enable the export of the testflows that will be used on the target
to load and execute the files created by the Build and Compile buttons. In some cases, the
testflow itself is not needed. The user may have a pre-defined flow and may not care about the
flow that Velocity automatically generates. You can disable this feature here.

User Interface

User’s Guide Page 7

Create Verilog Files

Velocity has a powerful feature where Verilog testbenches can be automatically created for
every pattern. This is activated by enabling with this check box. When enabled, every
translated pattern will also export a *.v (simulation testbench) and *.evcd (viewable EVCD) that
can be sent back to designers or test groups to verify that the resulting ATE patterns and timing
are valid. Enabling this can increase the time required for translation as these files tend to be
quite large.

Compile Output Files for Target

If this box is checked, then after the Build process is done to create all ascii ATE files the binary
compilation tool will be automatically called. This is essentially equivalent to clicking Build and
then separately clicking Compile. It is a simple time saver that allows you to do both actions
with a single click of Build.

Append Mode

Enabling Append Mode will allow you to add new information to an existing program. When
disabled (as it is by default), the target files and compilation setup files are cleared so they can
all be rebuilt. The most important effect of Append Mode is on the resulting timing. In Append
Mode, the timing is NOT recompiled. Therefore any new patterns will be compiled assuming
the timing that already exists. Ascii timings will still be updated as needed, but the binary
compilation of this timing will be blocked in Append Mode. Binary compilation of patterns will
proceed as always. But, you may see compile errors that will let you know that the old timing is
not compatible with the new patterns. When this happens, all you need to do is disable Append
Mode and compile again. If Append Mode is disabled, binary timings will always be rebuilt.

Debug Mode

This option will instruct Velocity to only translate a small portion of each pattern that is chosen.
This is helpful when checking out new patterns to verify that the source files are valid.

User Interface

User’s Guide Page 8

Build Options

This section contains boxes and dropdowns that are used to tune the way that various output files are
exported

User Interface

User’s Guide Page 9

Optimization Level

This drop down is used to define the timing and pattern optimization level that will be used.

 Timing optimizations refer to whether common device cycles are maintained for each pattern or
whether separate device cycles are used for each pattern.

Pattern optimization refers to whether compression is enabled or disabled. When enabled,
Velocity will automatically search for single and multi-line repeats that can reduce vector depth
and increase vector readability.

There are four separately controlled levels of optimization.

Level 0: No timing or pattern optimizations. Each pattern will have its own separate device
cycles. No pattern compression will be employed on the patterns. Additionally, any existing
loops that may have been present in the source files will be expanded.

Level 1: (default level) Timing optimization is enabled which will allow Velocity to create a
common device cycle setup that can be used on all patterns that are being translated. This
results in the cleanest and easiest-to-read timing. But, in some cases, you can lose edge
variations that might need to exist from pattern to pattern. Patterns will not be compressed
either. But, any loops that exist in the source files will be left intact

Level 2: This is what is called “full optimization”. Timings are optimized as described in Level
1, which results in the simplest and cleanest timings. Additionally, logic is enabled that will
search for and perform compression on the patterns, allowing loops and repeats to be inserted
where possible. This level results in the cleanest and smallest-possible timings and patterns.

Level 3: This will perform all pattern compression as described in Level 2, but the timings will
be left un-optimized. This level would be used when you want to compress patterns but you still
need to have each pattern retain its own unique timing.

User Interface

User’s Guide Page 10

Normalize Timing (AC specs track with periods)

By default, this is disabled. When disabled, timing edges will be imported exactly as they are
defined in the source. If defined with discrete edges as they are in VCD files, then the resulting
timing will use discrete edges. If the source file uses equations and specs for timing, then these
equations will be passed exactly as they are defined. When normalization is enabled, all edges
will be evaluated and automatically expressed in simple equations that will allow edges to easily
track with a period spec variable.

Enable Scan Mode

By default, all scan patterns are translated and flattened into regular, parallel vector files. Scan
information may have been evaluated during the translation process to build the parallel
representation for the ATE, but that information will not be exported to the target. When this
option is enabled, Velocity will automatically export additional files that can then be used by the
test program to provide additional log information such as scan instance names and scan cell
number information.

Import AC/DC Test Setups (Functional Tests only if disabled)

When translating from an existing test program, there may be additional DC and AC test
information available, such as force values for DC tests, AC spec settings, etc.. When this
option is enabled, all of that information will be imported from the source and exported to
equivalent functionality in the target, when available. In many cases, simple functions like
leakage, continuity, and VIL/VIH tests can be directly mapped to existing canned functions. In
other cases, custom tests appear in the source that will not map directly to any pre-existing
function. When this happens, the arguments and setups are exported anyway, but there will
also be warnings that will let the user know that manual intervention to assign content to non-
existent functions will need to happen.

Data Bit Rate

This field will allow the user to define the data bit rate that is to be used by the target compiler.
Additionally, this will be used to tune certain optimization features. For example, pattern
compression must be done so that loop sizes and length are a clean modulus of the data rate.
So, this does have some effect on ascii files as well as the resulting binaries. You must make
sure that you use the same Data Bit Rate for the Build process that you use for the Compile
process.

User Interface

User’s Guide Page 11

Input Clock Edges Per Output Data Strobe

(ONLY used by VCD/EVCD translations) Output data is often dependent on clock edges.
Sometimes strobes will happen on only one edge of a clock -- either the rising or falling edge.
Some devices require active strobing on BOTH edges of the clock. This option will affect the
way serial data from a VCD/EVCD is cyclized. If you want to strobe on both edges of the clock
that means that 1 clock edge = 1 strobe edge. Therefore, you would assign this value to “1”. If
you only want to strobe on one edge of the clock, that means that 2 clock edges = 1 strobe
edge. Therefore, you should assign edges = 2.

This will then affect how input clocks are expressed in ascii patterns and timings.

The general rule is as follows:

1 Edge = NRZ clock data

You will see”1010101010..: in resulting clock data columns.

2 Edge =R0/R1 clock data

You will see “CCCCCC…” for R0 clock data.

You will see “ccccccccc…” for R1 clock data.

User Interface

User’s Guide Page 12

Enable Snapping

Sometimes there can be asynchronous actions in a pattern. When the asynchronous behavior
is very slow compared to the sample rate, these variations will be automatically handled in such
a way that ATE resources are not exhausted.

When asynchronous behavior is happening at a higher rate, this correction cannot be made as
cleanly. There are essentially two options. First, you can modify your CFG PINLIST and create
multiple ports or multiple time domains. That way asynchronous pin groups can be cyclized
separately. The other option is to enable snapping. This is risky and intended to be a last
resort.

When snapping is enabled, all edges will be blindly and automatically snapped to a grid. Any
asynchronous behavior will be automatically corrected. This can fundamentally change
behavior.

It is very useful to couple the enable of snapping with the usage of the Verilog feedback. You
can then resimulate with the corrections applied to see if any of this movement of edges causes
DUT problems

User Interface

User’s Guide Page 13

Output Files

All output file are viewable from this Target Program Files tree view. Double clicking on any file
in any of these folders will automatically open the appropriate view/editor for the given file type

Program

Any collective top level program file that exists

Patterns

ASCII pattern, timing, and scan cell information

Jobs

ASCII compile setup files, compile logs, Data combination files

Tester

All files that are loaded on the tester. Some of these are outputs of compilation (patterns and
timing). Others are automatically created by Build (testflow, levels, pin files)

Procedures

(only for STIL targets) STIL procedure calls are stored here

STIL

(only for STIL targets) common STIL files that are accessed from multiple patterns are stored
here

Code

Any C/C++ code that is generated for the target. Most targets will not create this. If nothing is
created, this folder will be empty. That is by design.

Binary

Some targets will produce binary data for patterns. These files can be viewed here. The viewer
will be a text editor, but in some cases this is still helpful

Verilog

If Verilog Feedback is enabled, these files will be placed here. You can view the testbench in
any text editor. The EVCD file can be viewed in a graphical tool that is also a part of the
Velocity tool library

Command Line Usage

User’s Guide Page 14

PRE-DEFINED DEFAULT VALUES

All variables that can be definee in the the Velocity Configuration file for a given device have default
values when they are left out of the Configuration. Some, but not all, can also be pre defined in a system
level file called the “Velocity Libraries” file. This file is located in the “common” directory where
Velocity was installed. By default, this installation location is “/usr/local/AllianceATE”, but this can be
altered by the installer if needed. The “common” directory will be under underneath this.

The file itself will be a hidden file named “.velocity_libs”. Variables that are entered here will apply new
default states for all users on the system. Each variable that is legal in this file and its usage is described
in this section.

SERVER
Velocity licenses can either be node locked or server based. If a floating/server based
licensing scheme is employed then this libs file variable is required to tell the client where
to find the server and optionally which port number to use for socket communication

Syntax:

SERVER serverName|IP_address [portNumber]

where,
 serverName = name of remote machine where license server is running
 IP_address = alternately, the server can be referenced via IP address
 portNumber = optionally, the port number for socket communication can be specified
here. If not defined, then it will look through port number 3490

Examples:

SERVER 192.168.1.55

SERVER velocityServer 1000

Command Line Usage

User’s Guide Page 15

VCDPAGE

This allows you indirectly control the size of pages that are used during a VCD translation. The value is
in percentage. This default to 100% but you can increase or decrease the page size depending on this
value. This is used to limit the size of loops when made smaller or remove page boundary issues by
making the page larger.

The default page value is 100%. The page is then calculated based upon the number of pins and the
density of activity. This is not something tht is specifically controlled to a fixed value. This is a general
property that can be used to give you larger or smaller page sizes relative to the base.

Syntax

VCDPAGE value

Examples:

VCDPAGE 10 # Use smaller page

VCDPAGE 500 # Use larger page

Command Line Usage

User’s Guide Page 16

PAGE

This directive is used to redefine the number of scan instances that will be included in a single vector file.
By default, scan patterns will be broken into separate files that cab be bursted together. The reason that
these are broken up is because it can make processing and debug easier in that you can mask certain
chunks of patterns to make loading quicker.

But, since some patterns don’t like the way that bursts are issued, this flag will allow you to make the
page size larger or smaller to increase or possibly remove entirely, the need for paging.

PAGESIZE will also be used to define the seed size to use for the paging calculation for VCD/EVCD
translation. By default a seed of 1000 cycles is used for this calculation. In some cases, you may want
to change the size of pages to address paging issues caused by staggered busses or asynchronous behavior
in simulations.

Syntax:

PAGESIZE numberPerPage

Example:

PAGESIZE 10000 # This will break file every 10,000 scan instances
 # Or a seed value of 10000 for VCD/EVCD files

PAGESIZE 50 # This will break file every 50 scan instances
 # Or a seed value of 50 for VCD/EVCD files

Command Line Usage

User’s Guide Page 17

SCALE
This variable is used to toggle automatic scale corrections for platforms that will not
automatically scale these for you. Advantest 93K and Teradyne platforms will scale for
you so this variable is redundant and therefore unlikely to ever be needed.

If scaling is requested for a target plaform that requires this, then all edges will be scaled to
the appropriate level that architecture rules are not violated.

By default, SCALE is OFF.

Syntax:

SCALE ON|OFF

where,
 ON = scaling will be done automatically
 OFF = scaling will not be done

Examples:

SCALE ON

SCALE OFF

Command Line Usage

User’s Guide Page 18

LIBRARY
This variable is used to define the name and location of any predefined libraries that you
want to have included in the target program. This is only used by platforms that require
specific user defined libraries to be pre defined. 93K users are unlikely to ever need this
variable.

Syntax:

LIBRARY EXTERNAL|LOCAL LIBRARY_FILE_NAME

where,
 EXTERNAL|LOCAL directs Velocity whether to physically copy this library to the
target program or simply refer to its path through a makefile or some other method depending on
the target.

 LIBRARY_FILE_NAME is the path and name of the library file itself

Examples:

HEADER LOCAL /usr/local/lib/someLibrary.so

HEADER EXTERNAL /usr/local/lib/ someLibrary.so

NOTE: referenced library file must be present and valid for the target

Command Line Usage

User’s Guide Page 19

BUS
This variable is used to toggle automatic removal of brackets from pin names when
generating new Configuration files. Additionally, this variable is used to determine
whether Verilog loopback will express pins in busses or whether these will be flattened
into singular instances for each pin. If BUS is enabled, brackets will be included in when
configurations are used and busses will be used when exporting to Verilog. If BUS is
disabled, brackets will be removed from the tester pin names and pins will be expressed
individually in Verilog feedback files.

By default, busses are enabled.

Syntax:

BUS ON|OFF

where,
 ON = Brackets in pin names will be used and Bus expression used in Verilog
 OFF = Brackets removed from pin names and individual pin entries will be used in
Verilog

Examples:

BUS ON

BUS OFF

Command Line Usage

User’s Guide Page 20

CAP
This variable allows the user to toggle a feature where pin names from the simulation are
automatically converted to all caps when creating a new CFG. When enabled, pin names
will automatically convert all lower case letters to upper case. When disabled, pin names
will be left as they are defined in simulation or whatever source file is used to create the
CFG’s PINLIST

By defaut, CAP is enabled.

Syntax:

CAP ON|OFF

where,
 ON = tester pin names will be ALL CAP
 OFF = tester pin names will be left as they are

Examples:

CAP ON

CAP OFF

METHOD

Specific to the Advantest 83K and 93K ports.) Specifies the type of test method to be used: Classic
(CTM) or Universal (UTM). Used for generating the appropriate format for the test flow file.

Syntax:

METHOD CTM|UTM

Example:

METHOD CTM # Classic Testmethod

METHOD UTM # Universal Testmethod

Command Line Usage

User’s Guide Page 21

MEMORY

Compilation to the 93K can be done using Vector Memory or Sequencer Memory. By default, vector
memory is used. If you want to only use sequencer memory you can override using this directive .

Syntax:

MEMORY SM|VM

Example:

MEMORY SM # sequencer memory

MEMORY VM # vector memory

MODEL

Syntax:

MODEL modelType

where,
 modelType is a tester model type. This Control is specific to the Advantest 83K and
93K tester ports. Valid entries are:

 F330
 C400
 P1000
 PS400
 PS800
 PS6800
 PS3600

By default MODEL = PS6800, which is the SmartScale systems.

Examples

MODEL PS3600 # PinScale

MODEL P1000 # Single Density 93K

MODEL PS6800 # SmartScale

Command Line Usage

User’s Guide Page 22

OPTION
This variable is used to define the default options used by the 93K binary pattern
compiler. These are the options that have consistently provided the optimal balance of
speed and readability.

Syntax:

OPTIONS ‘V2B_OPTIONS’

where,
 V2B_OPTIONS is a srting that will apply pattern compilation options.

Examples:

OPTION -MU -FPZgux

Command Line Usage

User’s Guide Page 23

COMMAND LINE USAGE

Usage

There are multiple command line translation paths available. Each contains a similar set of options, but
some have options that are specific to the platform being extracted. For example WGL and EVCD have
no concept of time sets and spec sets. Therefore these programs do not have options to set these. By
default, the usage is:

velocity -translationTypeSwitch [options] configFile [sourceFile [sourceFile2 sourceFile3 …]]

where,

options are listed and desctibed in detail in the Command Line Options section below

translationTypeSwitch is the directive that tells velocity which translation engine to use. The
allowable values for this are as follows in the Translation Types section

configFile is the velocity configuration file. See the Velocity Configuration Guide for a detailed
description of the contents and usage of this file

sourceFile is a list of source files that will depend on the value of the translationTypeSwitch. The
section Source Files will completely define the requirements and limitations of this field of
arguments

Translation Types: This option is essentially formed by combining various source and target ports in a
single string as in “SOURCEtoTARGET”. Available sources and targets will be dependent on the
licenses that any given customer has activated. The complete lists are in the following two charts

SOURCE PORTS TARGET PORTS

Command Line Usage

User’s Guide Page 24

Options

A set of command line directives is available that will allow for various optimizations to the output.
These options are defined below

Universally Available options

 +/-o
Turns on and off optimization of output. Specifically, the timing and levels blocks that are included in the
source files but are not used by the listed patterns will be removed from the output program. This
facilitates smaller test programs that will compile and load much faster

 +/-s
Turns on and off the output of new STIL files. If –s is used, the previously created output files will be
reloaded and left untouched in the current Shell creation. Therefore, these STIL files will need no
recompilation.. +s will ensure that the STIL files are recreated

 +/-t
Turns on and off the output of all tester files for the D10 program. This includes all non-STIL and non-
test program files (*.cpp *.h). –t will mask the generation of these files. +t will ensure recreation or new
JOB, SIG, MAKE, etc.

 +/-p
Turns on and off the generation of D10 test program files. –p will prevent existing *.h and *.cpp files
from being overwritten. + p will create new source files.

 +/-c
Turns on and off the automatic binary compilation of the target program.

 +/-n
Turns on and off auto normalization of timing. When used a spec set will used that will allow global and
waveform table specific scaling of timing values. This is an easier method of providing period scaled
timing than the Custom Timing blocks

 +a
Turns on “append mode”. When in use, this feature will automatically add new patterns, timing, etc. to
the existing program without overwriting and/or removing existing data.

 +q
Turns on “quiet mode”. When in use, this feature will automatically block the progress meter GUI so that
the translations can be run remotely without needing to export a display

+h
Prints out the complete usage man page to screen

Command Line Usage

User’s Guide Page 25

J750 and J973 specific options

 +ac=/+dc=
Allows a global override for the spec categories that are used for the AC and DC tests respectively.
Useful if a specific timing is need for all tests regardless of what is used in the source program

 +ts=/+ls=
Allows manual override to redefine globally the timing or leves set/sheet that is used for all tests
regardless of what is predefined by the source program

VCD/EVCD Specific options

 +xN
Define the maximum number of databits to be defined in a single data cycle. This will automatically
adjust the waveform tables to allow more than one transition with in a single cycle. N=1 by default is
option is not used

 +eN
Adjust the resolution for edge snapping. Drive edges will snap forward, Receive edges will snap back.
N will determine how many regions are used. By default, N=1, which means that there will be a single
Drive edge and a single receive edge. N=4 will divide the period into 4 equal regions. Edges will snap
into based on the region within the period the raw edge falls into.

WGL Specific Options

 +/-m
Enable or Disable the usage of scan macros for representation of scan instances. If enabled, STIL syntax
which uses macros will be implemented so that scan instances are defined as serial scan. If disabled, the
scan information will be converted to standard parallel vector.

Appendices

User’s Guide Page 26

APPENDICES

Source File Types

Source files listed on the command line will depend on the value of the translationTypeSwitch.
From the command line the source port and target port are defined with a string of the form:

 ‘SourcePorttoTargetPort’

This will always be the first argument of the velocity command line call.

Translation Source
Port File List Description

IEEE STIL *.STIL and *.stil files

Verigy 93K AVC *.dvc files to define the timing; *.avc to define the
patterns

Teradyne J750
*.xml files to define program, levels, and timing; *.atp

files to define the patterns

Teradyne J973

*.pinadr to define pin lists; *.waveadr to define
waveform tables; *.specadr files to define timing spec

values; *.lvmadr files to define patterns; optional
*.svmadr to define subroutines; optional *.ts to

redefine timset to waveform table mappings

WGL *.wgl files to define pins, specs, timing, and patterns

VCD/EVCD *.evcd files to define timestamp based events

If used properly, each program will create the target program files in the directory defined in the
configuration. The following figure shows a successful usage of the Velocity CAE command line
program.

There are a number of usage examples that will result in a variety of errors. The following
are examples of common errors

 Non-Existent or misspelled configuration file name
 Non-existent or misspelled source files
 Missing references caused by include statements in source files that can’t be resolved.
 Having no write privileges to the directories defined by configuration file

Appendices

User’s Guide Page 27

The previous example translates a program that uses only a single pattern. You can include multiple
patterns by simply including all relevant patterns on the command line. The next example shows the
results when multiple valid patterns are included in a single translation.

