

Velocity Configuration Guide
Release 8.1.0.0

Configuration Guide Page ii

Velocity CAE Program Generator

Configuration Guide

Copyright Notice

Copyright  2016 Alliance ATE Consulting Group, Inc.

All rights reserved

Documentation version 3.0

Any technical documentation that is made available by Alliance ATE Consulting Group is
the copyrighted work of Alliance ATE Consulting Group and is owned by Alliance ATE
Consulting Group.

NO WARRANTY. The technical documentation is being delivered to you AS-IS and
Alliance ATE Consulting Group makes no warranty as to its accuracy or use. Any use of
the technical documentation or the information contained therein is at the risk of the
user. Documentation may contain technical or other inaccuracies or typographical
errors. Alliance ATE Consulting Group, Inc. reserves the right to make change without
prior notice.

No part of this publication may be copied without the express written permission of
Alliance ATE Consulting Group, 3080 Olcott St Suite 110C, Santa Clara, CA 95054.

Trademarks

Velocity CAE Program Generator, and ShellConstructor are trademarks of Alliance ATE
Consulting Group.

SmarTest, 93000, and 93K are trademarks of Advantest Corporation.

Configuration Guide Page iii

Typographic Conventions

This document uses specific typographic conventions in defining the syntax of all
Velocity Configuration File elements. The following is a list of those conventions for
each major syntactic category.

Bold Reserved words, such as keywords, plus any other symbols that are to be typed
exactly as shown.

Italicized Placeholder for a user-specified symbol; or, placeholder for a high-level
syntactical element – made up of smaller elements – that will be subsequently defined.

[] Regular style (not bold or italic) square brackets are used to enclose optional
elements. For elements in which square brackets are part of the syntax, the brackets will
be in bold font.

{ } Regular style (not bold or italic) braces (or, “curly brackets”) are used to enclose
elements that are to be repeated 0 or more times. For elements in which braces are part
of the syntax, the braces will be in bold font.

| The vertical bar is used to separate alternative choices for an element.

::= Two regular style colons and an equals sign means “can be replaced by”. This is
used for breaking down a high-level syntactical element into its constituent elements.

The following is an example of a syntax definition using the typographic conventions
listed above:

PINS pinList startStopList [condition] [map]

where,

pinList ::= pinName|groupName{,pinName|groupName}

startStopList ::= startAddr-stopAddr{,startAddr-stopAddr}

condition ::= COND = {conditionList}

where,

conditionList ::= refPin[[relativeCycle]]=“pinState”{

,refPin[[relativeCycle]]=“pinState”}

map ::= {MAP [originalStateList]:[targetState] }

where,

originalStateList ::= one or more single bit logic-state characters

Configuration Guide Page iv

targetState::= one or more single bit logic-state characters

OBSERVATIONS:

In the PINS definition:

The symbols pinList, startStopList, condition, and map are high-level syntactical
elements that are subsequently broken down into smaller elements.

The use of regular style square brackets around condition and map means that they are
optional.

In the pinList definition (pinList ::=):

The symbol pinList is defined as a comma-separated list of elements in which each
element can be either a pinName or a groupName.

Note the use of the regular style vertical bar to indicate a choice of either pinName or
groupName.

Note the use of the regular style braces to indicate 0 or more additional pinName or
groupName elements, each preceded by a required comma.

The fact that the first occurrence of pinName|groupName is not enclosed in square
brackets or braces means that at least one element must be specified. Any others are
optional.

In the condition definition (condition ::=):

The use of bold style braces means that braces are to be typed as a required part of the
syntax.

In the conditionList definition (conditionList ::=):

Note that the symbol relativeCycle is enclosed in two sets of square brackets.

The innermost brackets are in bold font, indicating that square brackets are to be typed
as a required part of the syntax.

The outermost brackets are in regular font, indicating that the element within is optional.

Configuration Guide Page v

TABLE OF CONTENTS
1.0 GENERAL INFORMATION ... 2-1

1.1 What is a Configuration File? ... 2-2

1.2 Creating a Configuration File ... 2-2

1.3 What Happens During the Conversion Process? ... 2-3

2.0 CONFIGURATION FILE STRUCTURE .. 2-7

2.1 Syntactic Elements .. 2-1

2.2 Control Definitions ... 2-1
2.2.1 Single-line ...2-1
2.2.2 Multi-line ..2-1
2.2.3 Comments ...2-2
2.2.4 Keywords ..2-2
2.2.5 Parameters...2-3
2.2.6 Use of Whitespace ..2-3
2.3 Line-Oriented Structure ..2-4

2.4 List of Control Types .. 2-5

2.5 Order of Control Definitions ... 2-7

2.6 Example Configuration File .. 2-8

3.0 CONTROL DEFINITION REFERENCE.. 3-1

3.1 Environment Definitions .. 3-1

3.2 General Build Definitions .. 3-3

3.2.3 LIBRARY .. 3-5

3.2.4 HEADER ... 3-6

3.3 Pin Configuration Definitions .. 3-7
3.3.2 BIDIRECTIONAL CONTROL ..3-9
3.3.3 GROUP Definition ...3-10

3.4 Source-Port-Specific Variables ... 3-11
3.4.1 IGNORE TIMEPLATE ..3-11
3.4.2 JOB ...3-11
3.4.3 MACROSTYLE ...3-12
3.4.4 MASTER ..3-13
3.4.5 PERSISTENCE ..3-13
3.4.6 SYNC ..3-14
3.4.7 ASYNC ...3-14
3.4.8 UNDERSAMPLE ...3-15
3.4.9 OVERSAMPLE ..3-15
3.4.10 VCDPAGE ...3-16
3.4.11 GLITCH ...3-16

Configuration Guide Page vi

3.5 Target-Port-Specific Variables .. 3-17
3.5.1 BINARY ...3-17
3.5.2 COMBINATION ..3-18
3.5.3 CONTEXT ..3-19
3.5.4 CONFIGURATION (PIN FILE) ..3-19
3.5.5 CTIM ..3-20
3.5.6 DOMAIN TRACKING ...3-20
3.5.7 FASTMODE ...3-21
3.5.8 FSPINS..3-21
3.5.9 MEMORY ..3-22
3.5.10 METHOD ..3-22
3.5.11 MODEL ...3-23
3.5.12 STATEMAP ..3-23

3.6 Verilog Feedback Variables ... 3-24
3.6.1 MAXDELTA Definition ...3-24
3.6.2 MODULE ...3-24
3.6.3 VERILOG Definition ...3-25
3.6.4 WINDOW ...3-25
3.6.5 FEEDBACK FILTER ...3-26

3.7 General Purpose Variables .. 3-28
3.7.1 COMMENT ..3-28
3.7.2 DDRMODE ..3-29
3.7.3 DELAY ...3-30
3.7.4 PAGE ..3-31
3.7.5 INIT ..3-32
3.7.6 SCANMODE ..3-33
3.7.7 SUBROUTINE ...3-34
3.7.8 TERMINATION ...3-35
3.7.9 TRISTATE ...3-36
3.7.10 WARNINGS ..3-36
3.7.11 MINREPEAT ...3-37
3.7.12 MAXLOOP ..3-37
3.7.13 DEBUG ..3-38
3.7.14 BURST ...3-39
3.7.15 VCAT ...3-40
3.7.16 PREFIX/SUFFIX ...3-41

3.8 Timing Variables .. 3-42
3.8.1 CAPTURE ..3-42
3.8.2 DATARATE ...3-44
3.8.3 EDGES ...3-45
3.8.4 EQUATION ..3-46
3.8.5 NORMALIZE ...3-46
3.8.6 OPTIMIZE ..3-47
3.8.7 PERIOD ..3-48
3.8.8 DRIVE Block ..3-49
3.8.9 STROBE Block ..3-50
3.8.10 SURROUND ..3-51
3.8.11 RUNNINGCLOCKS ...3-52
3.8.12 GLOBALSPEC ..3-53
3.8.13 WAVETABLE ...3-54

Configuration Guide Page vii

4.0 Custom Levels .. 4-58

4.0.1 To define levels for a group of pins, create the following Control definition block. 4-58

4.0.2 Power Sequences ... 4-59

4.0.3 Power down sequencing ... 4-60

5.0 Custom Timing ... 5-61

6.0 TEST Definitions ... 6-63

6.0.1 AcTest.FunctionalTest ... 6-65

6.0.2 DcTest.ProductionIddq .. 6-66

6.0.3 DcTest.Leakage ... 6-67

6.0.4 DcTest.OPeratingCurrent ... 6-69

7.0 FLOW Definitions ... 7-72

8.0 CUSTOMIZING PATTERNS ... 8-73

8.1 Pattern Syntax .. 8-74

8.2 BASE Syntax .. 8-74

8.3 Command and Parameter List Syntax ... 8-75
8.3.1 TYPE (optional) ...8-75
8.3.2 DOMAIN (optional) ..8-75
8.3.3 FUNC (optional) ..8-76
8.3.4 LOOP ...8-76
8.3.5 REPEAT...8-77
8.3.6 MATCH ..8-77
8.3.7 START ...8-77
8.3.8 STOP ..8-77
8.3.9 WAIT ...8-78
8.3.10 CUSTOM PATTERN EXAMPLES ..8-79

8.4 Logical Masking .. 8-80
8.4.1 PINS..8-80
8.4.2 MAPS ...8-81
8.4.3 CONDITIONS ..8-83
8.4.4 PIN DUPLICATION ..8-84

8.5 Serial Masking .. 8-85
8.5.1 SYNTAX ..8-85
8.5.2 EXAMPLES ...8-86

2.0 Configuration File Structure

Configuration Guide

1.0 GENERAL INFORMATION

A brief look at what a Velocity CAE configuration file entails and how
it is create and used.

2.0 Configuration File Structure

Configuration Guide

1.1 What is a Configuration File?

A Configuration File is a human-readable, ASCII text file used by Velocity to control the conversion
process.
Some of the aspects of the conversion process that a Configuration File controls are:
The directory into which files generated by the conversion are to be written
The period by which a VCD pattern is to be divided into cycles
The target pin list, including test system resource assignments
Pin groups
Custom timing
Custom levels
Rules for creating custom patterns from existing patterns
Standardized test and power up/down definitions
Test flow
Every Velocity conversion – whether the ShellConstructor or Design-to-Test (D2T) or Tester-to-Tester
(T2T) – requires the use of a Configuration File.
If the user does not specify a Configuration File and attempts to run a conversion, Velocity will display
the following error message:

Configuration Files can be given any name, within the limitations of the host operating system. But, all
names use a .cfg extension. They can reside in any directory that the user chooses.

1.2 Creating a Configuration File

As a human-readable, ASCII text file, a Configuration File can be created and edited using any text
editor. The user may choose to start from nothing and create the entire Configuration File in the text
editor; or, use an existing file as a template and edit those elements which differ.
As an alternative, Velocity offers a way to speed up the Configuration File creation process. The
Velocity GUI can quickly and automatically generate an initial Configuration File from an existing
pattern file that is to be converted.
The automatic process will create a file containing, at a minimum, the definition of the target file path and
the pin list. The user can then add any other required elements in the text editor.
1.2.1 Automatically Generating an Initial Configuration File

From the GUI Configuration menu, select New.

A window similar to the following will appear.

2.0 Configuration File Structure

Configuration Guide

Navigate to the directory containing the simulation output files or ATE files from which you want to
build a test program.
Select any one file which, at a minimum, defines all of the required pins to be used in the test program.
Click the Open button. A progress indicator window will pop up, following by a completion message,
similar to the one shown next:

Note the location of the new Configuration file, as shown in the message. Click the OK button to
acknowledge.

1.3 What Happens During the Conversion Process?

In order to better understand the aspects of the pattern conversion process that are controlled by the
Configuration File, it is useful to have a basic understanding of what happens during conversion.
1.3.1 Conversion Process Inputs

Every Velocity conversion takes, as input, one or more pattern files of one of the following supported
types:
STIL
VCD/EVCD
WGL
VCT
CPTD (Credence ASL3000)
XLS/ATP (Teradyne J750)
XLS/ATP (Teradyne UltraFlex)
ADR (Teradyne J973)
AVC/DVC (Advantest 93000)

2.0 Configuration File Structure

Configuration Guide

1.3.2 “Cyclized” vs. “Uncyclized” Pattern Formats

ATE test systems output functional stimulus to the device (and sample functional responses from the
device) in the form of a vector sequence. The vectors are presented at a particular rate defined by the
cycle time (also known as the period).
The following are excerpts from a STIL pattern file and timing file, respectively, showing how digital
pattern sequences and corresponding cycle timing are represented in an ATE environment:
///
// Pattern Block: example_vectors
///
Pattern example_vectors {
Start_example_vectors:
 W "tps66000_10000";
 V { all =
0XXXXXXXXXXXXXXXXXXXZX00XXXXXX1XXXXXXX1XXXXX0X00X00XXXX1X; } //0
 V { all =
0XXXXXXXXXXXXXXXXXXXZX00XXXXXX1XXXXXXX1XX0XX0X00X00XXXX1X; } //1

///
// Timing Blocks
///
Timing "customTiming" {
 WaveformTable "tps66000_10000" {
 Period 'PERIOD';
 Waveforms {
 "addr[10]" {
 01Z { '0.000*PERIOD' D/U/Z;}
 LHXM { '0.091*PERIOD' L/H/X/T;}
 }
 "addr[11]" {
 01Z { '0.000*PERIOD' D/U/Z;}
 LHXM { '0.091*PERIOD' L/H/X/T;}
 }

Many other simulation and test data formats, such as WGL (Waveform Generation Language), also have
a concept of vectors and cycle times, which can be translated to tester independent STIL format in a
relatively straightforward manner. These kinds of pattern formats can be categorized as cyclized formats.
The following are excerpts from a WGL file, showing how digital pattern sequences and cycle timing,
corresponding to the STIL example above, are represented in a WGL format:
 pattern Chain_Scan_test("extal", "dft_setup", "dft_atpg", "dft_shift",
 …
 { Pattern 0 Cycle 0 Loop 0 }
 vector(+, tps66000_10000) := [0 0 0 0 0 0 0 - - - - - - - - - -
 …
 { Chain_test }
 { Pattern 0 Cycle 1 Loop 1 }
 { Begin chain test }
 repeat 6 vector(+, tps66000_10000) := [0 1 0 0 0 0 0 - - - - - - - -

 timeplate tps66000_10000 period 66000ps
 …

2.0 Configuration File Structure

Configuration Guide

 "addr[10]" := input[0ps:S];
 "addr[11]" := input[0ps:S];
 …
 "addr[10]" := output[0ps:X, 6000ps:Q'edge];
 "addr[11]" := output[0ps:X, 6000ps:Q'edge];

OBSERVATIONS:
In the above comparison of STIL and WGL formats, the pins were not defined in the
same order; so, the vector columns will not match up. However, the same underlying
vector data, per pin, would be contained in each format.
In the STIL example on the previous page, note how vectors and cycle timing are
brought together by preceding a sequence of vector lines (those lines that begin with
“V”) with a waveform table selection line beginning with “W”. The waveform table
specified after the “W” is defined within the Timing Block shown on the same page.
In the WGL example above, cycle timing is defined within a timeplate definition, and
then brought together with vectors in individual vector lines (those lines containing the
keyword vector), by referencing the timeplate name.
Not all pattern formats are cyclized. The most notable examples of non-cyclized
formats are the VCD (Value Change Dump) and EVCD (Extended Value Change
Dump) formats. In these non-cyclized formats, signal patterns are represented as a
continuous stream of events, where an event is a change of state at a particular point in
time relative to the beginning of the pattern.
The following is an excerpt from an example VCD file:
 …

#1000
pT 0 0 <262
pT 0 0 <263
pX 6 0 <265
pX 6 0 <266
pL 6 0 <267

#3000
pb 6 6 <9
pb 6 6 <10
pb 6 6 <11
pb 6 6 <12

#4000
pN 6 6 <96
pN 6 6 <97
 …

2.0 Configuration File Structure

Configuration Guide

OBSERVATIONS:
The lines beginning with “#” are timestamps, with the time unit being specified
previously in the file with the $timescale statement. (In this example, the time unit is
1ps; so, 1000 represents 1ns.)
Following each timestamp line is a sequence of value change lines, one for each signal
which changes state at that timestamp. (Signals which do not change state at that
timestamp are not listed.)
The first field of each value change line is the state to which the signal changes. The
fourth field is an arbitrary, user-defined symbol for a specific signal.

For VCD, Velocity will analyze the spacing of timing events for each signal, and
determine a best-fit tester cycle time and edge delays for your test program.

2.0 Configuration File Structure

Configuration Guide

2.0 CONFIGURATION FILE STRUCTURE

Information on the structure and syntax of a Velocity Configuration File.

2.0 Configuration File Structure

Configuration Guide Page 2-1

2.1 Syntactic Elements

Configuration Files are made up of a number of different types of syntactic elements.
At the top level, there are two main types of elements. These types are:
Control Definitions, which define particular aspects of the conversion and program generation process;
and,
comments, which begin with the ‘#’ symbol and continue to the end of the line.

2.2 Control Definitions

Control Definitions can be categorized into two forms: single-line and multi-line.

2.2.1 Single-line

A single-line definition begins with a keyword, includes one or more parameters, and continues to the
end of the line or to the beginning of a comment, whichever comes first.
The following PERIOD definition is an example of a single-line Control Definition:
PERIOD 5.000ns default
In this example, the keyword is PERIOD, and the two parameters are 5.000ns (the value of the target
period for cyclization) and default (the name given to this particular target period, or Clock Domain).

2.2.2 Multi-line

A multi-line definition (also called a block) consists of a starting line, zero or more sub-parameter
lines, and an ending line.
Starting Line
The starting line begins with a keyword and includes zero or more parameters.
Sub-parameter Line
A sub-parameter line consists of one or more keywords and/or user-defined symbols or values whose
order depends on the type of Control Definition. Each line provides further details in the definition of the
Control.
Ending Line
The ending line consists of the keyword END followed by the starting line keyword.
The following PINLIST block definition is an example of a multi-line Control Definition:
PINLIST
ANALOG_VDD default IO ANALOG_VDD
CVDD default IO CVDD
HOLDn default IO HOLDn
END PINLIST
Note that the block begins with a starting line consisting only of the keyword PINLIST and ends with an
ending line consisting of END PINLIST. In between are sub-parameter lines that begin with a pin name
and consist of several parameters that define properties of the pin.

2.0 Configuration File Structure

Configuration Guide Page 2-2

2.2.3 Comments

Comments can appear anywhere within the Configuration File, with the following restrictions:
They only extend to the end of the line. Multi-line comments require a separate starting “#” for each line.
Everything from the starting “#” to the end of the line is part of the comment. No part of a Control
Definition will be recognized by Velocity if placed after the “#”.
If a comment is placed at the end of a Control Definition line, the starting “#” must be separated from the
last Control Definition line character by whitespace. (See below for more information on the use of
whitespace in Configuration Files.)
The following is an example of a multi-line comment in a Configuration File, with the comment on each
line taking up the entire line:

PinList Definition

The following is an example of a comment at the end of a Control Definition line (in this case, the starting
line of a TEST definition block):
TEST contNegative 150 # Continuity test with negative forcing current

2.2.4 Keywords

Keywords are Velocity reserved words. That is, they may not be used for user-defined names, such as
ClockDomain names, Pin names, and Pattern names.
Keywords are NOT case-sensitive. For example, Velocity would interpret period the same as PERIOD
or, even pErIoD. However, for readability purposes and for establishing a standard convention, it is
recommended that all keywords be in UPPER-CASE.

2.0 Configuration File Structure

Configuration Guide Page 2-3

2.2.5 Parameters

Parameters are elements of a Control Definition that allow the user to provide details for a particular
instance of the Control. The user does so by giving a user-defined symbol or value, called an argument,
at the corresponding parameter location.
For example, the first parameter in the starting line of the TEST block definition is the test name. In the
example above, the argument for that parameter is “contNegative”.
Arguments for parameters ARE case-sensitive. So, a later test flow definition referencing the TEST
called “contNegative” would have to specify the exact same case.

2.2.6 Use of Whitespace

Whitespace in a Configuration File includes spaces and tabs.
A Configuration File may contain any amount of whitespace at the beginning and end of lines, and
between keywords, parameters, and comments. Some parameters, such as the pin list of a PINS masking
definition, can be specified with multiple sub-elements separated by a non-whitespace character. The
following example shows a PINS sub-parameter definition within a PATTERN block definition:
PATTERN func_pat_masked
 PINS Q0,Q1,Q2,Q3 55-83
END PATTERN
Note that the pin list, “Q0,Q1,Q2,Q3”, is considered the argument to one parameter of the PINS
definition. Therefore, it contains no embedded whitespace. The individual sub-elements (Pins in this
case) are separated only by commas. Likewise, the cycle range parameter is made up of a start and stop
address separated by a hyphen.

2.0 Configuration File Structure

Configuration Guide Page 2-4

2.3 Line-Oriented Structure

The main elements of a Configuration File – Control Definitions and Comments – follow, for the most
part, a line-oriented structure. That is, the end-of-line (i.e. carriage return) marks the end of:
Single-line Control Definitions;
Starting and Ending lines of Multi-line Control Definitions;
Sub-parameter lines of Multi-line Control Definitions (with exceptions noted below); and,
Comments.
The only exceptions to the end-of-line termination are the masking sub-parameter definitions – ON, OFF,
and PINS – of a PATTERN block definition. Those sub-parameter definitions are terminated by a
semicolon (;) and are allowed to extend to multiple lines. This feature allows for long, complex masking
definitions. Refer to the detailed description of the PATTERN block syntax later in this guide.
Also, as noted in the previous section of this guide on Comments, a Control Definition line may be
terminated by the beginning of a Comment on the same line.

2.0 Configuration File Structure

Configuration Guide Page 2-5

2.4 List of Control Types
The following table lists all of the available Control Types for a Configuration File, along with a
brief description.

Control Type Description

PATH Base directory path for test program files

DEVICE Sub-directory of path specified by PATH Control, used to
hold test program files for a specific device

PROGRAM Base file name used for various timing, levels, and pattern files
and subdirectories

SOURCE_PORT Default value for the Source port. This will cause the source
port to be automatically defined when the Configuration File is
loaded. Valid entries can be chosen from anything that is present
in the Source Port drop down list in the GUI.

TARGET_PORT Default value for the Target port. This will cause the target
port to be automatically defined when the Configuration File is
loaded. Valid entries can be chosen from anything that is present
in the Target Port drop down list in the GUI.

PERIOD Specifies the time period used for “cyclizing” a VCD or
EVCD pattern, per “Clock Domain”

EDGES Specifies maximum number of timing edges to expect within a
tester period

PINLIST Assigns type and tester resource to each active Pin

MODEL (Advantest 83K- and 93K-specific) Specifies tester model

MEMORY (Advantest 83K- and 93K-specific) Type of pattern memory to
use

METHOD (Advantest 83K- and 93K-specific) Type of test method to use

SUBROUTINE Defines whether pattern subroutines from source will be
flattened in-line with the calling pattern, or kept as a separate,
called pattern

MACROSTYLE For STIL sources

PERSISTENCE Specifies whether Velocity samples a VCD file for a short or a
long portion for calculating a best-fit cyclization period

2.0 Configuration File Structure

Configuration Guide Page 2-6

UNDERSAMPLE Specifies a strobe interval, N, to apply to a converted pattern,
in which only every Nth cycle can have output strobes, and
intervening cycles will be masked

DELAY Assigns cycle delay to pins listed

PATTERN Defines a custom pattern modified from an existing pattern

TIMING Defines custom timing for a set of Pins to override the timing
derived from the input files

LEVELS Defines DC levels for a set of Pins to be used in the test
program

POWER Defines a power up or power down sequence

TEST Creates a specific instance of a standardized test type

FLOW Defines a sequence of previously-defined TEST instances to
be inserted into the test program

TERM Defines the beginning of termination block that can be used to
Set the drive action for comparisons on IO pins

2.0 Configuration File Structure

Configuration Guide Page 2-7

2.5 Order of Control Definitions

Many of the Control Definitions can reference elements that are defined in other Control
Definitions elsewhere in the Configuration File. For example, a TIMING block definition can
reference a Pin defined in the PINLIST block or a Group defined in a GROUP definition.

Elements must be defined in a Configuration File before they can be referenced. Therefore, the
order of Control Definitions within the file is important. The order of the Control Types shown in
the previous table is the recommended order in which those types should be defined.

NOTE: It is not necessary to define every Control Type in a Configuration File.
Velocity uses a default set of properties and behaviors for those aspects of a
conversion not defined in the Configuration File. Only those Control Types with
properties which differ from the defaults need to be defined.

2.0 Configuration File Structure

Configuration Guide Page 2-8

2.6 Example Configuration File

The following simple Configuration File example includes definitions from each of the Control
Types:

##

ASCII Velocity Configuration File
##

PATH /home/field/testPrograms
DEVICE 56374
PROGRAM ShellExample

PIN LIST: This will define regular IO and power pin defs

PINLIST
 p0 default I 0 11
 p1 default I 0 83
 q0 default O 0 69
 q1 default O 0 76
 cpd default CLK 0 62
 cpu default CLK 0 55
 VS1 DPS POW 4 0
END PINLIST

GROUP clocks = "cpu,cpd"

Pattern lists
The following patterns will be translated. If the pattern is
not in the list, then it will be skipped. If the pattern is
not in the source file then a warning will be issued.

PATTERN multipleLoop
 BASE SpecFunc
 LOOP 5,10 16
END PATTERN

Timing and Levels
definitions will define the values of specs. The following
values will be assigned by default. Groups and pins can
be defined to override defaults by using a pin name or group
name.

TIMING default
 period 100ns
 offset 0ns

2.0 Configuration File Structure

Configuration Guide Page 2-9

 duty 50%
 drive 25%
 receive 90%
END TIMING
LEVELS default
 POWER 3.3V
 VIL 10%
 VIH 90%
 VOL 40%
 VOH 60%
END LEVELS

Power up and power down

POWER nominal
 VS1 1.25V 500mA 5uS
END POWER

Test Definitions
The following tests will be defined as discrete functions
that can be executed as user commands or as part of flows

TEST contNegative 150
 TYPE cont
 FORCE -10uA
 CLAMP 2V
 LOW 400mV
 HIGH 800mV
 PINS ALL
END TEST
TEST funcSpec 1
 TYPE func
 PATTERN SpecFunc
END TEST

Flow Definition
The following tests will be executed in the following
order. If no flow is defined, then all the tests will
be included in the order they are defined.

FLOW experimentName
 TEST contNegative
 POWER nominal
 TEST funcSpec
 DELAY 15ms
 POWER off
END FLOW

3.0 Control Definition Reference

Configuration Guide

3.0 CONTROL DEFINITION REFERENCE

Definitions and examples for all configuration file variables and blocks

4.0 Customizing Patterns

User’s Manual Page 3-1

3.1 Environment Definitions

The Environment section of the Configuration File consists of a set of definitions that define the location
and naming of the target test program files. Typically, this is the first section in a Configuration File.
Velocity divides the test program location and file names into three parts:
base path – Typically, points to the directory used as the parent directory of all test programs.
Device name – Appended to the base path. Categorizes test programs by device.
Program name – Specifies a base file name that Velocity will use for many of the generated test files.
(Pattern files for the target tester are typically named for the source pattern files.)
The test program directory path and file names are defined by the following Control Types:
PATH
DEVICE
PROGRAM
3.1.1 PATH

Syntax:
PATH pathName
where,
 pathName is a directory path specifier

Example:
PATH /home/programs

NOTE: The directory path specifier must use valid syntax for the underlying file
system.
3.1.2 DEVICE

Syntax:
DEVICE directoryName
where,
 directoryName is the name of a directory

4.0 Customizing Patterns

User’s Manual Page 3-2

Example:
DEVICE coolChip

3.1.3 PROGRAM

Syntax:
PROGRAM filename [equaiontNumber]
where,
 fileName is the base name to be used for generated test files

 eqiationNumber is the base number to be used for equation set numbering

Example:
PROGRAM finalTest

PROGRAM finalTest 10 # Begin witf equation set number 10

Using the PATH, DEVICE, and PROGRAM Definitions in the above examples,
Velocity would create test program files for the Build under the directory
/home/programs/coolChip
A number of the created test files would begin with base file name finalTest. Their
location under the device directory (or subdirectories thereof) would depend on the
specific target test system.

4.0 Customizing Patterns

User’s Manual Page 3-3

3.2 General Build Definitions

The General Build section of the Configuration File consists of a set of definitions that define the basic
settings common to any conversion.
3.2.1 SOURCE_PORT Definition

Specifies the Source Port for the Velocity conversion. Valid entries can be chosen from anything that is
present in the Source Port drop down list in the GUI.

Syntax:
SOURCE_PORT sourcePortType
where,
 sourcePortType is a valid licensed source entry.

Examples:
SOURCE_PORT WGL

SOURCE_PORT VCD

NOTE: The source type must match a valid licensed entry or this variable will be
ignored.

4.0 Customizing Patterns

User’s Manual Page 3-4

3.2.2 TARGET_PORT Definition

Syntax:
TARGET_PORT targetPortType
where,
 targetPortType is a valid licensed target entry. Valid entries can be chosen from anything that is
present in the Target Port drop down list in the GUI.

Examples:
TARGET_PORT STIL

TARGET_PORT 93K

NOTE: The target type must match a valid licensed entry or this variable will be ignored.

4.0 Customizing Patterns

User’s Manual Page 3-5

3.2.3 LIBRARY
This variable is used to define the name and location of any predefined libraries
that you want to have included in the target program
Syntax:
LIBRARY EXTERNAL|LOCAL LIBRARY_FILE_NAME

where,
 EXTERNAL|LOCAL directs Velocity whether to physically copy this library to the target
program or simply refer to its path through a makefile or some other method depending on the target.

 LIBRARY_FILE_NAME is the path and name of the library file itself
Examples:
HEADER LOCAL /usr/local/lib/someLibrary.so

HEADER EXTERNAL /usr/local/lib/ someLibrary.so

NOTE: referenced library file must be present and valid for the target

4.0 Customizing Patterns

User’s Manual Page 3-6

3.2.4 HEADER
This variable is used to define the name and location of any predefined headers
that you want to have included in the target program
Syntax:
HEADER EXTERNAL|LOCAL HEADER_FILE_NAME

where,
 EXTERNAL|LOCAL directs Velocity whether to physically copy this header to the target
program or simply refer to its path throe a makefile or some other method depending on the target.

 HEADER_FILE_NAME is the path and name of the header file itself
Examples:
HEADER LOCAL /usr/local/include/someHeader.h

HEADER EXTERNAL /usr/local/include/someHeader.h

NOTE: referenced header file must be present and valid for the target

4.0 Customizing Patterns

User’s Manual Page 3-7

3.3 Pin Configuration Definitions

3.3.1 PINLIST Definition

Syntax:
PINLIST
pinName domain pinType [slot] [channel] [alias1 [alias2…aliasN]]
END PINLIST
The PINLIST block defines, per pin, the tester channel assigned and any alternate versions of that name
used in the simulation or ATE conversion source.
The tester channel information that can be specified includes:
domain:
For digital pins: default or any port name that does not have a n underscore)
For power supplies: DPS16, DPS32, UHC4, MSDPS (type must be POW)
pinType: I, O, IO, CLK, TRIG, REF, POW, R, DIR, A, MASK or NC.
I: pure input pin
O: pure output
IO: bidirectional
CLK: special case of input which will use spec values that apply to CLK instead of regular simple drive
actions when specs are available.
REF: pure input pin that is used as a zero reference for all edge values in a VCD/EVCD.
POW: power pin. This would then assume that the domain value is assigned with a power supply type
R: relay pin (essentially unused. But, usefeul as a placeholder)
A: analog pin (essentially unused. But, useful as a placegolder)
MASK: pin will be included in the output files, but all source data will be ignored. Data
will be assigned as “X” on all cycles
NC: No Connect. Pin will be completely ignored as removed from outputs
TRIG: pure input that will automatically default all data to “0” so that triggers can be added manually on
the tester.

Slot number (optional)
Channel number (optional)
Aliases This is a space delimited list of alternate names that can be used in source files that will be
expressed in the target files as whatever is in the pinName field. You can specify as many Aliases on a
pin line – separated by whitespace – as you need. Velocity uses Aliases to match simulation or ATE pin
names that are different from the target pin name.

4.0 Customizing Patterns

User’s Manual Page 3-8

“REMOVE” as alias
Generally, aliases and pin names must be unique. The exception to this is when the
alias “REMOVE” is used. This is a special alias that instructs Velocity to remove this
pin from the resulting compiled target files, but leaves it in so that it can be used as part
of MASK blocks or sinmply as markers in the ascii files. The pin will not be visible
once loaded on the tester.

The following is an example of a PINLIST definition:

PinList Definition

PINLIST
ANALOG_VDD DPS16 POW 230 2
HOLDn default I 101 1 hold_n holdn
WPn default O 101 8 wp_n
anapadext_data_n DPS16 POW 230 3
END PINLIST

Pin ANALOG_VDD uses channel 2 of a DPS16 card in slot 230.
Also, note that pin HOLDn has aliases of hold_n and holdn, meaning that it can take its
data from simulation or ATE conversion sources that use either of those alias names.

4.0 Customizing Patterns

User’s Manual Page 3-9

3.3.2 BIDIRECTIONAL CONTROL
One special case within the PINLIST section is the bidirectional control pin. A control pin will only be
needed for standard VCD translations. This source port format does not have a state character
differentiation between input and output. Therefore, without the extra control wire, there is no way to
determine the IO state of a bidirectional pin. For these types of simulations, there must always be a set of
control wires that would also be included in the VCD file. These are “virtual” pins that are used to define
the IO direction of other pins. In other words, these pins are controls for other pins.

The Velocity configuration syntax for these is similar to the regular pins except the alias column would be
used to make reference to another pin instead of merely providing an alternate name for the active pin.
There will then be two rows used to define each bidirectional pin. One for the pin itself, and another for
the control wire defining its IO state. Once this is defined the control wire’s state is kept as the VCD file
is processed. At any given time, if the control pin is actively high, then the pin which it controls is set to
output mode. If the control wire is low, then the pin which it controls is set to input mode.
Example
 DATA0 default IO data[0]
 DATA1 default IO data[1]
 DATA2 default IO data[2]
 DATA3 default IO data[3]
 control0 default DIR DATA0
 control1 default DIR DATA1
 control2 default DIR DATA2
 control3 default DIR DATA3

In the above example, there are 4 pins defined as IO and 4 pins defined as DIR. For the IO pins, there is
an alias that defines an alternate nomenclature that the simulation file might use to express the given pin
name. For the DIR pins, the alias column contains an entry that is already defined as a column 1 pin
name. This pseudo-alias is the key that provides the connection between the control pin and its target.
The pin listed as DIR type will not show up in the target test pattern. These are treated as virtual pins
rather than real pins that would require data to be provided behind them.
As stated above, the default behavior for control pins is that a control pin high means output mode.
Control pin low means input mode. This behavior can be inverted by also inserting the keyword “NEG”
at the end of the control pin definition (after the alias). If the NEG keyword is used, then the convention
will be opposite. Control pin high will indicate input mode. Control pin low will indicate output mode.
Example
 DATA0 default IO data[0]
 control0 default DIR DATA0 NEG

4.0 Customizing Patterns

User’s Manual Page 3-10

3.3.3 GROUP Definition

The GROUP Control definition allows you to assign a name to a group of pins, for easier reference
elsewhere in the Configuration file.
To define a Group, use the keyword GROUP followed by a Group name, followed by an equals sign (=)
and a comma-separated list of pin names enclosed in double-quotes (“”). The following is an example of
a Group definition:
GROUP DBUS = “D0, D1, D2, D3, D4, D5, D6, D7”

If you use a group as a member of another group, this group must have already been
defined. If not already defined a configuration loader error will occur.

Automatic Group definitions
There are a number of groups that are automatically generated. These groups are generated automatically
because certain API’s assume that they are there. For example, the functional test API does an automatic
connect on all pins. This assumes that there is a group named “allpins” that is there and this group’s
contents include all of the digital pins for a given device.

Automatic
Group Name

Description of Contents

allpins All digital pins not including any trigger pins that may be
assigned

allios All bidirectional pins

allins All pins that can have input actions. Includes bidirectionals as
well as input only pins

allouts All pins that can have output actions. Includes bidirectionals as
well as output only pins

triggerPins Group to collectively define all trigger pins

Allpins All digital pins including the trigger pins. This is used to
connect and disconnect all pins.

allSupplies All DPS defined power pins

4.0 Customizing Patterns

User’s Manual Page 3-11

3.4 Source-Port-Specific Variables

The Source-Port-Specific section of the Configuration File consists of a set of definitions that define build
settings specific to the selected Source Port.

3.4.1 IGNORE TIMEPLATE

Sometimes WGL files have timeplates that the user wants to ignore like at the start of a
simulation. You can instruct Velocity to ignore these timeplates.

IGNORE TIMEPLATE timeplatename

3.4.2 JOB

This directive is used to enable a specific job as defined in a J750 or UltraFlex source test program. This
feature is ignored for all other input ports. Wheen used, the active spec sheets for timing and levels are
picked from a specific job. If the job does not exist in the source, by a typo or any other reason, the last
job is always the one that is chosen. This is also what is chosen when no JOB is defined at all.

Syntax:
JOB ;jobName’

Example:
JOB QA_TEST

4.0 Customizing Patterns

User’s Manual Page 3-12

3.4.3 MACROSTYLE

This variable will allows you to tell velocity how to interpret Macros and Procedure when loading STIL
simulation files. Depending on the way these are created variables to pass values into subroutines will
either be passed through STIL Macros or with STIL procedures. It will be one or the other but not both.
By default these are done with Macros. Therefore, therefor the default value for this flag is “1”. But, if
your source STIL files pass variables into procedures instead, you can handle this by disabling the passed
variable usage in the macros by setting the MACROSTYLE flag to “0”

Syntax:
MACROSTYLE 0|1

Example:
MACROSTYLE 0 # Procedures pass variables

MACROSTYLE 1 # Macros pass variables (This is default behavior)

IEEE STIL is a very richly defined language. There are quite a few variations and these
are not always compatible with one another. If you translate a STIL pattern and see
scrambled data data or experience a crash, it is very often because the MACROSTYLE
variable is backward. In most cases, there will be header information that tells Velocity
where the file was generated which will then allow Velocity to self determine the proper
MACROSTYLE. But, sometimes hand generated STIL will not have the necessary
header information. That is why this variable is present. It allows you to tune the STIL

translations accordingly.

4.0 Customizing Patterns

User’s Manual Page 3-13

3.4.4 MASTER

When using any of the EVCD format, there may be places where the state characters that are used
indicate that the bench and the DUT are both driving. If not specified, Velocity will take the DUT as the
master. That means that the competing drive values will result in the DUT value being used instead of the
bench. If you specify the bench as the master, the opposite will occur. EVCD state characters of “0” or
“1” will then be assumed to be tester drives instead of tester strobe values.

Syntax:
MASTER DUT|BENCH

Example:
MASTER DUT

MASTER BENCH

3.4.5 PERSISTENCE

By default, a very small portion of a VCD file is used to evaluate the pins and calculate periods.
Sometimes this is insufficient when multiple time domains are active. One domain my start toggling
later than another. For this reason, there may not be enough actions in one domain to properly calculate a
period. If this is the case, the user will receive a message that informs them that PERIOD values for one
domain will track with the other. If this is undesired there is a secondary calculation scheme that might
work. The is acalled “PERSISTENCE” mode. If enabled, a much larger page size will be used to
calculate periods.

This is disabled by default, but can be explicitly assigned with the following syntax.

Syntax:
PERSISTENCE ON|OFF

Example:
PERSISTENCE ON # persistence is enabled

PERSISTENCE OFF # persistence is disabled

4.0 Customizing Patterns

User’s Manual Page 3-14

3.4.6 SYNC

SYNC will allow Velocity to tune itself to a given timestamp before it will start handling the calculations
for defining periods for VCD/EVCD translations. In certain instances, simulations will have multiple
data rates present in different domans. If the simulation is very large it may require a very large amount
of one domain to be processed before the second domain begins to toggle.

The SYNC variable will essentially fast forward the self discovery algorithm to focus on a particular area
of the simulation. This can speed the translation greatly for large simulations.

The SYNC point defaults to time zero unless overridden by ths variable which is defined in units of time.
Nanoseconds (ns) ar used if no unit is specified. Units can be used as well

Syntax:
SYNC timeValue[unit]

Example:
SYNC 1000 # SYNC period discovery to 1000ns

SYNC 5.52ms # SYNC period discovery to 5.32ms

3.4.7 ASYNC
STIL and WGL files can sometime have syntax comments that are intended to define the existence of free
running Async clocks. By default, these will be interpreted and added to the resulting output files.

In order to turn this beahvior OFF you can alter the ASYNC value to disable this behavior.

Syntax
 ASYNC ON|OFF
Examples:
 ASYNC ON # Enable Automatic Free Running clocks
 ASYNC OFF # Disable Automatic Free Running clocks

4.0 Customizing Patterns

User’s Manual Page 3-15

3.4.8 UNDERSAMPLE

This allows you to apply a global value that will block strobes except in cycles with a clean modulus to
whatever is specified here. When OFF, all cycles are strobed.
Syntax
 UNDERSAMPLE ON|OFF
Examples:
UNDERSAMPLE OFF # No under-sampling

UNDERSAMPLE 5 # Under sample by a factor of 5

3.4.9 OVERSAMPLE

This allows you to apply a domain specific value that will allow oversampling to be used. This is a good
way to handle slow asynchronous behavior or to automatically insert oversampled strobing if edge
placements are not deterministic in the source format. This applies only to VCD/EVCD. Other formats
will ignore this feature

The oversample value is applied only if self discovered timing is used for VCD/EVCD
translation. The calculated period would then be divided by the oversample value to give
a faster (oversampled) cycle period

Syntax
OVERSAMPLE domainName value

Examples:
OVERSAMPLE default 10 # undersampling the default domain by a factor of 10

OVERSAMPLE I2C 10 # Under I2C domain by a factor or 10

4.0 Customizing Patterns

User’s Manual Page 3-16

3.4.10 VCDPAGE

This allows you indirectly control the size of pages that are used during a VCD translation. The value is
in percentage. This default to 100% but you can increase or decrease the page size depending on this
value. This is used to limit the size of loops when made smaller or remove page boundary issues by
making the page larger.

The default page value is 100%. The page is then calculated based upon the number of
pins and the density of activity. This is not something tht is specifically controlled to a
fixed value. This is a general property that can be used to give you larger or smaller
page sizes relative to the base.

Syntax

VCDPAGE value
Examples:
VCDPAGE 10 # Use smaller page

VCDPAGE 500 # Use larger page

3.4.11 GLITCH

This allows you to control the minimum amount of time to be used to pass a transition into the
conversion. A transition delta that is smaller than the value defined by GLITCH will be ignored. This is
an easy wy to remove unwanted pulses from a conversion caused by faulty models.

Syntax
GLITCH value
Examples:
GLITCH 10ps

GLITCH 100ps

4.0 Customizing Patterns

User’s Manual Page 3-17

3.5 Target-Port-Specific Variables

The Target-Port-Specific section of the Configuration File consists of a set of definitions that define build
settings specific to the selected Target Port.

3.5.1 BINARY

Compilation to the 93K will result in a pattern master file as well as a merged binary file. If you
wish to include statistics in the compilation then you’ll need to create the concatenated BINL file
as well. This is enabled by turning BINL “ON”

Syntax:

BINARY ON|OFF

Example:

BINARY ON # merged BINL will be created

BINARY OFF # Only PMFL will be created

4.0 Customizing Patterns

User’s Manual Page 3-18

3.5.2 COMBINATION

Velocity dynamically builds a combination file base on your XMODE state. If the user want to tell
Velocity to use a specific combination file, here is the syntax. This is specific to the 93K testers.
Additionally, there are arguments to explicitly provide the MINIMUM number of combinations. By
specifying MINIMUM, the resulting timing will contain ONLY those waveforms that are explicitly used.
There will be none that are added for debug or online editing purposes.
If MAXIMUM is specified, there will be additional waveforms added that are logically similar to the
ones that are used already. That is if an edge drives 0, then it will also have a waveform to drive 1, even
if these never occurs in the source. It is logically reasonable to add both. Similarly, if a strobe is present
on a given edge, both strobes high and low as well as the X will be used as valid combinations.
MAXIMUM is the default value for this variable
If very large simulations are used, then evaluation of the results can be limited to a predefined number of
cycles. For example if you have a long scan test, you don’t necessarily need to evaluate the entire file
before concluding on which combinations are needed. By using a number for this value, a cycle limit
will be applied for evaluating the required combinations

Syntax:
COMBINATION filename|MINIMUM|MAXIMUM|number

Example:
COMBINATION /home/demo/device/ACT74.cmb

COMBINATION ACT74.cmb # This will look alongside the CFG file

COMBINATION MAXIMUM # combinations will be calculated and logically #
similar states will be inserted automatically # for debug purposes

COMBINATION MINIMUM # combinations will be calculated and logically # Only
those states that are used by each
 # pattern and pin will be used. Smallest wave # table possible will be
created for debug
 # purposes

4.0 Customizing Patterns

User’s Manual Page 3-19

3.5.3 CONTEXT

There are certain instances where different configurations of a chip require the 93K pin types to be
defined differently for different modes of operation. This cvan be accomplished by defined the
“CONTEXT” of the PINLIST block directly. If not specified, the context will be defined as default. The
Velocit CFG can assign the value to any string. Once this is done, any patterns, timing, and even levels
that are created will be associated with that context only.
You can then add the extra context to the 93K pin file that you use for loading

Syntax:
CONTEXT contextName

Example:
CONTEXT inputMode

CONTEXT outputMode 3.5.3 CONFIGURATION (PIN FILE)

3.5.4 CONFIGURATION (PIN FILE)
This variable allows for a pre-defined 93K pin file to be referenced in the Velocity generated testflow
instead of the auto-generated one that is used for compilation. If nothing is specified for this variable, then
the pin file used by the testflow will be auto created from the PINLIST block of the CFG. Using this
variable to reference pre-defined pins file is useful if you are applying patterns to an existing program
where you have created you want to use multi-site, have analog pins, have relay setups defined, or certain
power supply types.
There are a number of 93K pin file features that do not work when used with the pattern compiler. Multi-
Site and Analog setups are two such features. The CONFIGUTION variable allows you to export to an
existing test program directory without touching the pin file that is already in use.
It must be known that the pin list of the pre-defined CFG is compatible with the PINLIST generated for
compilation. If this is strictly maintained then any binary pattern and timing will automatically work the
pre-defined file.

CONFIGURATION myCfgName # testflow will use pre-defined pin file

4.0 Customizing Patterns

User’s Manual Page 3-20

3.5.5 CTIM

This variable will control whether or not timeset switching is allowed or not for the V93K. By default,
CTIM’s are disabled. These are disabled because this will result in either very long run times due to
break cycles or will result in timing that is too large to compile. But, there are situations where this is the
correct usage. So, this variable is present to enable such actions on the system

Syntax:
 CTIM ON|OFF

Examples
CTIM ON

CTIM OFF

3.5.6 DOMAIN TRACKING

Domain tracker allows you to specify the timing relationship between ports. In the following example the
device has three well defined ports: 1. CLOCK, 2. DDR and 3. SDR

Syntax:
DOMAIN
 domainName MASTER|SLAVE [slaveDomainName [periodMultiple]]

where,
 domainName: matches domains defined in PINLIST block

 MASTER|SLAVE: determines whether the period is defined itself or dependent on another
domain

 slaveDomainName: If specified as a SLAVE, then this will refer to another port already defined
as master

 periodMultiple: defaults to 1.0, If other, then the current domain will track with the MASTER
at the given period multiplier

Example:
DOMAIN
 CLOCK MASTER # PortName MASTER(Reference)
 DDR SLAVE CLOCK 1.0 # PortName SLAVE Port2Track Ratio
 SDR SLAVE CLOCK 75 # PortName SLAVE Port2Track Ratio
END DOMAIN

4.0 Customizing Patterns

User’s Manual Page 3-21

3.5.7 FASTMODE

This directive is used to enable or disable the use of Fastmode. Fastmode is an Advantest digital option
that uses a software programmable switch to enable faster drivers. When this mode is used, special care
will be taken in how the timing is exported. All pins that are set to toggle at a rate that is faster than
1.25ns will be set to use the FAST option. Data bit rates and all compilation and tester file options will
automatically be adjusted. If nothing is specified, then this option is assumed to be OFF.

Syntax:
FAST ON|OFF

Example:
FAST ON

3.5.8 FSPINS
This block specifically applies to the SmartScale series of cards for the Advantest V93000 tester. These
channels have a property that allows the Z edges to be handled independently from the drive edges. This
features allows for a zero turn around time setup for bi-directional pins. If any target other than V9300
coupled with a MODEL definition of PS6800 is used, then this block will be ignored.

Syntax:
 FSPINS
 pinName1|groupName1
 pinName2|groupName2
…
 pinNameN|groupNameN
 END FSPINS

This blocks serves as a container for a list of pins or groups that should be setup with timing in such a
way that the drive and Z edges are separated. Any pin left off this list will be treated as a regular IO pin
instead of a FAST IO pin.

Example:
FSPINS
 DQ
 MQ
COMBINATION

4.0 Customizing Patterns

User’s Manual Page 3-22

3.5.9 MEMORY

Compilation to the 93K can be done using Vector Memory or Sequencer Memory. By default, vector
memory is used. If you want to only use sequencer memory you can override using this directive .

Syntax:
MEMORY SM|VM

Example:
MEMORY SM # sequencer memory

MEMORY VM # vector memory

3.5.10 METHOD

Specific to the Advantest 83K and 93K ports.) Specifies the type of test method to be used: Classic
(CTM) or Universal (UTM). Used for generating the appropriate format for the test flow file.

Syntax:
METHOD CTM|UTM

Example:
METHOD CTM # Classic Testmethod

METHOD UTM # Universal Testmethod

4.0 Customizing Patterns

User’s Manual Page 3-23

3.5.11 MODEL

Syntax:
MODEL modelType
where,
 modelType is a tester model type. This Control is specific to the Advantest 83K and 93K tester
ports. Valid entries are:
F330
C400
P1000
PS400
PS800
PS6800
PS3600

Examples
MODEL PS3600 # PinScale

MODEL P1000 # Single Density 93K

MODEL PS6800 # SmartScale

3.5.12 STATEMAP

(Specific to the Advantest 93K ports.) Specifies that the “STATEMAP” blocks should be activated in
the resulting compiled timing files. This block is required if reverse compilation from binary back to ascii
is desired. It is also required when using come forms of the SCAN_TML

Syntax:
STATEMAP ON|OFF

Examples
STATEMAP ON

STATEMAP OFF

4.0 Customizing Patterns

User’s Manual Page 3-24

3.6 Verilog Feedback Variables

There are set of configuration commands blocks that are intended specifically to affect the export of
Verilog feedback files. These variables will have no effect on regular ATE output files. If “Enable
Verilog Feedback” is not checked in the GUI or enabled from the command line, then all of these
variables will simply be ignored by the Build process.

3.6.1 MAXDELTA Definition

When Verilog feedback is enabled, there may be instances where delta values for timestamps may be too
large for the compiler that will be used. By default, the maximum delta is 400us. If a delta is larger than
this it will be broken into multiple timstamps and spread.

This directive can be used to use a different value other than 400uS.

If no units are specified the number will be assumed to be in ns.

Syntax:
MAXDELTA value[ps|ns|us|ms|s]

Example:
MAXDELTA 200us # max delta of 200us

MAXDELTA 500000 # max delta of 500000ns

3.6.2 MODULE

This variable will define the moduleName that is to be used in the Verilog feedback files if that option is
chosen. If not defined at all, the default for the moduleName variable in the testbench and EVCD files
created will be “moduleName”. This allows you to tune it so that resimsulations can happen more
seamlessly.

Syntax:
MODULE moduleName

Example:
MODULE hx_5672

MODULE dsp_1080

4.0 Customizing Patterns

User’s Manual Page 3-25

3.6.3 VERILOG Definition

When using the Verilog feedback path, testbenches can have their timings expressed in one of two ways.
Sequential timing will express all timestamps as relative deltas from the previous stamp. On large
simualtions these numbers can end up too large for the target Verilog compiler. Parallel will express each
timestamop as its wall time clock value. This can result in very large numbers that may crash. By
default, parallel timing is used.

Syntax:
VERILOG SEQUENTIAL|PARALLEL

Example:
VERILOG SEQUENTIAL # Express edges as delta from previous edge

VERILOG PARALLEL # express every edge as a unique timestamp

3.6.4 WINDOW

Verilog files are always print on change. In simulations, that means that only transitions are exported as
timestamps. For input actions this is simple. For output actions, the ATE versions of the same stimulus
will inherently insert Z-actions before each strobe. By default, these Z actions are left out of the Verilog
files. If the user wants to add these actions in the “WINDOW” variable can be used to essentially define
the length of the active strobe window. If WINDOW is OFF, as it is by default, then there will be no
closing actions added o close the strobe windows.

In the end, this is a more exact representation of what the ATE is doing, however, the resulting verilog
files will be much larger.

Syntax:
WINDOW OFF|value[ps|ns|us|ms|s]

Example:
WINDOW OFF # no windowing off output actions

WINDOW 20ps # Use 20ps strobe window

4.0 Customizing Patterns

User’s Manual Page 3-26

3.6.5 FEEDBACK FILTER

Verilog feedback files will export all ATE actions in all cycles and on all pins by default. In some cases,
the user may want to limit the export. This can be limited to a certain cycle range. It can be limited by
certain pins. Or, you can choose to export certain pins as running clocks instead of explicit data. All of
these actions are taken to limit the size and scope of testbench. FEEDBACK filter blocks can be created
that can tune the Verilog scope on a pattern by pattern basis

Syntax:
FEEDBACK default|patternName
 BASE baseName
 START BEGIN|timeStart|cycleStart
 STOP END|timeStop|cyceStop
 pinName1|ALL ON|OFF|CLK
 pinName2 ON|OFF|CLK
 pinName3 ON|OFF|CLK
…
 pinNameN ON|OFF|CLK
END FEEDBACK

default|patternName: name of feedback block. If the name is “default”, then this filter will apply to all
patterns. If the name is something else, then the filter will only apply to patterns whose name matches
that of the FEEDBACK block.

If the desired patternName is different than the source file, you can specify the connection to a given
simulation by additionally assigning the BASE variable. If this is done, the translation will use the base
Name as the simulation hat is loaded, but will export to the name specified by patternName,

START & -STOP: This is an optional field that can assign the start and stop location for the
translations. If left off then ALL cycles will be exported. These times can be expressed in either
picoseconds or as a percentage. If the “%” is used, then you can export just the segments you like as a
percentage of time. It is important to realize that this percentage is relative to the time value as opposed
to the physical file location.

pinNameN|ALL: pin name to be added as regular pin (ON), removed from Verilog files (OFF), or
included in Verilog as a running clock (CLK)

4.0 Customizing Patterns

User’s Manual Page 3-27

Examples:
Export Verilog on all cycles for all pins except data[0-2].
FEEDBACK default
 ALL ON
 data0 OFF
 data1 OFF
 data2 OFF
END FEEDBACK

Export Verilog for patternA for the fist 25% only. Include only CLK32
expressed as running clock and data[0-2] expressed as regular data
FEEDBACK patternA
 START BEGIN
 STOP 100us
 CLK32 CLK
 data0 ON
 data1 ON
 data2 ON
END FEEDBACK

4.0 Customizing Patterns

User’s Manual Page 3-28

3.7 General Purpose Variables
The following list of variables are ones that can be applied to any combination of Source and Target port.
In some instances these variables are meant simply to provide default states for objects in the GUI. In
other cases, these variables will have no analogous command line or GUI feature and will affect outputs
all on their own.

3.7.1 COMMENT

When using any of the serial protocol formats, this variable will optionally add comments to the patterns
That will inform you of the state of the protocol as data is transmitted. These comments will also
Be viewable on the target system in the pattern viewers

Syntax:
COMMENT ON|OFF|ALL|OPTIMIZED
where,
 ON: comments are passed in from source. Scan instances are marked
 OFF: comments are blocked
 ALL: comments are used like “ON” above, but additionally, timestamp markers are included
 OPTIMIZED: comments are ignored when compression is used. If a comment is within a field
of cycles that can be compressed, then the comment will be swallowed and dropped.

Example:
COMMENT ON

COMMENT OFF

COMMENT ALL

COMMENT OPTIMIZED

4.0 Customizing Patterns

User’s Manual Page 3-29

3.7.2 DDRMODE

In many high speed situations, such as DDR, there will be simulations that have bidirectional pins that go
from input to ouput in a single cycle. The target platform may not be capable of doing this. If a pattern
requests this, the end result will be missing input or output data at the DUT. The divers may not be able
to turn on or off in time. If this is the case, you can automatically account for this turn-around issue by
applying the affected pins to the following syntax.

Syntax:
 DDRMODE pinName1 [pinName2 …pinNameN]

When DDRMODe is enabled for a given pin or group of pins, the resulting vector data will be
automatically modified to account for driver turn around s othat important data is not lost due to hardware
constraints.

Example:

DDRMODE DQ DQS MDQ MDQS # turn around issues will be adjusted

4.0 Customizing Patterns

User’s Manual Page 3-30

3.7.3 DELAY

In certain instances it may be necessary to move data on a set of pins forward or backward by a number of
cycles to get the pattern to match how it will work on silicon. This is done because either the simulation
does not match silicon or even because the performance on one source is different than the performance
on another target. The DELAY block can be used to adjust the data. The syntax for the block is as
follows
DELAY
 pinName value
 pinName value
 ‘’
 ‘’
END DELAY

DELAY is a keyword that indicates the beginning of a DELAY block

Only one DELAY block should exist within a given test configuration. No errors will be seen but
only the last delay block listed will be inserted into the test program

pinName must explicitly match a PIN or ALIAS defined prior to the PINLIST block

value will define the cycle count for which data will be delayed for a given pin. Negative
numbers will move data forward. Positive values will move the data backward

The example below delays s data pins by 3 cycles, while forcing theCLK to happen 1 cycle
early.

DELAY
 DATA1 3
 DATA2 3
 CLK -1
END DELAY

4.0 Customizing Patterns

User’s Manual Page 3-31

3.7.4 PAGE

This directive is used to redefine the number of scan instances that will be included in a single vector file.
By default, scan patterns will be broken into separate files that cab be bursted together. The reason that
these are broken up is because it can make processing and debug easier in that you can mask certain
chunks of patterns to make loading quicker.

But, since some patterns don’t like the way that bursts are issued, this flag will allow you to make the
page size larger or smaller to increase or possibly remove entirely, the need for paging.

PAGESIZE will also be used to define the seed size to use for the paging calculation for VCD/EVCD
translation. By default a seed of 1000 cycles is used for this calculation. In some cases, you may want
to change the size of pages to address paging issues caused by staggered busses or asynchronous behavior
in simulations.

Syntax:
PAGESIZE numberPerPage

Example:
PAGESIZE 10000 # This will break file every 10,000 scan instances
 # Or a seed value of 10000 for VCD/EVCD files

PAGESIZE 50 # This will break file every 50 scan instances
 # Or a seed value of 50 for VCD/EVCD files

3.7.5 LINE

There are instances where the source pattern line numbers are a better way to trace failures than cycle
counts. In order to facilitate this the LINE variable can be used to add comments to the resulting
exported pattern’s vector that will indicate the source file line number from which the vector data weas
derived

Syntax:
LINE ON|OFF

Example:
LINE ON # Display source file line numbers as comments in vector

LINE OFF # Default operation. No line numbers

4.0 Customizing Patterns

User’s Manual Page 3-32

3.7.6 INIT

In certain instances it may be necessary to override the termination used for the drive resources that are
associated with the read on an IO pin. To drive high or drive low while reading, the termination block is
employed. Pins can be set here. If not listed in the termination bloc, a pin will retain its regular Z
termination.
INIT
 pinName|groupName defaultState
 pinName|groupName defaultState
 ‘’
 ‘’
END INIT

INIT is a keyword that indicates the beginning of a STATIC block

pinName must explicitly match a PIN or ALIAS defined prior to the PINLIST block

groupName must explicitly match a GROUP that as been defined prior to the PINLIST block.
The exception to this is the special cases of “ALL_IN”, “ALL_O”, and “ALL_IO” which will
apply the static state to all pins tht match one of these pin types

defaultState will define the state to use instead of whatever state is defined by the source pattern.
This will also assign this default state to use when no action is defined by a source pattern. This
is useful for applying states to unreferenced pins that need to be biased in a particular way. In
certain instances it may be necessary to apply arbitrary sequences of data to pin that are not defined in the
source. These sequences can be made up of any valid vector state characters

INIT
 DATA1 0
 DATA2 0
 CLK Z
 dataBus X # default all pins in group “dataBus” to X
 ALL_IN 0 # default all inputs to 0
END INIT
INIT
 DATA1 0000011111
 DATA2 1010101010
 CLK 110011001100
END INIT

In older releases, this block was called the STATIC block. This was changed to INIT to
reflect the fact that these are simply ways to redefine the default initial state, rather than
to override and defined STATIC data. The new syntax is more straight forward.

4.0 Customizing Patterns

User’s Manual Page 3-33

3.7.7 SCANMODE

This variable will allow you to determine the depth to which scan information is exported. STIL, WGL
and some other formats will have additional information regarding scan chains that can be added to the
resulting ATE export.

When scan data is exported there will be additional CSV files that will be created that will detail
information for each scan instance that can be used to add more context to the resulting datalog. (**See
the SCAN CSV details in the appendix for details about these additional files)

The default state for this is “OFF”

Syntax:
SUBROUTINE OFF|ONCOMPRESSED|FLAT

 OFF: No scan info will be exported. ATE patterns will be exported as regular ascii vector data.
 ON: Scan info will be exported. Additionally, large scan chains (longer than 32768) will be
expressed in ascii pattern using compressed scan formatting. This alternate format can reduce the time
required for conversion, but it will also cut the amount of comment information that is exported.
 COMPRESSS: Scan info will be exported. Additionally, compressed scan formatting will be
used for ALL ascii vector outputs. As stated above, this can be significantly faster to build and compile
but you will lose a lot of the contextual comments that are associated with each scan shift sequence.
 FLAT: Scan info will ne exported. But, unlike ON and COMPRESSS, the ascii vectors will be
exported using regular flat vector formatting. This will ensure that ALL of the associated vector
comments will remain present in ascii and also the resulting binary compiled patterns. FLAT formatting
gives you the most context. It can be slower to convert in some cases (10-15%) but you will often get all
of that time back and more when you consider the additional conext that is present and viewable during
debug efforts. You will know exactly where you are in every scan chain at any cycle.
SCANMODE OFF

SCANMODE ON # Compressed scan will be used on large and deep scan only

SCANMODE COMPRESSED # Compressed scan will be used for all scan

SCANMODE FLAT # Regular FLAT vectors will be used instead of compressed scan
mode

4.0 Customizing Patterns

User’s Manual Page 3-34

3.7.8 SUBROUTINE

This variable will allow you to determine how subroutines are handled. By default, subroutines will be
treated as separate pattern files. But if you turn these off, the calls themselves will be flattened and added
directly to the calling pattern.

The default state for this is “ON”

If you want to additionally, expand subroutine calls that may have variable data to make them unique, you
can additionally use the keyword “ALL”

Syntax:
SUBROUTINE ON|OFF|ALL

Example:
SUBROUTINE OFF

SUBROUTINE ON

SUBROUTINE ALL # expand subroutines that might have different data

4.0 Customizing Patterns

User’s Manual Page 3-35

3.7.9 TERMINATION

In certain instances it may be necessary to override the termination used for the drive resources that are
associated with the read on an IO pin. To drive high or drive low while reading, the termination block is
employed. Pins can be set here. If not listed in the termination bloc, a pin will retain its regular Z
termination.
TERMINATION
 pinName LOW|HIGH
 pinName LOW|HIGH
 ‘’
 ‘’
END TERM

TERM is a keyword that indicates the beginning of a DELAY block

pinName must explicitly match a PIN or ALIAS defined prior to the PINLIST block

LOW|HIGH will define the state to use instead of Z for the drive action. If the pins is not
specifically terminated LOW or HIGH, then it will be terminated to a Z state.

The example below terminates 2 pins low and one pin highy.

TERMINATION
 DATA1 LOW
 DATA2 LOW
 CLK HIGH
END TERM

4.0 Customizing Patterns

User’s Manual Page 3-36

3.7.10 TRISTATE

This directive is used to enable a and disable the tristate comparison feature. By default, tristate
comparisons will be imported as active strobe conditions. If the tristate comparison is turned off, tristate
comparisons will be mapped to X’s. Turning on the tristate compare is equivalent to leaving the
statement out completely.

Syntax:
TRISTATE ON/OFF

Example:
TRISTATE OFF

TRISTATE ON

3.7.11 WARNINGS
This value is used to allow the user to block highly repetitive warnings that can appear in some
translations. If these warnings are deemed to be ignorable, which they are most of the time, this will
block these warnings so the log file is easier to read. By default, warnings are all ON.

Syntax:
WARNING ON/OFF

Example:
WARNING OFF

WARNING ON

COMMENT ALL # Include timestamps in binary comments

4.0 Customizing Patterns

User’s Manual Page 3-37

3.7.12 MINREPEAT

This variable is used to redefine the minimum value that is allowable for repeat blocks. The overall
vector count of the repeat is assumed. So, the block length x the loop count is the loop lenth.
MINREPEAT sets the minimum length for a loop. By default, the minimum length of this loop is 64.

Syntax:
MINREPEAT value

Example:
MINREPEAT 64 # same value as the default

MINREPEAT 8 # lower minimum repeat than the default

MINREPEAT 128 # larger minimum repeat than the default

3.7.13 MAXLOOP

This variable is used to redefine the maximum number of loops that will be allowed in a given translation.
In some cases, too many loops can cause sequencer memory issues. This allows you to define a cap for
the total number of repeat or loop commands that are allowed. By default 32,768 loops can be defined.

Syntax:
MAXLOOP value

Example:
MAXLOOP 32768 # same value as the default

MAXLOOP 4096 # lower minimum repeat than the default

MAXLOOP 65536 # larger minimum repeat than the default

4.0 Customizing Patterns

User’s Manual Page 3-38

3.7.14 DEBUG

This variable is used to define the percentage of the file that is used for debug
mode. By default 1% of the source file will be used. This variable can override
that so that a larger (or smaller) percentage of the file can be used.
Syntax:
DEBUG value

where,
 value is the percentage value
Examples:
DEBUG 50.7%

DEBUG 10%

NOTE: This value can be any number >0 and less than or equal to 100

4.0 Customizing Patterns

User’s Manual Page 3-39

3.7.15 BURST

Pattern bursts can be automatically generated using BURST/END BURST syntax shown below.
BURST burstName
 patternName1
 patternName2
 ‘’
 ‘patternNameN
END BURST

burstName This will define the name of the burst. This will automatically be compiled along
with all patterns in the list

patternName1:N patterns in the burst will be called in the order that they are defined, in the
BURST block. If multi-port is used, the burst that are created will also automatically be
multiport bursts. No additional syntax is required to convert from single to multiport burst. The
PINLIST block itself will determine if single or multiport

BURST burstPatternA
 setupPattern
 functionalPatttern1
 functionalPattern2
 closeAllFunction
END INIT

If defining a BURST, it must be known that ALL of the patterns in the burst list must be
present in the setup befor the burst will be activated. If a pattern is missing you will get a
warning and the BURST will not be created.

4.0 Customizing Patterns

User’s Manual Page 3-40

3.7.16 VCAT

This variable allows you to enable and disable the use of 93k VCAT syntax when
exporting scan tests. There are some additional formatting restrictions that need to
be followed when using VCAT. This ensures that all of these rules are followed
and that none of the non VCAT compliant operations are enabled.

In particular, VCAT enabled will prevent some pattern compression features from
being used. This akes sure that the VECTOR and CYCLE markers are always in
sync to the VCAT complient test menthods provide the correct information during
datalogging
Syntax:
VCAT ON|OFF

where,
 value is the percentage value
Examples:
VCAT ON

VCAT OFF

4.0 Customizing Patterns

User’s Manual Page 3-41

3.7.17 PREFIX/SUFFIX

This pair of variables allows you to add prefix or suffix to the name of each converted pattern. This
allows you to convert the same patterns using different conditions into unique ATE pattern files without
having to make duplicate copies of the original source patterns

This also allow you to apply date codes or other markers to pattern names for your own organizational
purposes,

Prefix will add string to beginning of pattern names. Suffix will add strings to the end of pattern names

PREFIX and SUFFIX can be used together. They are not mutually exclusive

The default state for this is “ON”

If you want to additionally, expand subroutine calls that may have variable data to make them unique, you
can additionally use the keyword “ALL”

Syntax:
PREFIX prefixString
SUFFIX suffixString

Example:
PREFIX func # Adds “func_” to beginning of pattern names

SUFFIX scan # Adds “_scan” to the end of pattern names

SUBROUTINE ALL # expand subroutines that might have different data

4.0 Customizing Patterns

User’s Manual Page 3-42

3.8 Timing Variables

The Cyclization Timing section of the Configuration File is used mainly for controlling the conversion of
VCD and EVCD patterns, where the stream of events needs to be divided into tester cycles.

BACKGROUND: For more information on VCD/EVCD patterns and cyclization, refer to
the previous chapter in this guide called “What Happens During the Conversion
Process?”, and, specifically, the section called “’Cyclized’ vs. ‘Uncyclized’ Pattern
Formats”.

3.8.1 CAPTURE

Digital capture requires a couple of things to be in place in the pattern and timing. First, there needs
to be timing waveforms available for capture. Capture uses different resources than what would be
used for normal functional strobes. Secondly, these waveforms need to be used in the pattern with
separate wave indexes for functional vs digital capture strobes.

Lastly, there needs to be digital capture variables in place that defines the bit order for MSB to LSB

The Velocity Capture block will ensure that the timing is prepared for the appropriate pins.
Additionally, this block will define the MSB and LSB order so that proper variables can be created.

Syntax,
 CAPTURE [frameLength]
pinNameN
 .
 .
 pinName1
 pinName0
 END CAPTURE

Where,
 The pin names for the digital capture are listed from MSB to LSB

CAPTURE 2
 Cap7
 Cap6
 Cap5
 Cap4
 Cap3
 Cap2
 Cap1
 Cap0
END CAPTURE

4.0 Customizing Patterns

User’s Manual Page 3-43

NOTE: The capture block shown here will is only used to define the bit order for a
digital capture variable. The actual digital capture data needs to be defined in the source

files or added to the pattern through Velocity MASK setups.
NOTE: The frame length is the number of cycles with capture to include

per captured data value. In the above example, the frame length of 2 will result in
each captuired value being 16 bits long. 2 cycles of 8 bits each.

4.0 Customizing Patterns

User’s Manual Page 3-44

3.8.2 DATARATE
DATARATE refers to the number of ASCII vectors that will be expressed per single tester cycle. This
variable will provide a default value that can then be overridden by the GUI. Expressing in the CFG will
provide a failsafe way of defining this so that it is always set when loading a particular CFG.
This variable then sets the maximum data rate that will be used. By default, the same data rate will apply
to all ports if more than one port is defined. However, this is only a target. Depending on the relative
frequencies of each port, slower ports may be slowed down so that they do not use this value. This is
done so that very slow ports are no burdened with the unneeded complexity of a high data rate.

If the optional domainName variable is used, the data rate will be applied only the single port that is
referenced. This will allow for arbitrary combinations of xModes to be used.
Syntax,
DATARATE [domainName] value

Where,
 Value = some number between 1 and 8.

domainName = optional application that will assign the data rate to only the one domain.

EXAMPLE

DATARATE 3

DATARATE 6

DATARATE clocks 4

4.0 Customizing Patterns

User’s Manual Page 3-45

3.8.3 EDGES

EDGES refers to the number input drive edges per data strobe when cyclization of VCD/EVCD is being
done. Note that this variable is ignored when pre cyclized formats are translated.
If you want to use R0 or R1 or SBC clock data then you would set the EDGES count to “2’. This would
then set up your period so that a rise and a fall edge are present on input data for every single output data
strobe.
If you want strobe on both the riseing and falling edge of input clocks then you would set this variable to
“1”.
Syntax,
EDGES [domainName] value

Where,
 Value = 1 or 2. This will represent number of input clock edges per strobe.
 1 = DNRZ clock data
 2 = R0/R1 clock data

domainName = optional application that will assign the data rate to only the one domain.

EXAMPLE

EDGES 1 #DNRZ used throughout

EDGES 2 # R0/R1 used throughout

EDGES clocks 2 # R0/R1 used only on clock domain

4.0 Customizing Patterns

User’s Manual Page 3-46

3.8.4 EQUATION

This directive is used to define whrether single or multiple equation sets will be created. SINGLE
(common) or MULTIPLE equations 1 per pattern. By default SINGLE mode is used as this produces the
smallest and cleanest timing setup. Multiple would be used if the user specifically requires tuning on
each pattern to be independent.

Syntax:
EQUATION SINGLE|MULTI
Example
EQUATION MULTI

EQUATION SINGLE

3.8.5 NORMALIZE

This variable is used to provide an automatic update to the normalization check box of the GUI or
command line. This value can be overridden by the GUI if the box is checked after laoding of the CFG.
This provides a default value so the user does not have to always remember to check it if desired.

Syntax:
NORMALIZE ON|OFF
Example
NORMALIZATION ON

NORMALIZATION OFF

4.0 Customizing Patterns

User’s Manual Page 3-47

3.8.6 OPTIMIZE

This variable is used to provide an automatic update to the Optimization level pulldown box of the GUI or
command line. This value can be overridden by the GUI if the box is updated after laoding of the CFG.
This provides a default value so the user does not have to always remember to check it if desired. It can
also provide a way of self documenting what options are required

Syntax:
OPTIMIZE 0|1|2|3

Where,
 0 = No Optimization. Additionally, existing loops in source will be expanded
 1 = Timing is optimized, but pattern compression is disbabled. Pre-existing loops in patterns will
be left alone
 2 = Timing is optimized, AND pattern compression is enabled
 3 = Timing is unoptimized so each pattern will retain individual timing. Pattern Compression is
enabled
Example
OPTIMIZATION 1

OPTIMIZATION 2

4.0 Customizing Patterns

User’s Manual Page 3-48

3.8.7 PERIOD

The PERIOD definition specifies the time period used for “cyclizing” a VCD or EVCD pattern. A
Configuration File can include one or more PERIOD definitions. In the case of multiple definitions, each
definition will apply to a different group of Pins to be defined in the subsequent PINLIST block.
Velocity will attempt to divide the VCD/EVCD event stream into the specified period, and determine the
resulting drive, tri-state, and compare edge delays within the period.
The period that is specified by a PERIOD definition is also known in Velocity as a Clock Domain. The
term Clock Domain comes from the fact that devices with synchronous, digital functionality typically
have a group of signals whose timing is referenced to a particular clock signal. Therefore, those signals
can share the same test system period as the clock. Some devices have multiple clocks operating at
different rates, each clock having an associated group of signals synchronized with it. Each group of
signals synchronized to a different clock can be said to belong to a separate Clock Domain.
Optionally, each Period / Clock Domain definition can take a name as a second parameter. This name can
be used within the subsequent PINLIST block to reference the Clock Domain on a Pin-by-Pin basis. That
is, each Pin in the PINLIST can be assigned to a Clock Domain independently of other Pins.

Syntax:
PERIOD cycleTime clockDomain
where,
 cycleTime ::= timeValue[timeUnit]
where,
timeValue is a numerical value expressed in integer, floating point, or scientific notation
timeUnit ::= [scaleFactor]s
where,
scaleFactor is one of the following scaling characters:
T means Tera, or 1E12
G means Giga, or 1E9
M means Mega, or 1E6
k means kilo, or 1E3
m means milli, or 1E-3
u means micro, or 1E-6
n means nano, or 1E-9
p means pico, or 1E-12
f means femto, or 1E-15
clockDomain is a character string

Example:
PERIOD 1608ps domain622

Note: The time value parameter can include units immediately after the number (no
whitespace in between). Units can include all the common scaling letters, such as n (for
nano), u (for micro), m (for milli), etc. Also note that the name “domain622” has been
assigned to the Clock Domain.

Note: There muse be a domain name defined for each PERIOD statement. Without the
domain assignment the defined period it would never be assigned to any pins.

4.0 Customizing Patterns

User’s Manual Page 3-49

3.8.8 DRIVE Block

When EVCD or VCD files are used as inputs, strobes will be automatically placed at the end of cycles
(when snapping is enabled) or at the exact point of transition (when snapping is disabled). Often this is
not ideal. The DRIVE block here will allow the user to arbitrarily assign the drive points on a pin by pin
basis. Additionally, this will result in spec variables that will be added that can clearly control this from
the tester.

Syntax:
 DRIVE
 pinName1 [driveValue] [optionalName]
 pinName2 [driveValue] [optionalName]
 …
 pinNameN [driveValue] [optionalName]
 END DRIVE
Strobe values can be expressed either as raw time values, which default to ns if no units are expressly
defined. Alternatively, these can be expressed as % values. In that case, the edge strobe will occur at a
particular ratio of the period. Every pin can have its own unique strobe location. Pins that are not defined
in the block will have their strobes occur at the regular default location that Velocity calculates.
If the driveValue is left out, then the spec will be assigned a value based on the value as present in the
simulation. VCD/EVCD files will calculate the edge and this value will be used for the spec value.

Example:
DRIVE
 TCK 40% # drive value for TCK at 40% of the tester period
 TDI # create a SPEC for TDI, but define value with simulation
 TDO 80% readOut # create a SPEC for TDO, define value to 80% and name that spec
“readout"
END DRIVE

4.0 Customizing Patterns

User’s Manual Page 3-50

3.8.9 STROBE Block

When EVCD or VCD files are used as outputs, strobes will be automatically placed at the end of cycles
(when snapping is enabled) or at the exact point of transition (when snapping is disabled). Often this is
not ideal. The STROBE block here will allow the user to arbitrarily assign the strobe points on a pin by
pin basis. Additionally, this will result in spec variables that will be added that can clearly control this
from the tester.

Syntax:
 STROBE
 pinName1 strobeValue [optionalName]
 pinName2 strobeValue [optionalName]
 …
 pinNameN strobeValue [optionalName]
 END STROBE
Strobe values can be expressed either as raw time values, which default to ns if no units are expressly
defined. Alternatively, these can be expressed as % values. In that case, the edge strobe will occur at a
particular ratio of the period. Every pin can have its own unique strobe location. Pins that are not defined
in the block will have their strobes occur at the regular default location that Velocity calculates.
If the driveValue is left out, then the spec will be assigned a value based on the value as present in the
simulation. VCD/EVCD files will calculate the edge and this value will be used for the spec value.

Example:
STROBE
 TDO 40% # Strobe the TDO at 40% of the tester period
 TDO2 # create a SPEC for TDO2, but define value with simulation
END STROBE

4.0 Customizing Patterns

User’s Manual Page 3-51

3.8.10 SURROUND

This directive is used to enable or disable the use of surround-by waveforms. By default, surround-by
will be enabled. But, there are instances where this is not wanted. For example, sometimes the
surround-by will introduce extra edges. Other times, the surround-by will use too many edges. This
provides a simple way of disabling the feature if it is not wanted

Syntax:
SURROUND ON|OFF

Example
SURROUND ON

4.0 Customizing Patterns

User’s Manual Page 3-52

3.8.11 RUNNINGCLOCKS

There are 2 modes of use for the RUNNINGCLOCKS. This block can either be used to pre-define
running clocks independent of the incoming source format. The secnd format is used to modify running
clocks as passed in from STIL FreeRun statements

Pre-defined running clocks:

Free running clocks are pins that are designated as free running and ignore the pattern data during the
conversion. Typically these are attached to clock ports (CLOCK). A clock pin will have one of two states,
pulse high, 1 or pulse low, 0.
Syntax,
 RUNNINGCLOCKS
 pinName activeDataState
 END RUNNINGCLOCKS

 Where,
 pinName: a pin previously defined in the PINLIST
 activeDataState: This will be “0” or “1”. “0” means return to one. “1” means return to
zero

EXAMPLE

RUNNINGCLOCK
 CP 1
END RUNNINGCLOCK
Tuning of STIL FreeRun:

Within STIL, there exists syntax that can be used to define freerunning clocks. In some cases, these
clocks will be defined in stil as positive or negative pulses at a certain period. Withing Velocity the
RUYNNINGCLOCK statement can be configured as a single line to only allow POS or NEG pulses.
When this syntax is used all pulses will use the polarity assigned in the CFG as an override to whatever
polarity is defined by the STIL syntax

EXAMPLE

RUNNINGCLOCK POS # 1 pulses only

RUNNINGCLOCK NEG # 0 pulses only

4.0 Customizing Patterns

User’s Manual Page 3-53

3.8.12 GLOBALSPEC

When multiple domains are used, there will be a separate spec defined to control the PERIOD for each
domain. If these are clean multiple of one another it is possible to set this up so that a single variable can
be used to control the period. Equations would then be used to scale the period from port to port.
Normalization must be used with this option. If GLOBALSPEC is enabled and Normalization is
disabled, a warning will be issued. The translation will continue and Normalization will be automatically
enabled anyway.
This spec is often used in combination with the Domain Tracking feature that documented in the next
section. Domain tracking can be used to assign the relative multiples of each defined time domain.
Syntax,
 GLOBALSPEC ON/OFF

 Where,
 ON = one SPEC variable will be used and equations will be used to automatically expand
from domain to domain.
 OFF = separately controlled PERIOD spec will be used for each domain

EXAMPLE

GLOBALESPEC ON

GLOBALSPEC OFF

4.0 Customizing Patterns

User’s Manual Page 3-54

3.8.13 WAVETABLE

This CFG variable provides a number of ways to manipulate how wavetables are named as well as how
the content is formatted.

Syntax:
WAVETABLE AUTO|SINGLE|STANDARD|STANDARD_SINGLE|FAST|FIXED [waveTableName]

WAVETABLE AUTO

By default the wavetable name will be created based on the value of the PROGRAM variable. In some
instances, you may want to create separate families of patterns, in separate subfolders, that still use a
common wave table name. WAVETABLE AUTO is the mechanism to do this. The content of the wave
table will be built exactly as it would have otherwise, but the name for the wave table will be defined by
the wavetableName argument of this command instead of the PROGRAM variable

Examples:
WAVETABLE AUTO scan
WAVETABLE AUTO functional

WAVETABLE SINGLE

This will inhereit all the conversion behavior fromn AUTO above. However, the final timing will have
all the individual domain wave tables combined into one wave table that encompasses all pins. This will
reduce the total number of wave tables that are used.

Examples:
WAVETABLE SINGLE scan
WAVETABLE SINGLE functional

WAVETABLE STANDARD

There are also some instances where you want to define more general purpose wave tables in order to fix
the order of wave indexes so that all pins use the same wave table regardless of their usage. This is done
so that alternate wave tables can be interchangeably used. For this purpose you would use
WAVETABLE STANDARD. This format will ensure that every pin uses the same wave indexes. In
other words, all pins will be defined with a pulse wave form. All pins will have placeholders for digital
capture and ARM waveforms. The resulting wavetables will use more weave indexes, but you will also
see that all pins use the same list of wave indexes.

Examples

WAVETABLE STANDARD scanStd
WAVETABLE STANDARD funcStd

4.0 Customizing Patterns

User’s Manual Page 3-55

WAVETABLE SINGLE

You may have instances where you want to define a simple STANDARD wave table, but you are
converting a pattern that contains multiple timesets. WGL files might have multiple timeplates. STIL
files might have multiple waveformTables. These will then result in multiple defintions for some state
characters. This then results in a more complicated 93K wave table.

WAVETABLE SINGLE gives you a mechanism that will eliminate the multiple definitions of state
characters. This will fundamentally alter the resulting behavior of the device, but sometimes this is
required in order to gain control of a test’s edges and waveforms.

Essentially, what will happen is that instead of multiple WGL timeplates or multiple STILl
waveformTables being imported, the entire set will be funneled into one singularly built timeset that will
format itself exactly like the WAVETABLE STANDARD above. You will get pulse waveforms for all
pins and placeholders for digicap and ARM, however, youwill not get multiple definitions of any one
waveform, hence the “SINGLE” declaration

Examples:
WAVETABLE SINGLE scanSingle
WAVETABLE SINGLE functionalSingle

WAVETABLE STANDARD_SINGLE

This format will inherit the attributes of STANDARD above, however, this will force al ascii timings to
be consolidated into one STANDARD wave table. This will give you simpler timings when there are
multiple timeplates in the source file, but you might lose some edge control as you will only get once
drive edge and one strobe edge to control instead of separate edges that come with different timeplates.

Examples:
WAVETABLE STANDARD_SINGLE scanSingle
WAVETABLE STANDARD_SINGLE functionalSingle

WAVETABLE FAST

High speed testing often required using the highest datarate. In doing so, the wavetable count becomes a
limiting factor. The “Z/X” waveform that can be remapped to a drive “0” in order to reduce the total
number of waveformsa needed. WAVETABLE FAST will do this for you automatically.

Like WAVETABLE SINGLE, you will see that the stimulus that is applied is altered. Z/X will be
terminated low by the driver. But, this is all done in order to squeeze out the highest speed. Velocity
will not do something that the tester can not do. This is a common compromise that is made simple.

Examples:
WAVETABLE FAST scanFast
WAVETABLE FAST functionalFast

4.0 Customizing Patterns

User’s Manual Page 3-56

WAVETABLE FIXED

If you have a set of timings that you need to build directly WAVETABLE FIXED is the option that will
allow you to connect a pattern to a pre-defined timing file. For this usage, the 3rd section argument will
define the file which contains the timing that is going to be used. For this mode of operation, only the
patterns will be compiled. The timing will not be compiled.

Instead of building and compiling timing, the pre-existing file will be parsed so that the information
needed for compilation can be built from that timing.

If everything that is needed for the pattern is present in the sourced timing, then everything will compile
and your patterns can be dropped into your program using the same timing you specified. If there is
missing information that prevents the old timing from working with the new timing, you will see
compilation failures. Along with these compilation failures you will see that a timing file is also exported
that contains the new waveforms that need to be added. It is the users’s responsibility to copy these new
waveoforms back into the sourced timing file.

Once “bad” timings are updated with “new” timings you can repeat the conversion again and the
compilation failures will be gone. It is also now the user’s responsibility to overwrite the old timing with
the new timing in the target test program so that new patterns have everything they need also.

Old patterns that were successfully compiled under the old timings will still work, because all new
waveforms are appended to the endf of olde wavetable content. All previous wave indexes will remain
exactly as they were.

Examples:
WAVETABLE FIXED preDefininedTIming.tim

4.0 Customizing Patterns

User’s Manual Page 3-57

3.8.14 PATTERNMAP

PatternMap block is used to provide an automated map that will rename pattern names when they are
exported. This is useful for 2 usage models.

1. If you have very long file names and wish to shorted the resulting pattern names to make ATE
viewer tools more manageable

2. If you have multiple versions of a source file,. But want to keep the resulting pattern name
consistent so you do not end up with multiple loaded versions of the same pattern

The blow will be a multiline section of the CFG that will list source file base name in first columns along
with the updated pattern name that is intended for the ATE side

Syntax,
 PATTERNMAP
 sourceFilePatternName1 TargetPatternName1
 sourceFilePatternName2 TargetPatternName2
 …
 sourceFilePatternNameN TargetPatternNameN
 END PATTERNMAP

4.0 Customizing Patterns

User’s Manual Page 4-58

4.0 CUSTOM LEVELS

BACKGROUND: Simulation output files, and even STIL files, do not typically define
DC levels for the signals. However, using configuration file structures, Velocity provides
you with a way to include levels information with your auto-generated test program.
The LEVELS block allows you to define, for any pin or group of pins, power supply
levels, input drive levels, and output threshold levels.

4.0.1 To define levels for a group of pins, create the
following Control definition block.

On the first line, use the keyword LEVELS followed by a pin or group name. Optionally, you can use
the word default for the pin specification to indicate all pins.
On the next line, use the keyword POWER followed by a voltage value. This will be the master power
supply voltage level.
On subsequent lines, use the following keywords followed either by a voltage value or a percentage:
VIH – Input voltage for a logic high
VIL – Input voltage for a logic low
VOH – Output threshold voltage for a logic high
VOL – Output threshold voltage for a logic low

BACKGROUND: If you specify a level as a percentage, Velocity interprets it as a
percentage of the POWER level. This provides a convenient way to scale levels with a
device power supply voltage.

For the last line, use the keywords END LEVELS.
The following is an example of a Levels definition:
LEVELS default
 POWER 3.0V
 VIL 0.8V
 VIH 2.0V
 VOL 30%
 VOH 50%
END LEVELS

4.0 Customizing Patterns

User’s Manual Page 4-59

4.0.2 Power Sequences

This section is used to define the power up sequence. Although this section is technically optional, It is
strongly suggested that this section be used. Otherwise, the power up will require user intervention in
multiple locations in the source files. Syntax of this block is as follows
POWER powerStateName
 SupplyName supplyVoltage clampCurrent delayAfter
 SupplyName supplyVoltage clampCurrent delayAfter
 SupplyName supplyVoltage clampCurrent delayAfter
 “” “” “” “”
 “” “” “” “”
END POWER

When used, this power sequence can be referenced in the same way that test’s (defined next) are used. In
other words, this block is treated as a special case of the tests that will allow execution with name
pass/fail queries. The power sequence will always result in a pass value and will never log anything.
If a staged power up or power down sequence is required. This can be defined by generating multiple
power blocks with unique names for each stage. Or, it can be defined explicitly within a single power
block by defining the supply more than once in the block.

Each entry in the power block is executed serially in the order is defined in the configuration.
Multiple supplies can be referenced within a single block
At the end of execution, supplies will retain the supply value last requested

The following is an example of a Power definition:

Power up and power down

POWER nominal
 VS1 1.25V 500mA 5uS
 VS2 3.6V 500mA 0uS
 VS3 3.6V 500mA 0uS
END POWER

4.0 Customizing Patterns

User’s Manual Page 4-60

4.0.3 Power down sequencing

There will always be a power sequence named “off” created by the ShellConstructor. This default
sequence will do nothing more than disconnecting the power supplies. This default sequence will be
overridden in the following cases.
Power off case 1: If only one power up sequence is defined, the power off sequence will be assumed to occur in
reverse order. Each supply will be set to 0V and then disconnected in the reverse order of the power up
Power off case 2: If multiple power up sequences are defined, the power off will default to the reverse order of the
last power sequence. Each supply will be set to 0V and then disconnected in the reverse order of the power up
Power off case 3: If a special power down that is not explicitly equivalent to one of the above, a special POWER
block named “off” can be defined that will automatically override the default case. This is the recommended
method

4.0 Customizing Patterns

User’s Manual Page 5-61

5.0 CUSTOM TIMING

BACKGROUND: Although Velocity will create appropriate Time Sets for your program,
based on the simulation or ATE files used as source for the conversion, you can create your
own custom timing to apply to tests.

To define custom timing for a group of pins, create the following Control definition block.
On the first line, use the keyword TIMING followed by a pin or group name. Optionally, you can use
the word default for the pin specification to indicate all pins.
On the next line, use the keyword PERIOD followed by a time value. This will be the period of the
tester’s pattern sequencer.

BACKGROUND: All TIMING blocks in a particular Configuration file must use the
same PERIOD value. This ensures that the tester will be able to use the resulting STIL
file.

TIP: In order to use TIMING blocks with different PERIOD values in your test
program, use separate Configuration files for each of the different periods and run
separate conversions with each.

4.0 Customizing Patterns

User’s Manual Page 5-62

On subsequent lines, use the following keywords followed either by a time value or a percentage:
DRIVE – Time delay of a drive edge for a pin of type I or IO
RECEIVE – Time delay of a compare edge for a pin of type O or IO
PULSE – Duration of a pulsed waveform for a pin that is not defined as a clock pin.
OFFSET – Time delay of first edge for a pin of type CLK
RISE – Time delay of second edge for a pin of type CLK, if a rising edge
FALL – Time delay of second edge for a pin of type CLK, if a falling edge
DUTY – Duty cycle for a pin of type CLK, expressed only as a percentage

BACKGROUND: If you specify a timing parameter as a percentage, Velocity interprets it
as a percentage of the PERIOD time. This provides a convenient way to scale edge delays
with a sequencer period.

For the last line, use the keywords END TIMING.
The following is an example of a Timing definition:

Timing
These definitions will define the values of specs
values will be assigned by default. Groups and pins can
be defined to override defaults by using a pin or group
name.

TIMING default
 period 100ns
 offset 0ns
 duty 50%
 drive 25%
 receive 90%
END TIMING

redefine the data pin and use “dataBus” as the spec bsae name for the
actions
TIMING dataBus d7 d6 d5 d4 d3 d2 d1 d0
 drive 15%
END TIMING

4.0 Customizing Patterns

User’s Manual Page 6-63

6.0 TEST DEFINITIONS

This section is used to create specific test instances. Each defined test will be accessible from both the
main test program and command line execution scripts. The general syntax for the section is as follows.
Each entry is then detailed

TEST testname testnumber
 TYPE lib.family.testName
 PATTERN patternName
 TIMING timing declaration
 LEVELS levelsDeclaration
PARAMETERS
 PARM1 PARM2value
 “” “”
 “” “”
 END PARAMETERS
 LIMITS
. <= testName1 <= . [units]
. <= testName2 <= . [units]
 END LIMITS
END TEST

TEST: Keyword to tell the Velocity that a new test block is being created. This then requires that
a unique test name and(optionally) a unique test number to follow. The testname will be the
name as accessed by the command line execution script. Each test must have a unique name.
The test number will provide a starting testnumber for every element logged. The test numbers
should be unique and enough separated from one another so that tests will multiple events will
not step on one another.

PATTERN: Pattern Block name that is to be executed. Note: This pattern name refers to the
block name which may be different from the STIL file name that is derived from. The user must
know the exact name for this to be valid. This parameters associated value will be case sensitive.
Alternatively, “$default” can be used for the pattern’s name and the pattern will be chosen
automatically from the input pattern list.

4.0 Customizing Patterns

User’s Manual Page 6-64

TIMING: Optionally defines the Timing Block that should be used for a given test. This
can be left out an automation will automatically apply timing based on the patternList
compilation. This is usually left out an automatically applied based on compilation results.

LEVELS: Optionally defines the Level Block that should be used for a given test. This is
defined in terms of level set numbers in the case of single port. Or by multiport spec name if
using multiport. This block is usually left blank and auto filled from the available levels.

TYPE: The keyword should be the first subparameter of each TEST block. This will tell the
Velocity what type of generic function is to be applied. Depending on which parameter type is
received, a different set of parameters will then be required. The typeKeyword can be included
from any library as long as the library is part of the string applied in the CFG.

If no TYPE is specified at all for a TEST block, it will be assumed to be a straight functional
test.

For a complete list of automatically supported test methods consult your Advantest Test
Documentation Center. A few common examples are included here.

The format is of the form “library.class.testName”.
 where,
 library = the name of the test method library which is included with the test program
 class = an optional sub class within the library. You may not have a multiple classes
within a library. When this happens you can drop the class designator entirely.
 testName = The name of the test method function that is t be executed.

4.0 Customizing Patterns

User’s Manual Page 6-65

6.0.1 AcTest.FunctionalTest
ac_tml.AcTest.FunctionalTest: Functional Test executes a digital pattern and responds with
pas/fail results

dc_tml.DcTest.Continuity: Continuity Test - tests a lists of pins for connectivity by examining
voltage seen when small current is applied to pin with no power applied

pinlist pinNames: comma delimited list of pins or groups to be included in the test

testCurrent currentValue: force current applied to each of the pins in the pinlist

settlingTime settlingTimeValue: settling time after force current is applied before the voltage
is measured.

measurementMode PPMUpar|ProgLoad: The is one of two options that will determine the
type of measurement that is being done. PPMUpar will use the PMU per pin. The ProgLoad
will use the programmable load and regular measurement pin electronics and can be done in
parallel.

polarity SPOL|BPOL: This argument will choose whether single polarity or both polarities are
used for the measurement.

prechargeToZeroVol ON|OFF: Determines whether the pinlist will be precharged to 0 volts
prior to the test applying the force current

testName passVolt_mV: This is the name of the test as it will appear in the datalog and how
it will be connected to limits. For Advantest supplied vesion of this test, the testName can’t
change. But, this field is provided in the CFG so in case the user wishes to modiy the default
method to change the logging.

output None|ReportUI|ShowFailOnly: This determines the level to which data will be senbt
to the default report window. None will report nothing. ReportUI will report everything.
ShowFailOnly will display only the failing pins.

4.0 Customizing Patterns

User’s Manual Page 6-66

6.0.2 DcTest.ProductionIddq
dc_tml.DcTest.ProductionIddq: Production IDDQ Test - tests a lists of pins for connectivity
by

dpsPins pinList: list of DPS pins that will be included in measurement.

disconnectPins disconnectPinList: List of pins that need to be disconnected during
measurement. If left blank, then all pins will remain conected

settlingTime settlingTime: settling time before measurements will start

stopMode ToStopVEC|ToStopCyc: determines with the test will stop at a given vector number
or at a certain cycle number
strStopVecCycNum stopCycleNumber: stop value for test. If left blank, this will execute to
the end of the pattern specified
samples numSamples: Number of samples per output current measurement

checkFunctional ON|OFF : determines whether the functional tests’s pass/fail result will be
included in the result analysis or not

controlTestNumOfFunctional ON|OFF : If the functional result is being used as part of the
pass fail, this argument will tell the method whether or not to use a separate test number for the
functional pass/fail or not

gangedMode ON|OFF : enables or disables the ganging of supply channels during
measurement.

testName passCurrLimit_uA: This is the name of the test as it will appear in the datalog and
how it will be connected to limits. For Advantest supplied vesion of this test, the testName can’t
change. But, this field is provided in the CFG so in case the user wishes to modiy the default
method to change the logging.

output None|ReportUI|SHowFailOnly: This determines the level to which data will be senbt
to the default report window. None will report nothing. ReportUI will report everything.
ShowFailOnly will display only the failing pins.

4.0 Customizing Patterns

User’s Manual Page 6-67

6.0.3 DcTest.Leakage
dc_tml.DcTest.Leakage: Prodcution IDDQ Test - tests a lists of pins for connectivity by

pinlist pinList: list of IO pins that will be included in measurement

measure LOW|HIGH|BOTH : determines which polarity to measure for each pin

measurementMode PPMUpar|ProgSer|SPMUser: 3 options to define whether each
measurement will be made ins serial using the SPMU. In serial using the PPMU, or in parallel
using the PPMU. These three options allow the user to choose precision vs speed of
measurement.

relaySwitchMode DEFAULT(BBM)|MBB|Parallel : 3 options for defining the relay
switching mode to use for each measurement.

forceVoltageLow forceLowValue : optional value to apply to the pins while measuring the
low leakage.

forceVoltageHigh forceHighValue : optional value to apply to pins while measuring the high
leakage

spmuClampCurrentLow lowClampValue : If the SPMU measurement mode is used, this
value will be used for the low clamp value. Can be left blank otherwise.
spmuClampCurrentHigh highClampValue: If the SPMU measurement mode is used, this
value will be used for the high clamp value. Can be left blank otherwise.

ppmuPreCharge ON|OFF : determines with the pre charge value will be applied before each
measurement.

prechargeVoltageLow lowPreChargeValue : low value to be used for pre chanrge if
enabled.

prechargeVoltageHigh highPreChargeValue : : high value to be used for pre chanrge if
enabled.

settlingTimeLow lowSettlingTime : settling time before low value measurement is made

settlingTimeHigh highSettlingTime : settling time before high measurement is made

preFunction YES|NO : Allows a separate pre Functinal pattern to be execxuted. If NO, then
no functional test will be applied.

controlTestNumOfFunctional YES:NO : If functional test is used, then this allows the
results of that functional test to use a separate test number or not in the datalog.

4.0 Customizing Patterns

User’s Manual Page 6-68

stopCycVecLow stopLowLocation : Optionally defined stop cycle for the low value
measurement. Will run to the end if left blank

stopCycVecHigh stopHIghLocation : Optionally defined stop cycle for the high value
measurement. Will run to the end if left blank

testName passCurrLimit_uA: This is the name of the test as it will appear in the datalog and
how it will be connected to limits. For Advantest supplied vesion of this test, the testName can’t
change. But, this field is provided in the CFG so in case the user wishes to modiy the default
method to change the logging.

output None|ReportUI|SHowFailOnly: This determines the level to which data will be senbt
to the default report window. None will report nothing. ReportUI will report everything.
ShowFailOnly will display only the failing pins.

4.0 Customizing Patterns

User’s Manual Page 6-69

6.0.4 DcTest.OPeratingCurrent
dc_tml.DcTest.OperatingCurrent: Operating Current Test - tests a lists of pins for
connectivity by

dpsPins pinList: list of DPS pins to be included as part of measurement
samples numSamples: number of samnples per

delayTime delayValue: delay after connect and pattern execution before measurement will
be made

termination OFF|ON: Flag to turn termination of IO channels on or off

testName passCurrLimit_uA: This is the name of the test as it will appear in the datalog and
how it will be connected to limits. For Advantest supplied vesion of this test, the testName can’t
change. But, this field is provided in the CFG so in case the user wishes to modiy the default
method to change the logging.

output None|ReportUI|ShowFailOnly: This determines the level to which data will be senbt
to the default report window. None will report nothing. ReportUI will report everything.
ShowFailOnly will display only the failing pins.

There are many other automatically provided methods. You can also include references to custom
defined API libraries. At run time, Velocity will assume that the library has been included with the
targeted test program. As long as the “lib”, “class”, and “testName” are properly setup, then the testflow
will have access to these functions. Note that some tets method libraries do not have multiple classes of
tests. If this is the case, then the Velocity TYPE specified will be of the form “library.testname” with
no “family” designator at all.

The following is a sample Test Blocks section that defines a number of tests. Specifically, this list of
definitions will result in 8 specifically accessible test Functions defined in TestFunctions.cpp using the
generic AC and DC test functions defined in GenericFunction.cpp. There will then be 8 script execution
functions defined in user_commands.cpp. These functions are also available to the Flow Block section
of the configuration defined below which can be used to create instances of these functions in a user
defined order in the “main” program.

4.0 Customizing Patterns

User’s Manual Page 6-70

Test Definitions

TEST shortsPositive 100
 TYPE dc_tml.DcTest.Continuity
 PARAMETERS
 pinlist all
 testCurrent 10[uA]
 settlingTime 1[ms]
 measurementMode PPMUpar
 polarity SPOL
 prechargeToZeroVol ON
 testName passVolt_mV
 output None
 END PARAMETERS
 LIMIT
 . <= passVolt_mV <= . []
 END LIMIT

END TEST

TEST contNegative 150
 TYPE dc_tml.DcTest.Continuity
 PARAMETERS
 pinlist all
 testCurrent -10[uA]
 settlingTime 1[ms]
 measurementMode PPMUpar
 polarity SPOL
 prechargeToZeroVol ON
 testName passVolt_mV
 output None
 END PARAMETERS
 LIMIT
 . <= passVolt_mV <= . []
 END LIMIT
END TEST

TEST IDDQdouble 500
 TYPE dc_tml.DcTest.OperatingCurrent
 PATTERN juno_soc_aplpll_x5
 PARAMETERS
 dpsPins @
 samples 4
 delayTime 0[ms]
 termination OFF
 testName passCurrLimit_uA
 output None
 END PARAMETERS
 LIMIT
 . <= passCurrLimit_uA <= . []
 END LIMIT
END TEST

4.0 Customizing Patterns

User’s Manual Page 6-71

TEST LeakageHi 250
 TYPE dc_tml.DcTest.Leakage
 PARAMETERS
 pinlist GROUP_defaultInputs
 measure BOTH
 measureMode PPMUpar
 relaySwitchMode DEFAULT(BBM)
 forceVoltageLow 400[mV]
 forceVoltageHigh 3800[mV]
 spmuClampCurrentLow 0[uA]
 spmuClampCurrentHigh 0[uA]
 ppmuPreCharge ON
 prechargeVoltageLow 0[mV]
 prechargeVoltageHigh 0[mV]
 settlingTimeLow 0[ms]
 settlingTimeHigh 0[ms]
 preFunction NO
 controlTestNumOfFunctional NO
 stopCycVecLow 0
 stopCycVecHigh 0
 testName (passCurrentLow_uA,passCurrentHigh_uA)
 output None
 END PARAMETERS
 LIMIT
 . < passCurrentLow_uA < . []
 . < passCurrentHigh_uA < . []
 END LIMIT
END TEST

TEST IDDQ 400
 TYPE dc_tml.DcTest.ProductionIddq
 PARAMETERS
 dpsPins @
 disconnectPins
 settlingTime 0[ms]
 stopMode ToStopVEC
 strStopVecCycNum
 checkFunctional ON
 controlTestNumOfFunctional OFF
 gangedMode OFF
 testName passCurrLimit_uA
 output None
 END PARAMETERS
 LIMIT
 . < passCurrLimit_uA < . []
 END LIMIT
END TEST

4.0 Customizing Patterns

User’s Manual Page 7-72

7.0 FLOW DEFINITIONS

The testflow will insert a predefined set of tests in a particular order into the main program of the
test. Each named test or power setting must be defined in prior to use or compilation errors will
occur. This is the syntax for the section

FLOW flowName
 TEST|POWER|DELAY testname|powerSequenceNam|delayValuee [failBinNumber]
 TEST|POWER|DELAY testname|powerSequenceNam|delayValuee [failBinNumber]
 ‘’
 ‘’
END FLOW

FLOW is a keyword that indicates the beginning of a flow block

Only one FLOW block should exist within a given test configuration. No errors will be
seen but only the last flow listed will be inserted into the test program

testname and powerSequenceName must explicitly match a TEST or POWER block
defined prior to the FLOW block

DELAY will insert delays in resulting test flow. There must be a number following the
DELAY statement

The example below assumes that the 2 tests and 1 power sequence have already been defined.
The “off” power sequence can either be explicitly defined or implied as being defined because it
will automatically be generated because as the reverse of the defined power sequence.
The following is an example of a Flow definition:

Flow Definition
The following tests will be executed in the following
order. If no flow is defined, then all the tests will
be included in the order they are defined. All will
be called inside user_main

FLOW experimentName
 TEST contNegative 10
 POWER nominal
 TEST funcSpec 5
 DELAY 15ms
 POWER off
END FLOW

4.0 Customizing Patterns

User’s Manual Page 8-73

8.0 CUSTOMIZING PATTERNS

Custom patterns are patterns that are created based on existing patterns but with additional
sequencing features such as loops and breaks. By default, every custom pattern will have a base
pattern that it is initially created from. After creation, the user can inject and arbitrary list of
additional loops and branches to allow for varied execution of the predefined pattern. Therefore,
this provides a simple way of automatically introducing modified execution of patterns when it is
known beforehand that such changes should occur.

First, a new pattern file will be created as a copy of the base pattern. Any labels that are used
within the original will be renamed automatically so that they are unique in the copied version.

Second, any new sequences that are requested will be added to the new STIL file. Once
compiled, they will be visible to the tester’s Pattern viewer.

Third, multi-port burst blocks will automatically be created for the new pattern if necessary.
TEST blocks can then refer to just the pattern name. The pattern burst will be implied. The
timing associated with this pattern will be identical to that of the original base pattern.
Therefore, no extra work will be required to force timing. This can always be changed later.
The custom pattern block itself, as stated in the introduction, is not meant to be the main user
interface. But, rather, it is meant to provide a quick start for new test programs.

BACKGROUND: If your Velocity package includes Optimization options, Velocity can
automatically search for compression opportunities when converting patterns, and create
appropriate repeats and loops in your patterns.
However, even without Optimization, you can manually customize your pattern files using
Configuration control. You can specify explicitly not only repeats and loops, but also
selective output masking (pin-by-pin and cycle-by-cycle), pattern truncation, etc.

4.0 Customizing Patterns

User’s Manual Page 8-74

8.1 Pattern Syntax

The following syntax is used for the PatternBlock

PATTERN newPatternName

 BASE basePatternName
 Command commandParameterList
 Command commandParameterList

END PATTERN

PATTERN: Keyword that tells the ShellConstructor that this is the beginning of a custom
pattern block.

newPatternName: Must be a unique string to identify the name of the new pattern. This name
can be used by subsequent TEST blocks.

8.2 BASE Syntax

BASE: Keyword to indicate that the new pattern is associated with a given base pattern.

basePatternName: This base pattern must be included in each PATTERN block program. The
name of the base pattern must explicitly match the name of one of the original source files being
translated. If no base is present, then any subsequent actions will not be applied properly.

4.0 Customizing Patterns

User’s Manual Page 8-75

8.3 Command and Parameter List Syntax

The commands and associated parameters are an optional member of the Pattern Block.
However, there will generally be at least one command inserted. Otherwise, there is no real
reason to create the custom pattern in the first place. There is no upper limit on the number of
inserted commands that can be used. However, when using loops is important that these not be
built to interleave. Only one level of looping is defined in this syntax The following actions can
be inserted

8.3.1 TYPE (optional)

This optional parameter can be used to determine whether the pattern is to be
compiled as a regular pattern or if it is to be defined as a subroutine. (This is only
available for the Advantest target port). Other ports will revert to the default type
which will compile that patterns as regular functional patterns

 TYPE MAIN|SVEC

8.3.2 DOMAIN (optional)

This optional parameter can be used to lock a set of commands to a particular
time domain. If multiple domains are used, then cycle counts that are used to
define custom start, stop or loop parameters would need adjustment. This
command assigns the reference domain to be used. For the subsequent list of
commands

 DOMAIN domainName

4.0 Customizing Patterns

User’s Manual Page 8-76

8.3.3 FUNC (optional)

This optional pattern allows the user to insert a predefined bits stream to
particular pin or set of pins. There are a list of predefined bit patterns that can be
applied such as PRBS patterns or you can define with a hard path to a file name.
This bit stream will be applied to a user defined cycle starting point and can be
repeated as any times as desired

 FUNC patternName|filePath pinOrGroupName startCycle
[repeatCount]

The pin or group name must be defined above in the pin or group section.
The usage of the FUNC keyword must occur after the BASE pattern has been
defined. Otherwise, there will be nothing to attach this inserted cycles to. All
pins that are not directly referenced by the FUNC statement will be treated as
repeats of the previous cycle. If the start cycle is greater than the length of the
base pattern, a warning will be thrown and the bit stream will be applied to the
end of the pattern. If a repeat count is used and the bit stream itself is not a
modulus of the data bit rate, then the pattern will be appended with continuation
bits so that it is proper modulus.

8.3.4 LOOP

Loops can be added with the following syntax
 LOOP startCycle,stopCycle [loopCount]

The start and stop cycle refer to the vector number of the beginning and ending of
the inserted loop. A loop count is optional. If not defined, the loop count will be
defined as infinite. The loop will have to be stopped by pressing the “abort”
button in ITE, as the loop will be interpreted as infinite.

4.0 Customizing Patterns

User’s Manual Page 8-77

8.3.5 REPEAT

Single line repeats can be added with the following syntax
 REPEAT cycle,loopCount

Cycle defines the vector number for a single line repeat. LoopCount defines the
number of times that line should be executed. A loop count of 1 would be
equivalent to not having the REPAT command in the first place.

8.3.6 MATCH

Match Loops can be inserted with the following syntax:
 MATCH startCycle,stopCycle [jumpLocation]

A match loop will execute until the entire range of the loop passes on all cycles.
startCycle and stopCycle refer to the vector location of the beginning and the
ending for the loop. Optionally, a jump location can be defined with the last
argument. If used the pattern execution will jump to the given location after a
match is found. If not used, the pattern will continue at the next line

8.3.7 START

The start location for a given pattern can be redefined with this syntax:
 START newStartVector

The start location for a given vector can be redefined with this command. The
new pattern will have all previous vector information removed so that the new
start location will occur at the vector defined by the parameter newStartVector.

8.3.8 STOP

The stop location for a given pattern can be redefined with this syntax:
 STOP newStopVector

The stop location for a given vector can be redefined with this command. The
new pattern will have all subsequent vector information removed so that the new
stop location will occur at the vector defined by the parameter newStopVector.

4.0 Customizing Patterns

User’s Manual Page 8-78

8.3.9 WAIT

The WAIT variable will allow you to insert arbitrary time delays at any point in a pattern. These can be
inserted at time values or by cycles. If no units are specified for the location it is assumed to be a cycle
number
 WAIT location[units] duration

4.0 Customizing Patterns

User’s Manual Page 8-79

8.3.10 CUSTOM PATTERN EXAMPLES

The following is an example of a Pattern definition:

Pattern lists
The following patterns will be translated. If the pattern is
not in the list, then it will be skipped. If the pattern is
not in the source file then a warning will be issued.

PATTERN loopInfinite
 BASE SpecFunc
 LOOP 5,20
#END PATTERN

PATTERN loopFinite
 BASE SpecFunc
 LOOP 5,18 16
END PATTERN

PATTERN multipleLoop
 BASE SpecFunc
 LOOP 5,10 16
 LOOP 16,20 16
END PATTERN

PATTERN changeStartStop
 BASE SpecFunc
 start 5
 stop 20
END PATTERN

PATTERN PRBS7
 BASE SpecFunc
 FUNC PRBS7 dataIn 800 8
END PATTERN

PATTERN delaysAdded
 BASE SpecFunc
 DELAY 100us 5ms
 DELAY 1ms 2ms
END PATTERN

4.0 Customizing Patterns

User’s Manual Page 8-80

8.4 Logical Masking

This keyword will tell the mask loader what command is being requested. These masks are build
with a syntax that allows conditional logic to be applied to enable and disable the masking as
well as syntax to define how characters are remapping.

Masks can be turned on and off by cycle or pin by pin. Each command is terminated by a
semicolon at the end of the line. This allows complicated or long statements to be spread over
multiple lines

The mask block can also be defined by itself outside of the PATTERN block. In this case the
MASK block itself is given a name. If “default” is the name, then the contents of the MASK
block are applied to all patterns that are loaded. Any other name will apply the mask only to
patterns that match the name of the mask block

MASK default|inputPatternName
 maskCommand maskPinList [map] [conditions]
 maskCommand maskPinList [map] [conditions]
 END MASK]

It is legal to have both a default and a specifically applied mask for a single pattern. When both
are defined, the mask that is specific to the given pattern will be applied first, followed by the
default mask block. In the end both are applied. If the input pattern name does not match the
name of the mask block, then that mask block is not applied.

8.4.1 PINS
It may be desirable to handle each pins masking separately or collect all masking conditions in a
single statement. The syntax is as follows

 PINS pin1,pin2…pinN start1-stop1,start2-stop2 [condition] [map];
 PINS pin1,pin2…pinN start1-END [condition] [map];
 PINS pin1,pin2…pinN ALL [condition] [map];

In this case, all of the starts and stops for a masking scheme are expressed in a a single comma
delimited list. Start and stop pairs are separated by the “-“ (dash).

Each start and stop must be an integer that corresponds to a valid cycle number in the loaded
pattern. The only exception to the integer limitation is the use of END which all apply the active
maked region all te way to the end of a pattern. The other is the use of “ALL”, which will apply
the mask to every cycle in the active pattern (Conditions explained below)

4.0 Customizing Patterns

User’s Manual Page 8-81

8.4.2 MAPS
Character remapping:: By default a mask will take all L, H, and M characters and recast them as
X characters. However, the MAP keyword can be used within a mask definition to reassign the
state character mappings to any othe combination of states. The map conditions specific will
override the default. For example, you could used the MAP to turn off drive values. You might
even use the map to swap 0 and 1 characters if you want to invert a signal. The MAP is applied
with the following sequence

{MAP sourceChar|targetChar}

sourceChar: This can be one or more state characters that might be present in the unmasked
source vector.

targetChar: This can be one or more state characters that would be used to replace the list of
characters in the sourceChar listing. If only one character is provided, this character will be
applied as the target for all of the states in the sourceChar. If more than one is listed, then the list
MUST be the same length as the sourceChar list. The mapping will occur in a 1 to 1 fashion in
the same order.

Examples:
 {MAP HM:XX} This will turn off all compares

 {MAP 01LH:10HL} This will invert all signals, input and output.

 {MAP 01LH:ZZXX} This will turn off drives and compares.

4.0 Customizing Patterns

User’s Manual Page 8-82

Note that the ordering and count of the characters in the the source and target
listing for the mask mapping section follows the same convention as STIL
waveform tables. The order of the source will match the order of the target. If
there is only one target char it will apply to all source chars

Note: Digital Capture can be setup using the MASK block by defining a MAP structure
that remaps the L and H characters to C. { MAP [LH:C] } When this is done, the timing
will automatically be adjusted to include the capture and don-t capture waveforms

Note the number of “from” states in the MAP string MUST be the same as the
number of “to” states in the MAP

Note: The curly brackets surrounding the MAP statement are required.

4.0 Customizing Patterns

User’s Manual Page 8-83

8.4.3 CONDITIONS

Mask conditions can be used to fine tune the regions in which a mask is applied so to match
conditions in the pattern on any pin at any state prior to the active cycle. Condition sequences
will be analyzed as a comma delimited “or” of multiple conditions. Each condition is applied
with the following sequence.

{COND refPin[relativeCycle]=pinState }

refPin: This is should be an explicit match to a pin in the given pin list. This can be equal to a
pin the ON, OFF, or PINS state to which the condition is applied. Or, it may be equal to any
other pin in the pin list as defined by the configuration

relativeCycle: This parameter is optional. If no relative cycle is defined, it is assumed to be 0
and will search for the condition on the active cycle that is potentially being masked. This can
also be a range of cycles. A positive number will look later in the pattern. A negative number
will look at previous cycles.

pinState: This will define that state for the refPin that activates the given mask sequence. If the
reference pin is not explicitly equal to the given state, then the mask will be deactivated

Note: The curly brackets surrounding the COND statement are required.

Note: The condition can ues “!=” as well as “=” to active the actions when a
condition is NOT true as well.

4.0 Customizing Patterns

User’s Manual Page 8-84

8.4.4 PIN DUPLICATION

In certain instances in may be necessary to provide a complete duplication of on pin’s data onto
another pin. This is accomplished by setting one pinb equation to another pin in the PINS
statement. This is MASK block required because each simulation pin can connect to one and
only one signal in the PINLIST block.

The closing semicolon is required

PINS targetPin=sourcePin;

8.4.5 Logical Mask EXAMPLES:

PINS clkOut 0-100,1000-END;
This will turn on masking for the pinNamed clkOut starting at cycle 0 and turning it off at cycle
100. After this the mask will be turn on again at cycle 1000 and will remain active until the end
of the pattern because no OFF statement occurs

PINS clkOut 0-100,1000-END {COND RESET=0};
This will turn on masking for the pinNamed clkOut starting at cycle 0 and turning it off at cycle
100. After this the mask will be turn on again at cycle 1000 and will remain active until the end
of the pattern because no OFF statement occurs. Within the active ranges, the mask will only be
active if the RESET pin is set to 0. Therefore, if RESET is at any other state during the range,
the clkOut pin will not be masked.

PINS clkOut 0-100,1000-END {MAP H:X} {COND RESET[16]=0};
This will turn on masking for the pinNamed clkOut starting at cycle 0 and turning it off at cycle
100. After this the mask will be turn on again at cycle 1000 and will remain active until the end
of the pattern because no OFF statement occurs. Within the active ranges, the mask will only be
active if the RESET pin is set to 0 16 cycles prior to the active cycle. In other words, the mask
will be active until the RESET pin has been set high for at least 16 cycles. Lastly, Only the H’s
in the source will be masked. L’s will be left alone

4.0 Customizing Patterns

User’s Manual Page 8-85

8.5 Serial Masking

Serial masking is an alternate method for applying arbitrary remappings of character sequences
on a given pin. In general, anything that is defined as a serial mask can also be assigned with
logical mask syntax as defined above. However, sometimes it is difficult to programmatically
define the logical syntax. For that reason the serial masking block was created.

8.5.1 SYNTAX

GLOBAL MASK pinName1 [pinName2 pinName3 … pinNameN]
 “sourceString” -> “targetString”
 “sourceString” -> “targetString”
…
 “sourceString” -> “targetString”

END GLOBAL

The block is initiated and terminated with “GLOBAL MASK” and “END GLOBAL”. You can
then apply this to one or more pins or groups. These pins or groups must have been defined
already in the PINLIST or GROUP blocks.

The source and target strings will define what strings you are searching and replacing. These
sequences are searched for vertically on each pin in the listing. If the source string is found, it
will be automatically replaced with the target string.

The length of each source string must match the length of its associated target string.

Multiple source and target pairs are executed in the order they are defined inside the block

There can be more than one GLOBAL MASK block per configuration. That way you can assign
different combinations of string pairs for different pins.

The serial masking blocks are ALWAYS executed before any logical masking block that has
also been created.

4.0 Customizing Patterns

User’s Manual Page 8-86

8.5.2 EXAMPLES

GLOBAL MASK DQ DQS DQSb MDQ MDQS MDQSb
 "MMMMMMMMMMMMMMM0" -> "XXXXXXXXXXXXNNN0"
 "MMMMMMMMMMMMMMZ0" -> "XXXXXXXXXXXXNNN0"
 "MMMMMMMMMMMMMZZ0" -> "XXXXXXXXXXXXNNN0"
 "MMMMMMMMMMMMZZZ0" -> "XXXXXXXXXXXXNNN0"
 "MMMMMMMMMMMMMMM1" -> "XXXXXXXXXXXXNNN1"
 "MMMMMMMMMMMMMMZ1" -> "XXXXXXXXXXXXNNN1"
 "MMMMMMMMMMMMMZZ1" -> "XXXXXXXXXXXXNNN1"
 "MMMMMMMMMMMMZZZ1" -> "XXXXXXXXXXXXNNN1"
END GLOBAL

 These will mask turn around for packets that are
 to close together to test
GLOBAL MASK DQ DQS DQSb MDQ MDQS MDQSb
 "LLL0" -> "NNN0"
 "LLH0" -> "NNN0"
 "LHL0" -> "NNN0"
 "LHH0" -> "NNN0"
 "HLL0" -> "NNN0"
 "HLH0" -> "NNN0"
 "HHL0" -> "NNN0"
 "HHH0" -> "NNN0"

 "LLL1" -> "NNN1"
 "LLH1" -> "NNN1"
 "LHL1" -> "NNN1"
 "LHH1" -> "NNN1"
 "HLL1" -> "NNN1"
 "HLH1" -> "NNN1"
 "HHL1" -> "NNN1"
 "HHH1" -> "NNN1"
END GLOBAL

